JP6405817B2 - Laminate for electronic circuit board and electronic circuit board - Google Patents
Laminate for electronic circuit board and electronic circuit board Download PDFInfo
- Publication number
- JP6405817B2 JP6405817B2 JP2014187634A JP2014187634A JP6405817B2 JP 6405817 B2 JP6405817 B2 JP 6405817B2 JP 2014187634 A JP2014187634 A JP 2014187634A JP 2014187634 A JP2014187634 A JP 2014187634A JP 6405817 B2 JP6405817 B2 JP 6405817B2
- Authority
- JP
- Japan
- Prior art keywords
- electronic circuit
- circuit board
- laminate
- less
- resin layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Laminated Bodies (AREA)
- Manufacturing Of Printed Wiring (AREA)
Description
本発明は、レーザー照射部分に選択的に金属をめっきする方法により微細な電子回路を形成可能なものであり、且つ誘電特性に極めて優れた電子回路基板用積層体、当該電子回路基板用積層体に電子回路を形成したものである電子回路基板、および当該電子回路基板を積層した多層電子回路基板に関するものである。 The present invention is capable of forming a fine electronic circuit by a method of selectively plating a metal on a laser-irradiated portion, and has a very excellent dielectric property, and the laminate for an electronic circuit board. The present invention relates to an electronic circuit board on which an electronic circuit is formed, and a multilayer electronic circuit board in which the electronic circuit board is laminated.
従来、電子回路基板を作製するには、一般的に、材料基板に銅箔などの金属箔を熱融着したり接着剤を用いて貼り付けたり、また、スパッタや蒸着、無電解めっき法などで材料基板上に金属層を形成した後に、回路パターン以外の部分を化学エッチングにより除去して電子回路を形成していた。 Conventionally, in order to produce an electronic circuit board, generally, a metal foil such as a copper foil is thermally fused or bonded with an adhesive to a material board, or sputtering, vapor deposition, electroless plating method, etc. After forming the metal layer on the material substrate, the part other than the circuit pattern was removed by chemical etching to form an electronic circuit.
しかし、上記の方法にはコスト面での問題があった。また、材料基板に電子回路を形成した後に曲げ加工や絞り加工して立体基板とする場合には、金属層が切断されてしまうことがあった。 However, the above method has a problem in cost. Further, when a three-dimensional substrate is formed by bending or drawing after forming an electronic circuit on the material substrate, the metal layer may be cut.
そこで、LDS法(Laser Direct Structuring法)など、基板中にレーザー照射で活性化される光活性金属酸化物結晶を分散させ、当該基板の回路形成部分にレーザーを照射することにより選択的にめっき性を付与した後、レーザー照射部分に金属をめっきする方法が開発されている(特許文献1〜5)。 Therefore, by selectively dispersing a photoactive metal oxide crystal activated by laser irradiation in a substrate, such as LDS (Laser Direct Structure), and selectively irradiating the circuit forming portion of the substrate with laser. After imparting, a method of plating a metal on the laser irradiated part has been developed (Patent Documents 1 to 5).
また、特許文献6には、触媒顆粒を含み且つ犠牲層を含む複合材料誘電層を基板上に積層し、触媒顆粒を選択的に活性化して導線層を形成した後に犠牲層を除去することにより回路基板を作製する方法が開示されている。 Patent Document 6 discloses that a composite dielectric layer including catalyst granules and a sacrificial layer is stacked on a substrate, and the catalyst granules are selectively activated to form a conductive layer, and then the sacrificial layer is removed. A method of making a circuit board is disclosed.
上述したように、レーザーを用いて高精細パターンを低コストで形成できるLDS法などが開発されている。 As described above, an LDS method that can form a high-definition pattern at low cost using a laser has been developed.
しかし従来のLDS法などでは、電子回路を形成すべき基板に光活性金属酸化物結晶を分散させる必要があるため、電子回路基板全体の誘電特性が低下してしまい、高周波回路に適するものが製造できないという問題がある。 However, in the conventional LDS method or the like, since it is necessary to disperse the photoactive metal oxide crystal on the substrate on which the electronic circuit is to be formed, the dielectric characteristics of the entire electronic circuit substrate are deteriorated, and those suitable for high-frequency circuits are manufactured. There is a problem that you can not.
そこで本発明は、LDS法などにより微細な電子回路を形成可能なものであり、且つ誘電特性に極めて優れた電子回路基板用積層体と、当該電子回路基板用積層体に電子回路を形成したものである電子回路基板を提供することを目的とする。 Therefore, the present invention is capable of forming a fine electronic circuit by the LDS method or the like, and has an extremely excellent dielectric characteristic, and an electronic circuit formed on the electronic circuit board laminate. An object of the present invention is to provide an electronic circuit board.
本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、液晶ポリマーから成形された基材フィルム上に、所定割合の光活性金属酸化物結晶が樹脂中に分散した回路形成樹脂層を積層すれば、当該回路形成樹脂層にLDS法などにより電子回路を形成できるのみならず、誘電特性に優れた電子回路基板用積層体が得られることを見出して、本発明を完成した。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, when a circuit-forming resin layer in which a predetermined proportion of photoactive metal oxide crystals are dispersed in a resin is laminated on a base film formed from a liquid crystal polymer, electrons are formed on the circuit-forming resin layer by an LDS method or the like. The present invention has been completed by finding that not only a circuit can be formed but also a laminate for an electronic circuit board excellent in dielectric characteristics can be obtained.
以下、本発明を示す。 Hereinafter, the present invention will be described.
[1] 液晶ポリマーから成形された基材フィルム上に、光活性金属酸化物結晶が樹脂中に分散した樹脂組成物からなる回路形成樹脂層が積層されたものであり、
上記回路形成樹脂層に対する上記光活性金属酸化物結晶の割合が5質量%以上、20質量%以下であり、且つ、
全体の比誘電率が3.4以下で且つ誘電正接が0.005以下であることを特徴とする電子回路基板用積層体。
[1] A circuit-forming resin layer made of a resin composition in which a photoactive metal oxide crystal is dispersed in a resin is laminated on a base film formed from a liquid crystal polymer,
The ratio of the photoactive metal oxide crystal to the circuit-forming resin layer is 5% by mass or more and 20% by mass or less, and
A laminate for an electronic circuit board, wherein the overall relative dielectric constant is 3.4 or less and the dielectric loss tangent is 0.005 or less.
[2] 上記基材フィルムが、液晶ポリマーの異方性を緩和するための無機物を含む上記[1]に記載の電子回路基板用積層体。かかる無機物により、液晶ポリマーを溶融加工する際に生じる分子配向の異方性という液晶ポリマーフィルムの欠点を克服することができる。 [2] The laminate for an electronic circuit board according to [1], wherein the base film contains an inorganic substance for relaxing the anisotropy of the liquid crystal polymer. Such an inorganic substance can overcome the drawback of the liquid crystal polymer film, ie, the anisotropy of molecular orientation that occurs when the liquid crystal polymer is melt processed.
[3] 上記樹脂組成物が、上記光活性金属酸化物結晶の光活性を向上させるための無機物がさらに上記樹脂中に分散したものである上記[1]または[2]に記載の電子回路基板用積層体。かかる無機物の添加により、光活性金属酸化物結晶の量を低減しつつ、微細な電子回路の正確な形成がより一層簡便なものになる。 [3] The electronic circuit board according to [1] or [2], wherein the resin composition is obtained by further dispersing an inorganic material for improving the photoactivity of the photoactive metal oxide crystal in the resin. Laminated body. Addition of such an inorganic substance makes it easier to accurately form a fine electronic circuit while reducing the amount of photoactive metal oxide crystals.
[4] 上記基材フィルムの比誘電率が3.4以下で且つ誘電正接が0.003以下である上記[1]〜[3]のいずれかに記載の電子回路基板用積層体。かかる基材フィルムを用いれば、電子回路基板用積層体全体の誘電特性も優れたものとなる。 [4] The laminate for an electronic circuit board according to any one of [1] to [3], wherein the base film has a relative dielectric constant of 3.4 or less and a dielectric loss tangent of 0.003 or less. If such a base film is used, the dielectric properties of the entire laminate for an electronic circuit board will be excellent.
[5] 上記回路形成樹脂層の比誘電率が3.4以下で且つ誘電正接が0.005以下である上記[1]〜[4]のいずれかに記載の電子回路基板用積層体。かかる回路形成樹脂層を用いれば、電子回路基板用積層体全体の誘電特性も優れたものとなる。 [5] The laminate for an electronic circuit board according to any one of [1] to [4], wherein the circuit forming resin layer has a relative dielectric constant of 3.4 or less and a dielectric loss tangent of 0.005 or less. If such a circuit-forming resin layer is used, the dielectric properties of the entire electronic circuit board laminate will also be excellent.
[6] 上記回路形成樹脂層を構成する上記樹脂の比誘電率が2.7以下で且つ誘電正接が0.005以下である上記[1]〜[5]のいずれかに記載の電子回路基板用積層体。かかる樹脂を用いれば、電子回路基板用積層体全体の誘電特性も優れたものとなる。 [6] The electronic circuit board according to any one of [1] to [5], wherein the resin constituting the circuit-forming resin layer has a relative dielectric constant of 2.7 or less and a dielectric loss tangent of 0.005 or less. Laminated body. If such a resin is used, the dielectric properties of the entire electronic circuit board laminate will also be excellent.
[7] 上記回路形成樹脂層を構成する樹脂が、ビスマレイミドトリアジン樹脂、熱硬化変性ポリフェニレンエーテル樹脂、溶媒可溶性液晶ポリマーまたは溶媒可溶性フッ素樹脂である上記[1]〜[6]のいずれかに記載の電子回路基板用積層体。これら樹脂は、適切な溶媒に対して可溶性を示すことから、光活性金属酸化物結晶などを均一分散させることができ、また、ワニス化して液晶ポリマー基材フィルム上で容易にフィルム化できる。 [7] The resin constituting the circuit-forming resin layer is any one of the above [1] to [6], wherein the resin is a bismaleimide triazine resin, a thermosetting modified polyphenylene ether resin, a solvent-soluble liquid crystal polymer, or a solvent-soluble fluororesin. A laminate for an electronic circuit board. Since these resins are soluble in an appropriate solvent, photoactive metal oxide crystals and the like can be uniformly dispersed, and can be varnished and easily formed on a liquid crystal polymer substrate film.
[8] 上記回路形成樹脂層の厚さが1μm以上、30μm以下である上記[1]〜[7]のいずれかに記載の電子回路基板用積層体。上記回路形成樹脂層の厚さが1μm以上であれば、LDS法などによる電子回路の形成が可能であるといえる。また、30μm以下であれば、全体の誘電特性も確保できる。 [8] The electronic circuit board laminate according to any one of [1] to [7], wherein the circuit-forming resin layer has a thickness of 1 μm or more and 30 μm or less. If the thickness of the circuit forming resin layer is 1 μm or more, it can be said that an electronic circuit can be formed by the LDS method or the like. Moreover, if it is 30 micrometers or less, the whole dielectric characteristic is securable.
[9] 上記回路形成樹脂層の厚さが上記基材フィルムの厚さよりも薄い上記[1]〜[8]のいずれかに記載の電子回路基板用積層体。かかる態様により、LDS法などによる電子回路の形成が可能であり、且つ、十分な誘電特性と強度を示す電子回路基板用積層体がより確実に得られる。 [9] The laminate for an electronic circuit board according to any one of [1] to [8], wherein the thickness of the circuit-forming resin layer is thinner than the thickness of the base film. According to such an embodiment, an electronic circuit can be formed by the LDS method or the like, and a laminate for an electronic circuit board that exhibits sufficient dielectric properties and strength can be obtained more reliably.
[10] 上記基材フィルムの平面方向の線膨張係数が3ppm/℃以上、30ppm/℃以下であり、且つ、平面方向の一方向での線膨張係数と当該方向に直交する方向の線膨張係数との比が0.4以上、2.5以下である上記[1]〜[9]のいずれかに記載の電子回路基板用積層体。 [10] The linear expansion coefficient in the planar direction of the base film is 3 ppm / ° C. or more and 30 ppm / ° C. or less, and the linear expansion coefficient in one direction of the planar direction and the linear expansion coefficient in the direction orthogonal to the direction. The laminate for an electronic circuit board according to any one of the above [1] to [9], wherein the ratio to is 0.4 or more and 2.5 or less.
[11] 上記基材フィルムの片面に上記回路形成樹脂層が積層されたものである上記[1]〜[10]のいずれかに記載の電子回路基板用積層体。 [11] The laminate for an electronic circuit board according to any one of [1] to [10], wherein the circuit-forming resin layer is laminated on one side of the base film.
[12] 上記基材フィルムの両面に上記回路形成樹脂層が積層されたものである上記[1]〜[10]のいずれかに記載の電子回路基板用積層体。 [12] The laminate for an electronic circuit board according to any one of [1] to [10], wherein the circuit-forming resin layer is laminated on both surfaces of the base film.
[13] 上記[1]〜[12]のいずれかに記載の電子回路基板用積層体の上記回路形成樹脂層に電子回路が形成されているものであることを特徴とする電子回路基板。 [13] An electronic circuit board, wherein an electronic circuit is formed on the circuit-forming resin layer of the laminate for an electronic circuit board according to any one of [1] to [12].
[14] 上記[13]に記載の電子回路基板が2以上積層されているものであることを特徴とする多層電子回路基板。 [14] A multilayer electronic circuit board, wherein two or more electronic circuit boards according to [13] are laminated.
本発明に係る電子回路基板用積層体の回路形成樹脂層には、LDS法などにより電子回路を形成可能であるため、電子回路形成のために銅箔などを積層する必要がない。また、当該回路形成樹脂層において、かかる電子回路形成に寄与するものではあるが誘電特性を貶める原因となる光活性金属酸化物結晶の割合を所定範囲に調整していることから、積層体全体の誘電特性は優れたものとなる。よって、本発明に係る電子回路基板用積層体から製造される電子回路基板は、1GHz以上といった高周波でも伝送損失が抑制されており、高周波製品に用いるアンテナ基板や伝送路基板として非常に有用であり、また、当該積層体を複数枚重ね合わせて熱プレスで液晶ポリマーを熱融着させ一体化させることができるので、一括多層工法による多層電子回路基板の材料としても好適なものである。 Since an electronic circuit can be formed on the circuit forming resin layer of the laminate for an electronic circuit board according to the present invention by an LDS method or the like, it is not necessary to laminate a copper foil or the like for forming the electronic circuit. Further, in the circuit-forming resin layer, the ratio of the photoactive metal oxide crystal that contributes to the electronic circuit formation but causes the dielectric properties to be reduced is adjusted to a predetermined range. The dielectric properties are excellent. Therefore, an electronic circuit board manufactured from the laminate for an electronic circuit board according to the present invention suppresses transmission loss even at a high frequency of 1 GHz or more, and is very useful as an antenna substrate or a transmission path substrate used for high-frequency products. In addition, since a plurality of the laminates can be superposed and the liquid crystal polymer can be heat-fused and integrated by hot pressing, it is also suitable as a material for a multilayer electronic circuit board by a collective multilayer construction method.
本発明に係る電子回路基板用積層体は、液晶ポリマーから成形された基材フィルム上に、光活性金属酸化物結晶が樹脂中に分散した樹脂組成物からなる回路形成樹脂層が積層された構成を有する。 The laminate for an electronic circuit board according to the present invention has a configuration in which a circuit-forming resin layer made of a resin composition in which photoactive metal oxide crystals are dispersed in a resin is laminated on a base film formed from a liquid crystal polymer. Have
液晶ポリマーには、溶融状態で液晶性を示すサーモトロピック液晶ポリマーと、溶液状態で液晶性を示すレオトロピック液晶ポリマーとがある。本発明では何れの液晶ポリマーも用い得るが、耐熱性や難燃性がより優れることから、サーモトロピック液晶ポリマーを好適に用いる。 The liquid crystal polymer includes a thermotropic liquid crystal polymer exhibiting liquid crystallinity in a molten state and a rheotropic liquid crystal polymer exhibiting liquid crystallinity in a solution state. In the present invention, any liquid crystal polymer can be used, but a thermotropic liquid crystal polymer is preferably used because it is more excellent in heat resistance and flame retardancy.
サーモトロピック液晶ポリマーのうちサーモトロピック液晶ポリエステル(以下、単に「液晶ポリエステル」という)とは、例えば、芳香族ヒドロキシカルボン酸を必須のモノマーとし、芳香族ジカルボン酸や芳香族ジオールなどのモノマーと反応させることにより得られる芳香族ポリエステルであって、溶融時に液晶性を示すものである。その代表的なものとしては、パラヒドロキシ安息香酸(PHB)と、フタル酸と、4,4’−ビフェノールから合成されるI型[下式(1)]、PHBと2,6−ヒドロキシナフトエ酸から合成されるII型[下式(2)]、PHBと、テレフタル酸と、エチレングリコールから合成されるIII型[下式(3)]が挙げられる。 Among the thermotropic liquid crystal polymers, a thermotropic liquid crystal polyester (hereinafter simply referred to as “liquid crystal polyester”) is, for example, an aromatic hydroxycarboxylic acid as an essential monomer and reacted with a monomer such as an aromatic dicarboxylic acid or aromatic diol. It is an aromatic polyester obtained by this, and exhibits liquid crystallinity when melted. Typical examples thereof include type I [Formula (1)] synthesized from parahydroxybenzoic acid (PHB), phthalic acid, and 4,4′-biphenol, PHB and 2,6-hydroxynaphthoic acid. Type II [Formula (2)] synthesized from the above, Type III [Formula (3)] synthesized from PHB, terephthalic acid, and ethylene glycol.
本発明においては、耐熱性や耐加水分解性により優れることから、上記のうちI型液晶ポリエステルとII型液晶ポリエステルが好ましい。 In the present invention, among them, I-type liquid crystal polyester and II-type liquid crystal polyester are preferable because they are superior in heat resistance and hydrolysis resistance.
上記式(1)において、フタル酸としてはイソフタル酸が好ましい。 In the above formula (1), isophthalic acid is preferable as phthalic acid.
本発明における基材フィルムの厚さは適宜調整すればよいが、10μm以上、1000μm以下が好ましい。本発明では基材フィルムにより全体的な強度を担保するため、当該厚さは10μm以上が好ましい。また、当該厚さが10μm以上であれば、多層板にした場合などにおける層間絶縁性も確保することができる。一方、厚さの上限は特に制限されないが、厚過ぎると電子回路基板全体が重くなってしまったり、絞り加工などし難くなるおそれがあり得るので、1000μm以下が好ましい。当該厚さとしては20μm以上がより好ましく、50μm以上がさらに好ましく、また、500μm以下がより好ましく、300μm以下がさらに好ましい。 What is necessary is just to adjust the thickness of the base film in this invention suitably, However, 10 micrometers or more and 1000 micrometers or less are preferable. In the present invention, since the overall strength is ensured by the base film, the thickness is preferably 10 μm or more. In addition, when the thickness is 10 μm or more, interlayer insulation in the case of a multilayer board can be ensured. On the other hand, the upper limit of the thickness is not particularly limited, but if it is too thick, the entire electronic circuit board may become heavy or it may be difficult to perform drawing or the like, and is preferably 1000 μm or less. The thickness is more preferably 20 μm or more, further preferably 50 μm or more, more preferably 500 μm or less, and further preferably 300 μm or less.
液晶ポリマーフィルムの誘電特性は一般的に優れているといえる。しかし本発明では、電子回路基板用積層体または電子回路基板の全体での誘電特性の改善を課題の一つとしているため、特に誘電特性に優れた液晶ポリマーフィルムを基材として用いることが好ましい。具体的には、液晶ポリマー基材フィルムの比誘電率としては3.4以下が好ましく、誘電正接としては0.003以下が好ましい。 It can be said that the dielectric properties of the liquid crystal polymer film are generally excellent. However, in the present invention, since improvement of the dielectric properties of the electronic circuit board laminate or the entire electronic circuit board is one of the problems, it is particularly preferable to use a liquid crystal polymer film having excellent dielectric characteristics as the base material. Specifically, the dielectric constant of the liquid crystal polymer base film is preferably 3.4 or less, and the dielectric loss tangent is preferably 0.003 or less.
本発明に係る基材フィルムのマトリックス樹脂は、誘電特性のため実質的に液晶ポリマーのみとするが、液晶ポリマーは剪断応力をかけると強い異方性を示すので、必要に応じて、液晶ポリマーを溶融加工する際に生じる分子配向の異方性を緩和するための無機物を添加してもよい。かかる配向緩和用の無機物を導入することにより、例えば押し出された後の液晶ポリマー表面が平滑になり、また均配向性が得られやすくなる。 The matrix resin of the base film according to the present invention is substantially only a liquid crystal polymer because of dielectric properties, but the liquid crystal polymer exhibits strong anisotropy when subjected to shear stress. You may add the inorganic substance for relieving the anisotropy of the molecular orientation produced at the time of melt processing. By introducing such an inorganic substance for relaxing the alignment, for example, the surface of the liquid crystal polymer after being extruded becomes smooth, and uniform orientation can be easily obtained.
液晶ポリマーの分子配向の異方性を緩和するための無機物としては、特に制限されるものではないが、例えば、酸化アルミ、酸化チタン、酸化珪素、窒化珪素などからなる無機物フィラーを挙げることができる。当該無機物フィラーの形状は特に制限されず、例えば、球状、板状、棒状、針状、不定形状などを挙げることができ、また、当該無機フィラーの大きさとしては50nm以上、10μm以下が好ましい。なお、当該無機フィラーの大きさは、その拡大写真における各無機フィラーの最長部を測定してもよいし、また、粒度分布測定から求めた体積平均粒子径や個数平均粒子径としてもよい。 The inorganic material for relaxing the molecular orientation anisotropy of the liquid crystal polymer is not particularly limited, and examples thereof include inorganic fillers made of aluminum oxide, titanium oxide, silicon oxide, silicon nitride, and the like. . The shape of the inorganic filler is not particularly limited, and examples thereof include a spherical shape, a plate shape, a rod shape, a needle shape, and an indefinite shape, and the size of the inorganic filler is preferably 50 nm or more and 10 μm or less. In addition, the magnitude | size of the said inorganic filler may measure the longest part of each inorganic filler in the enlarged photograph, and is good also as a volume average particle diameter and number average particle diameter calculated | required from the particle size distribution measurement.
上記の液晶ポリマーの異方性を緩和するための無機物は基材フィルムの誘電特性を貶めるので、液晶ポリマー基材フィルム全体(液晶ポリマー基材フィルムと当該無機物との合計)に対する無機物の割合は20質量%以下とすることが好ましい。上記割合を20質量%以下にすることにより、液晶ポリマー基材フィルムの比誘電率を3.4以下、誘電正接が0.003以下に制御でき、積層体全体の誘電特性を優れたものにすることができる。 Since the inorganic substance for relaxing the anisotropy of the liquid crystal polymer gives up the dielectric properties of the base film, the ratio of the inorganic substance to the entire liquid crystal polymer base film (total of the liquid crystal polymer base film and the inorganic substance) is 20 It is preferable to set it as mass% or less. By controlling the ratio to 20% by mass or less, the relative dielectric constant of the liquid crystal polymer base film can be controlled to 3.4 or less and the dielectric loss tangent can be controlled to 0.003 or less, and the dielectric properties of the entire laminate can be improved. be able to.
本発明で用いる液晶ポリマー基材フィルムの製造方法は特に制限されず、例えば、溶融押出法やインフレーション法などの従来方法で製造すればよい。なお、これら方法で製造された液晶ポリマーフィルムの異方性が高い場合には、二軸延伸などにより異方性を低減することが可能である。 The production method of the liquid crystal polymer base film used in the present invention is not particularly limited, and may be produced by a conventional method such as a melt extrusion method or an inflation method. In addition, when the anisotropy of the liquid crystal polymer film produced by these methods is high, the anisotropy can be reduced by biaxial stretching or the like.
本発明に係る液晶ポリマー基材フィルムの平面方向の線膨張係数としては3ppm/℃以上、30ppm/℃以下が好ましく、また、平面方向の一方向での線膨張係数と、当該方向に直交する方向の線膨張係数との比が0.4以上、2.5以下であることが好ましい。線膨張係数や上記比が上記範囲を外れる場合は、平面方向で熱応力、機械的強度、誘電率が異なっていたり、また、めっきにより電子回路を形成した場合などにおいて反りが発生し得るなど、電子回路基板の材料として使い難くなるおそれがあり得る。なお、平面方向の線膨張係数を測定する方向は特に制限されないが、液晶ポリマーフィルムを溶融押出した後に押出方向(MD方向)と直交する方向(TD方向)に延伸して異方性を低減した場合には、通常、MD方向の線膨張係数が平面方向で最も小さくなる。しかし延伸倍率を高めた場合には、TD方向の線膨張係数が最小になり、MD方向が最大になることもあり得る。このように、液晶ポリマーフィルムの平面方向ではMD方向またはTD方向で線膨張係数が最大または最小となるので、線膨張係数はMD方向とTD方向で測定することが好ましい。また、線膨張係数や上記比は、延伸操作により調整可能である。 The linear expansion coefficient in the planar direction of the liquid crystal polymer substrate film according to the present invention is preferably 3 ppm / ° C. or more and 30 ppm / ° C. or less, and the linear expansion coefficient in one direction of the planar direction and the direction orthogonal to the direction. It is preferable that the ratio to the linear expansion coefficient is 0.4 or more and 2.5 or less. When the linear expansion coefficient or the ratio is out of the above range, the thermal stress, mechanical strength, dielectric constant is different in the plane direction, and warping may occur when an electronic circuit is formed by plating, etc. It may be difficult to use as a material for an electronic circuit board. The direction in which the linear expansion coefficient in the planar direction is measured is not particularly limited, but after the liquid crystal polymer film is melt-extruded, it is stretched in the direction (TD direction) perpendicular to the extrusion direction (MD direction) to reduce anisotropy. In some cases, the linear expansion coefficient in the MD direction is usually the smallest in the plane direction. However, when the draw ratio is increased, the linear expansion coefficient in the TD direction is minimized and the MD direction may be maximized. Thus, since the linear expansion coefficient is maximized or minimized in the MD direction or the TD direction in the plane direction of the liquid crystal polymer film, the linear expansion coefficient is preferably measured in the MD direction and the TD direction. Further, the linear expansion coefficient and the ratio can be adjusted by a stretching operation.
液晶ポリマー基材フィルムには回路形成樹脂層を積層するが、液晶ポリマーフィルムの反応性は一般的に低いといえる。よって、液晶ポリマー基材フィルムの少なくとも回路形成樹脂層を積層する側の表面は、回路形成樹脂層との密着性を確保するために、プラズマ処理、コロナ放電処理、UV照射処理、アルカリ液処理、サンドブラスト処理などで粗化したり、接着に寄与する官能基の数を増やしておくことが好ましい。 Although a circuit-forming resin layer is laminated on the liquid crystal polymer base film, it can be said that the reactivity of the liquid crystal polymer film is generally low. Therefore, at least the surface on the side of laminating the circuit-forming resin layer of the liquid crystal polymer base film has a plasma treatment, a corona discharge treatment, a UV irradiation treatment, an alkaline solution treatment, in order to ensure adhesion with the circuit-forming resin layer. It is preferable to increase the number of functional groups that are roughened by sandblasting or the like or contribute to adhesion.
本発明において液晶ポリマー基材フィルム上に積層する回路形成樹脂層は、LDS法などにより電子回路を形成するための層であって、光活性金属酸化物結晶が樹脂中に分散した樹脂組成物からなるものである。 In the present invention, the circuit-forming resin layer laminated on the liquid crystal polymer base film is a layer for forming an electronic circuit by an LDS method or the like, and is formed from a resin composition in which photoactive metal oxide crystals are dispersed in the resin. It will be.
光活性金属酸化物結晶は、レーザー照射により二価金属原子と酸素原子との間の結合が切断されて活性化し、当該二価金属原子にめっき金属が付着できるようになるものであり、例えば、以下の化学式で表され且つスピネル型結晶構造を有するものを挙げることができる。
AB2O4またはBABO4
[式中、Aは、カドミウム、亜鉛、銅、コバルト、マグネシウム、スズ、チタン、鉄、アルミニウム、ニッケル、マンガンおよびクロムからなる群から選択される二価金属を示し;Bは、カドミウム、マンガン、ニッケル、亜鉛、銅、コバルト、マグネシウム、スズ、チタン、鉄、アルミニウムおよびクロムからなる群から選択される三価金属を示す]
The photoactive metal oxide crystal is activated by cutting the bond between the divalent metal atom and the oxygen atom by laser irradiation, and allows the plating metal to adhere to the divalent metal atom. Examples thereof include those represented by the following chemical formula and having a spinel crystal structure.
AB 2 O 4 or BABO 4
Wherein A represents a divalent metal selected from the group consisting of cadmium, zinc, copper, cobalt, magnesium, tin, titanium, iron, aluminum, nickel, manganese and chromium; B represents cadmium, manganese, Indicates a trivalent metal selected from the group consisting of nickel, zinc, copper, cobalt, magnesium, tin, titanium, iron, aluminum and chromium]
光活性金属酸化物結晶の平均粒子径は適宜調整すればよいが、樹脂フィルム中への分散のし易さや調製のし易さなどの観点から、50nm以上、10μm以下が好ましい。 The average particle size of the photoactive metal oxide crystal may be adjusted as appropriate, but is preferably 50 nm or more and 10 μm or less from the viewpoint of ease of dispersion in the resin film and ease of preparation.
回路形成樹脂層のマトリックスを構成する樹脂としては、電子回路基板用フィルムまたは電子回路基板の全体での誘電特性の改善を課題の一つとしているため、誘電特性に優れたものを用いることが好ましい。具体的には、光活性金属酸化物結晶を含まない状態の樹脂の比誘電率として2.7以下が好ましく、誘電正接としては0.005以下が好ましい。 As the resin constituting the matrix of the circuit forming resin layer, one of the problems is to improve the dielectric characteristics of the electronic circuit board film or the entire electronic circuit board. Therefore, it is preferable to use a resin having excellent dielectric characteristics. . Specifically, the relative dielectric constant of the resin not containing the photoactive metal oxide crystal is preferably 2.7 or less, and the dielectric loss tangent is preferably 0.005 or less.
また、回路形成樹脂層を構成する樹脂としては、優れた誘電特性のみならず、光活性金属酸化物結晶の均一分散のためや、ワニス化して液晶ポリマー基材フィルム上で容易にフィルム化できるようにするため、適切な溶媒に対して可溶性を示すものが好ましい。このような樹脂としては、かかる特性を有するものであれば特に制限されないが、例えば、ビスマレイミドトリアジン樹脂、熱硬化変性ポリフェニレンエーテル樹脂、溶媒可溶性液晶ポリマーまたは溶媒可溶性フッ素樹脂を挙げることができる。 In addition to excellent dielectric properties, the resin constituting the circuit-forming resin layer can be easily formed into a film on a liquid crystal polymer substrate film for uniform dispersion of photoactive metal oxide crystals and varnishing. Therefore, those which are soluble in an appropriate solvent are preferable. Such a resin is not particularly limited as long as it has such characteristics, and examples thereof include a bismaleimide triazine resin, a thermosetting modified polyphenylene ether resin, a solvent-soluble liquid crystal polymer, and a solvent-soluble fluororesin.
ビスマレイミドトリアジン樹脂はビスマレイミドとトリアジンを共重合させた熱硬化性樹脂である。熱硬化変性ポリフェニレンエーテル樹脂は、熱可塑性ポリフェニレンエーテル樹脂とエポキシ樹脂とを配合してトルエンなどの溶媒に溶解し、触媒として2−エチル−4−メチルイミダゾールを加えて架橋させた樹脂である。溶媒可溶性液晶ポリマーは、全芳香族ポリエステルを溶媒可溶型に変性したもので、住友化学製の液晶ポリマーワニスなどがある。溶媒可溶性フッ素樹脂は、フッ素樹脂をアモルファス化してフッ素系溶媒に可溶化したもので、旭硝子製のサイトップなどがある。 The bismaleimide triazine resin is a thermosetting resin obtained by copolymerizing bismaleimide and triazine. The thermosetting modified polyphenylene ether resin is a resin in which a thermoplastic polyphenylene ether resin and an epoxy resin are blended, dissolved in a solvent such as toluene, and 2-ethyl-4-methylimidazole is added as a catalyst for crosslinking. The solvent-soluble liquid crystal polymer is obtained by modifying a wholly aromatic polyester into a solvent-soluble type, such as a liquid crystal polymer varnish manufactured by Sumitomo Chemical. The solvent-soluble fluororesin is obtained by making a fluororesin amorphous and solubilizing it in a fluorinated solvent, such as Cytop manufactured by Asahi Glass.
回路形成樹脂層を構成する樹脂の吸水率としては0.1%以下が好ましい。吸水率の小さい樹脂を用いることで、吸湿に起因する誘電特性の変動や、配線間のショート現象(イオンマイグレーション)や、はんだ実装時の基板膨れ不良などを発生し難くすることができる。なお、かかる吸水率は、JIS C6471に記載されているとおり、樹脂試料を23℃の水中に24時間浸漬する前後の重量変化を測定することにより測定することができる。 The water absorption of the resin constituting the circuit forming resin layer is preferably 0.1% or less. By using a resin having a low water absorption rate, it is possible to make it difficult to cause variations in dielectric characteristics due to moisture absorption, short-circuiting phenomenon (ion migration) between wirings, defective board swelling during solder mounting, and the like. In addition, this water absorption rate can be measured by measuring the weight change before and after immersing a resin sample in 23 degreeC water for 24 hours as it describes in JISC6471.
回路形成樹脂層における光活性金属酸化物結晶の割合は、適宜調整すればよいが、5質量%以上、20質量%以下とする。当該割合が5質量%以上であれば、LDS法による電子回路の形成をより確実に行うことが可能になる。一方、光活性金属酸化物結晶の誘電特性は悪く、電子回路基板用積層体や電子回路基板の全体の誘電特性を貶めるので、当該割合は20質量%以下とする。当該割合としては、6質量%以上がより好ましく、7質量%以上がさらに好ましく、また、15質量%以下がより好ましく、10質量%以下がさらに好ましい。 The ratio of the photoactive metal oxide crystal in the circuit-forming resin layer may be adjusted as appropriate, but is 5% by mass or more and 20% by mass or less. If the ratio is 5% by mass or more, the electronic circuit can be more reliably formed by the LDS method. On the other hand, the dielectric properties of the photoactive metal oxide crystal are poor, and the overall dielectric properties of the electronic circuit board laminate or the electronic circuit board are given up. As the said ratio, 6 mass% or more is more preferable, 7 mass% or more is further more preferable, 15 mass% or less is more preferable, and 10 mass% or less is further more preferable.
本発明に係る回路形成樹脂層には、さらに、光活性金属酸化物結晶の光活性を向上させるための無機物を分散させることにより、レーザー照射による回路形成樹脂層の加工性を向上させてもよい。かかる無機物としては、特に制限されないが、例えば、酸化珪素、窒化珪素、酸化アルミニウム、酸化チタンなどからなる無機物フィラーを挙げることができる。当該無機物フィラーの形状は特に制限されず、例えば、球状、板状、棒状、針状、不定形状などを挙げることができ、また、当該無機フィラーの大きさとしては50nm以上、10μm以下が好ましい。なお、当該無機フィラーの大きさは、その拡大写真における各無機フィラーの最長部を測定してもよいし、また、粒度分布測定から求めた体積平均粒子径や個数平均粒子径としてもよい。 The circuit forming resin layer according to the present invention may further improve the processability of the circuit forming resin layer by laser irradiation by dispersing an inorganic substance for improving the photoactivity of the photoactive metal oxide crystal. . Such an inorganic substance is not particularly limited, and examples thereof include an inorganic filler made of silicon oxide, silicon nitride, aluminum oxide, titanium oxide, or the like. The shape of the inorganic filler is not particularly limited, and examples thereof include a spherical shape, a plate shape, a rod shape, a needle shape, and an indefinite shape, and the size of the inorganic filler is preferably 50 nm or more and 10 μm or less. In addition, the magnitude | size of the said inorganic filler may measure the longest part of each inorganic filler in the enlarged photograph, and is good also as a volume average particle diameter and number average particle diameter calculated | required from the particle size distribution measurement.
上記の光活性金属酸化物結晶の光活性を向上させるための無機物の回路形成樹脂層に対する割合としては、20質量%以下が好ましい。上記無機物は誘電特性を貶めるので、上記割合を20質量%以下にすることにより、回路形成樹脂層の比誘電率を3.4以下、誘電正接が0.005以下に制御することができ、本発明に係る積層体全体の誘電特性を優れたものにすることができる。 The proportion of the inorganic substance for improving the photoactivity of the photoactive metal oxide crystal to the circuit-forming resin layer is preferably 20% by mass or less. Since the above-mentioned inorganic substances give up dielectric characteristics, the relative permittivity of the circuit-forming resin layer can be controlled to 3.4 or less and the dielectric loss tangent can be controlled to 0.005 or less by setting the ratio to 20% by mass or less. The dielectric properties of the entire laminate according to the invention can be made excellent.
回路形成樹脂層の厚さも適宜調整すればよいが、回路形成樹脂層を構成する樹脂と光活性金属酸化物結晶の誘電特性は液晶ポリマー基材フィルムより劣るといえるので、LDS法などによる電子回路の形成が可能な範囲でできるだけ薄くすることが好ましい。例えば、1μm以上、30μm以下とすることができる。回路形成樹脂層の厚さが1μm以上であれば、LDS法などによる電子回路の形成が可能であるといえる。また、30μm以下であれば、全体の誘電特性も確保できるといえる。当該厚さとしては5μm以上がより好ましく、10μm以上がさらに好ましい。 Although the thickness of the circuit-forming resin layer may be adjusted as appropriate, it can be said that the dielectric properties of the resin constituting the circuit-forming resin layer and the photoactive metal oxide crystal are inferior to those of the liquid crystal polymer base film. It is preferable to make it as thin as possible within the range where the formation of can be performed. For example, it can be 1 μm or more and 30 μm or less. If the thickness of the circuit-forming resin layer is 1 μm or more, it can be said that an electronic circuit can be formed by the LDS method or the like. Moreover, if it is 30 micrometers or less, it can be said that the whole dielectric characteristic is securable. The thickness is more preferably 5 μm or more, and further preferably 10 μm or more.
樹脂の種類、光活性金属酸化物結晶の種類、および回路形成樹脂層における光活性金属酸化物結晶の割合などは、回路形成樹脂層の誘電特性が優れたものになるように適宜選択することが好ましい。例えば、回路形成樹脂層の比誘電率が3.4以下、誘電正接が0.005以下となるように上記を適宜選択することが好ましい。 The type of resin, the type of photoactive metal oxide crystal, and the ratio of the photoactive metal oxide crystal in the circuit-forming resin layer can be appropriately selected so that the dielectric properties of the circuit-forming resin layer are excellent. preferable. For example, it is preferable to appropriately select the above so that the relative dielectric constant of the circuit-forming resin layer is 3.4 or less and the dielectric loss tangent is 0.005 or less.
回路形成樹脂層は、上記樹脂の粘稠溶液に光活性金属酸化物結晶が均一分散するようよく混合した後、液晶ポリマー基材フィルム上にキャスティングし、乾燥することにより液晶ポリマー基材フィルム上に積層することができる。回路形成樹脂層は、目的とする電子回路基板の形態などに応じて液晶ポリマー基材フィルムの片面のみに積層してもよいし、両面に積層してもよい。 The circuit-forming resin layer is mixed with the viscous solution of the resin so that the photoactive metal oxide crystals are uniformly dispersed, then cast on the liquid crystal polymer base film, and dried to form the liquid crystal polymer base film. Can be stacked. The circuit-forming resin layer may be laminated only on one side of the liquid crystal polymer base film or may be laminated on both sides according to the form of the target electronic circuit board.
液晶ポリマーの種類、回路形成樹脂層を構成する樹脂の種類、回路形成樹脂層における光活性金属酸化物結晶の割合、回路形成樹脂層の厚さなど、およびこれらの組み合わせは、電子回路基板用積層体全体の誘電特性が優れたものになるよう適宜選択することが好ましい。具体的には、電子回路基板用積層体全体の比誘電率として3.4以下が好ましく、誘電正接としては0.005以下が好ましい。 The type of liquid crystal polymer, the type of resin constituting the circuit-forming resin layer, the ratio of the photoactive metal oxide crystal in the circuit-forming resin layer, the thickness of the circuit-forming resin layer, etc. It is preferable to select appropriately so that the dielectric properties of the whole body are excellent. Specifically, the relative dielectric constant of the entire electronic circuit board laminate is preferably 3.4 or less, and the dielectric loss tangent is preferably 0.005 or less.
本発明に係る電子回路基板用積層体の回路形成樹脂層には、LDS法などにより電子回路を形成することが可能である。具体的には、回路形成樹脂層に形成すべき電子回路の回路パターンに沿ってレーザーを照射すると、回路形成樹脂層を構成する樹脂が削れて光活性金属酸化物結晶が露出すると共に、レーザーのエネルギーにより光活性金属酸化物結晶が活性化され、二価金属原子またはそのイオンが露出する。その二価金属原子または二価イオンとめっき金属との親和性により、レーザー照射部位に選択的に導電性金属をめっきすることが可能になる。 An electronic circuit can be formed on the circuit-forming resin layer of the electronic circuit board laminate according to the present invention by an LDS method or the like. Specifically, when the laser is irradiated along the circuit pattern of the electronic circuit to be formed on the circuit forming resin layer, the resin constituting the circuit forming resin layer is scraped to expose the photoactive metal oxide crystal, and the laser The energy activates the photoactive metal oxide crystal, exposing the divalent metal atom or its ion. The affinity between the divalent metal atom or divalent ion and the plating metal makes it possible to selectively plate the conductive metal on the laser irradiation site.
LDS法などで用いるレーザーとしては、波長が数百nmの通常のイットリウム・アルミニウム・ガーネット(YAG)レーザーを用いることができる。但し、回路形成樹脂層をあまり掘削したくない場合には、波長1064nmのレーザーを用いてもよい。 As a laser used in the LDS method or the like, a normal yttrium aluminum garnet (YAG) laser having a wavelength of several hundred nm can be used. However, a laser with a wavelength of 1064 nm may be used when not much excavating the circuit forming resin layer.
レーザー照射により活性化された部分をめっきする金属めっきの材料は、電気伝導性に優れ、比較的安価な金属材料である銅が好ましい。銅めっき回路パターンは、無電解銅めっき、電解銅めっきにより形成できる。めっき浴は一般に硫酸銅水溶液を用いる。 The metal plating material for plating the portion activated by laser irradiation is preferably copper, which is excellent in electrical conductivity and relatively inexpensive. The copper plating circuit pattern can be formed by electroless copper plating or electrolytic copper plating. As the plating bath, an aqueous copper sulfate solution is generally used.
本発明に係る電子回路基板用積層体への回路形成は、片面または両面に施すことができる。片面に回路形成した電子回路基板用積層体は、一枚の基材において一つの面が電気伝導層、その反対面が電気絶縁層となっている。よって、当該積層体を複数枚、同方向に重ねた多層基板を作製する際に、電気伝導層と電気絶縁層を交互に設けることができるため、多層基板用の基材として好都合である。また、両面に回路形成した電子回路基板用積層体は、一枚の基材で2層の回路層を有していることから、一枚の基材のみで形成する両面回路形成基板や、多層基板の中央部に一層使用することで多層基材に使用する基材の枚数を減らすことができ、多層基板の薄型化に好都合である。 The circuit formation to the electronic circuit board laminate according to the present invention can be performed on one side or both sides. In a laminate for an electronic circuit board in which a circuit is formed on one side, one surface of one substrate is an electrically conductive layer and the opposite surface is an electrically insulating layer. Therefore, when a multilayer substrate in which a plurality of the stacked bodies are stacked in the same direction is manufactured, an electrically conductive layer and an electrically insulating layer can be alternately provided, which is convenient as a base material for the multilayer substrate. Moreover, since the laminated body for electronic circuit boards in which circuits are formed on both sides has two circuit layers with a single base material, a double-sided circuit-formed substrate formed with only one base material or a multilayer By using one layer at the center of the substrate, the number of base materials used for the multilayer base material can be reduced, which is convenient for thinning the multilayer substrate.
本発明に係る電子回路基板用積層体の回路形成樹脂層に電子回路を形成した電子回路基板は、その2以上を積層することにより多層電子回路基板としてもよい。例えば、本発明に係る電子回路基板の縦方向(Z方向)に層間を結合するための貫通孔を開け、当該貫通孔に導電ペーストを重点した後、2以上の電子回路基板を一括積層プレスする一括多層工法により多層電子回路基板を製造することができる。 The electronic circuit board in which the electronic circuit is formed on the circuit-forming resin layer of the electronic circuit board laminate according to the present invention may be a multilayer electronic circuit board by laminating two or more thereof. For example, after opening a through hole for joining layers in the vertical direction (Z direction) of the electronic circuit board according to the present invention, focusing on the conductive paste in the through hole, two or more electronic circuit boards are collectively stacked and pressed. A multilayer electronic circuit board can be manufactured by a batch multilayer construction method.
本発明に係る電子回路基板用積層体の基材フィルムのマトリックス樹脂は、熱可塑性樹脂の液晶ポリマーである。よって、特に液晶ポリマー基材フィルムの片面に電子回路が形成された積層体は、その複数枚を液晶ポリマー基材フィルムと電子回路層が交互になるように積層し、液晶ポリマーを熱融着することで一度の熱プレスで多層化することが可能である。かかる多層化方法は、一括多層工法と呼ばれる。 The matrix resin of the base film of the electronic circuit board laminate according to the present invention is a liquid crystal polymer of a thermoplastic resin. Therefore, in particular, in a laminate in which an electronic circuit is formed on one side of a liquid crystal polymer base film, a plurality of the laminates are laminated so that the liquid crystal polymer base film and the electronic circuit layer are alternate, and the liquid crystal polymer is heat-sealed. Therefore, it is possible to make a multilayer by a single hot press. Such a multilayering method is called a batch multilayer construction method.
銅箔などの金属箔を積層した後にエッチングなどにより電子回路パターンを形成する従来基板は、電子回路パターン形成後の基板を曲げ加工や絞り加工する際に電子回路パターンも一緒に曲げられたり伸ばされたりするために電子回路が断線し易く、立体成型が難しいという欠点がある。それに対して本発明に係る電子回路基板の電子回路パターンは、電子回路パターンを形成すべき部分にレーザー照射し、続いて上記のとおり立体成形した後、または、上記のとおり立体成形してから電子回路パターンを形成すべき部分にレーザーを照射した後に、めっきによりレーザー照射部分に選択的に電子回路パターンを形成できる。この際、電子回路パターンは曲げられたり伸ばされたりしないために断線し難く、立体基板を作製し易いという利点がある。 In conventional substrates that form an electronic circuit pattern by etching after laminating metal foil such as copper foil, the electronic circuit pattern is also bent or stretched together when bending or drawing the substrate after forming the electronic circuit pattern. Therefore, there is a drawback that the electronic circuit is easily disconnected and three-dimensional molding is difficult. On the other hand, the electronic circuit pattern of the electronic circuit board according to the present invention is obtained by irradiating a portion where the electronic circuit pattern is to be formed with a laser, and then performing three-dimensional molding as described above or after three-dimensional molding as described above. After irradiating a portion where a circuit pattern is to be formed with a laser, an electronic circuit pattern can be selectively formed on the portion irradiated with the laser by plating. At this time, since the electronic circuit pattern is not bent or stretched, it is difficult to disconnect, and there is an advantage that a three-dimensional substrate can be easily manufactured.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
実施例1
25μm厚の液晶ポリマーフィルム(プライマテック社製「BIAC BCフィルム 25μm」)の片面を、酸素プラズマにより表面処理した。具体的には、リアクティブイオンエッチング装置(サムコ社製「プラズマドライクリーナーPX−1000」)を用い、真空度13.3Paで酸素ガスのみを5分間導入し、液晶ポリマーフィルムの表面を粗化した。別途、熱硬化変性PPE樹脂に対して11.1質量%のCuCr2O4結晶粉末(Shepherd社製「20C980」)を混合し、上記液晶ポリマーフィルムの酸素プラズマ処理側面上に厚さ10μmコーティングし、200℃で1時間加熱して完全硬化させることにより、回路形成樹脂層を設けた。当該回路形成樹脂層におけるCuCr2O4結晶粉末の割合は10.0質量%であった。当該回路形成樹脂層に、レーザー照射装置(パナソニック社製「LP−S」)を用いてYAGレーザーを照射することにより、1mm幅で長さ50mmの線上において、CuCr2O4結晶粉末を活性化させてめっき性を発現させた後、当該積層体を硫酸銅溶液より成る銅めっき浴に浸漬して厚さ0.5μmの無電解銅めっき層を形成した。続いて、電解銅めっきを行なって厚さ12μmの銅パターンを形成した。
Example 1
One side of a 25 μm-thick liquid crystal polymer film (“BIAC BC film 25 μm” manufactured by Primatec) was surface-treated with oxygen plasma. Specifically, using a reactive ion etching apparatus (“Plasma Dry Cleaner PX-1000” manufactured by Samco), only oxygen gas was introduced for 5 minutes at a vacuum of 13.3 Pa to roughen the surface of the liquid crystal polymer film. . Separately, 11.1 mass% CuCr 2 O 4 crystal powder (“20C980” manufactured by Shepherd) is mixed with the thermosetting modified PPE resin, and the oxygen plasma treated side surface of the liquid crystal polymer film is coated with a thickness of 10 μm. The circuit-forming resin layer was provided by heating at 200 ° C. for 1 hour for complete curing. The ratio of the CuCr 2 O 4 crystal powder in the circuit forming resin layer was 10.0% by mass. By irradiating the circuit forming resin layer with a YAG laser using a laser irradiation device (“LP-S” manufactured by Panasonic Corporation), the CuCr 2 O 4 crystal powder is activated on a line of 1 mm width and 50 mm length. After exhibiting plating properties, the laminate was immersed in a copper plating bath made of a copper sulfate solution to form an electroless copper plating layer having a thickness of 0.5 μm. Subsequently, electrolytic copper plating was performed to form a 12 μm thick copper pattern.
形成された回路パターンを光学顕微鏡(キーエンス社製「デジタルマイクロスコープVHX−500」)で観察したところ、パターン幅に乱れは無く、1mm幅の回路が正確に形成されていた。 When the formed circuit pattern was observed with an optical microscope ("Digital Microscope VHX-500" manufactured by Keyence Corporation), the pattern width was not disturbed, and a 1 mm wide circuit was formed accurately.
また、形成された回路パターンの密着性を、引張試験機(東洋精機社製「ストログラフE5D」)を用いて評価した。具体的には、回路パターンの端部を剥離し、引張試験機のクランプに挟んで180°方向に剥離し、剥離強度を測定した。測定は5本の回路パターンにつき行い、平均値を算出した。その結果、剥離強度は0.7N/mmであった。 Further, the adhesion of the formed circuit pattern was evaluated using a tensile tester (“Strograph E5D” manufactured by Toyo Seiki Co., Ltd.). Specifically, the end portion of the circuit pattern was peeled off, and was peeled in a 180 ° direction by being sandwiched between clamps of a tensile tester, and the peel strength was measured. The measurement was performed for five circuit patterns, and the average value was calculated. As a result, the peel strength was 0.7 N / mm.
さらに、得られた積層体の誘電特性を、ネットワークアナライザー(アジレントテクノロジ社製「E5071C」)を用い、測定周波数3GHz、測定モードTE011で、空洞共振器摂動法により評価した。その結果、比誘電率は3.3、誘電正接は0.004と、上記積層体の誘電特性は極めて優れたものであることが証明された。 Furthermore, the dielectric properties of the obtained laminate were evaluated by a cavity resonator perturbation method using a network analyzer (“E5071C” manufactured by Agilent Technologies) at a measurement frequency of 3 GHz and a measurement mode TE 011 . As a result, the relative dielectric constant was 3.3 and the dielectric loss tangent was 0.004, which proved that the laminated body had extremely excellent dielectric properties.
実施例2
25μm厚の液晶ポリマーフィルム(プライマテック社製「BIAC BCフィルム 25μm」)の両面を上記実施例1と同様の条件で酸素プラズマにより表面処理した。別途、溶剤可溶性のアモルファスフッ素樹脂(旭硝子社製「サイトップ」)に対して11.1質量%のCuCr2O4結晶粉末(Shepherd社製「20C980」)を混合し、上記液晶ポリマーフィルムの酸素プラズマ処理側面上に厚さ10μmコーティングし、200℃で1時間加熱して完全硬化させることにより、上記液晶ポリマーフィルムの両面に回路形成樹脂層を設けた。なお、当該回路形成樹脂層におけるCuCr2O4結晶粉末の割合は10.0質量%であった。当該回路形成樹脂層に、レーザー照射装置(パナソニック社製「LP−S」)を用いてYAGレーザーを照射することにより、1mm幅で長さ50mmの線上において、CuCr2O4結晶粉末を活性化させてめっき性を発現させた後、当該積層体を硫酸銅溶液より成る銅めっき浴に浸漬して厚さ0.5μmの無電解銅めっき層を形成した。続いて、電解銅めっきを行なって厚さ12μmの銅パターンを形成した。
Example 2
Both surfaces of a 25 μm-thick liquid crystal polymer film (“BIAC BC film 25 μm” manufactured by Primatec) were surface-treated with oxygen plasma under the same conditions as in Example 1 above. Separately, 11.1% by mass of CuCr 2 O 4 crystal powder (“20C980” manufactured by Shepherd) is mixed with solvent-soluble amorphous fluororesin (“Cytop” manufactured by Asahi Glass Co., Ltd.), and oxygen of the liquid crystal polymer film is mixed. A circuit-forming resin layer was provided on both surfaces of the liquid crystal polymer film by coating the plasma-treated side surface with a thickness of 10 μm and heating it at 200 ° C. for 1 hour to be completely cured. The ratio of CuCr 2 O 4 crystal powder in the circuit forming the resin layer was 10.0% by mass. By irradiating the circuit forming resin layer with a YAG laser using a laser irradiation device (“LP-S” manufactured by Panasonic Corporation), the CuCr 2 O 4 crystal powder is activated on a line of 1 mm width and 50 mm length. After exhibiting plating properties, the laminate was immersed in a copper plating bath made of a copper sulfate solution to form an electroless copper plating layer having a thickness of 0.5 μm. Subsequently, electrolytic copper plating was performed to form a 12 μm thick copper pattern.
形成された回路パターンの密着性を上記実施例1と同様に評価したところ、剥離強度は0.6N/mmであった。 When the adhesion of the formed circuit pattern was evaluated in the same manner as in Example 1, the peel strength was 0.6 N / mm.
また、得られた積層体の誘電特性を上記実施例1と同様に評価したところ、比誘電率は2.8、誘電正接は0.003と、上記積層体の誘電特性は極めて優れたものであることが証明された。 Further, when the dielectric properties of the obtained laminate were evaluated in the same manner as in Example 1, the relative permittivity was 2.8, the dielectric loss tangent was 0.003, and the dielectric properties of the laminate were extremely excellent. Proven to be.
比較例1
上記実施例1において、熱硬化変性PPE樹脂に対するCuCr2O4結晶粉末の割合を3.1質量%、即ち、回路形成樹脂層に対するCuCr2O4結晶粉末の割合を3.0質量%にした以外は同様にして回路形成樹脂層を設け、電子回路基板用積層体を作製した。
Comparative Example 1
In the first embodiment, the ratio of CuCr 2 O 4 crystal powder to the thermosetting modified PPE resin 3.1 wt%, i.e., to the proportion of CuCr 2 O 4 crystal powder to the circuit formed resin layer to 3.0 mass% Otherwise, a circuit-forming resin layer was provided in the same manner to produce a laminate for an electronic circuit board.
しかし、この電子回路基板用積層体の回路形成樹脂層にYAGレーザーを照射した後に硫酸銅溶液より成る銅めっき浴に浸漬したが、無電解銅めっきは析出しなかった。このように光活性金属酸化物結晶の割合が小さ過ぎる場合には、レーザー照射選択めっき性の電子回路基板用積層体が得られないことが分かった。 However, the YAG laser was irradiated to the circuit-forming resin layer of the laminate for an electronic circuit board and then immersed in a copper plating bath made of a copper sulfate solution, but no electroless copper plating was deposited. Thus, when the ratio of the photoactive metal oxide crystal | crystallization was too small, it turned out that the laminated body for electronic circuit boards of a laser irradiation selective plating property is not obtained.
比較例2
上記実施例1において、熱硬化変性PPE樹脂に対するCuCr2O4結晶粉末の割合を42.8質量%、即ち、回路形成樹脂層に対するCuCr2O4結晶粉末の割合を30.0質量%にした以外は同様にして回路形成樹脂層を設け、電子回路基板用積層体を作製した。
Comparative Example 2
In the first embodiment, 42.8 wt% of the proportion of CuCr 2 O 4 crystal powder to the thermosetting modified PPE resin, i.e., to the proportion of CuCr 2 O 4 crystal powder to the circuit formed resin layer to 30.0 wt% Otherwise, a circuit-forming resin layer was provided in the same manner to produce a laminate for an electronic circuit board.
この電子回路基板用積層体の回路形成樹脂層にYAGレーザー照射して照射部分のCuCr2O4結晶粉末のみを活性化させ、この積層体を硫酸銅より成る銅めっき浴に浸漬して厚さ1μmの無電解銅めっきを所定箇所に形成した。続いて、電解銅めっきを行なって厚さ12μmの銅パターンにした。 The circuit-forming resin layer of this electronic circuit board laminate is irradiated with a YAG laser to activate only the irradiated portion of CuCr 2 O 4 crystal powder, and this laminate is immersed in a copper plating bath made of copper sulfate to obtain a thickness 1 μm electroless copper plating was formed at a predetermined location. Subsequently, electrolytic copper plating was performed to form a copper pattern having a thickness of 12 μm.
この銅パターンの密着性を上記実施例1と同様の条件で評価したところ、0.7N/mmと十分な剥離強度を有していることが分かった。 When the adhesiveness of this copper pattern was evaluated under the same conditions as in Example 1, it was found that the copper pattern had a sufficient peel strength of 0.7 N / mm.
しかし、この積層体の誘電特性を上記実施例1と同様の条件で評価した結果、比誘電率は3.5、誘電正接は0.008と、誘電特性は十分なものではなかった。 However, as a result of evaluating the dielectric characteristics of this laminate under the same conditions as in Example 1, the dielectric constant was 3.5, the dielectric loss tangent was 0.008, and the dielectric characteristics were not sufficient.
以上の結果のとおり、光活性金属酸化物結晶を過剰に多く含んだ樹脂を用いて回路形成樹脂層を形成した場合は、積層体全体の誘電特性に優れたレーザー照射選択めっき性付与電子回路基板用積層体が得られないことが分かった。 As described above, when the circuit-forming resin layer is formed using a resin containing an excessively large amount of photoactive metal oxide crystals, the laser circuit is selectively provided with an electronic circuit board with selective plating property that has excellent dielectric properties. It turned out that the laminated body for manufacture is not obtained.
比較例3
熱硬化変性PPE樹脂の代わりにエポキシ樹脂を用いた以外は上記実施例1と同様にして電子回路基板用積層体を作製した。
Comparative Example 3
A laminate for an electronic circuit board was produced in the same manner as in Example 1 except that an epoxy resin was used instead of the thermosetting modified PPE resin.
得られた電子回路基板用積層体の銅パターンの密着性を上記実施例1と同様の条件で評価したところ、0.8N/mmと十分な剥離強度を有していることが分かった。 When the adhesiveness of the copper pattern of the obtained laminate for an electronic circuit board was evaluated under the same conditions as in Example 1, it was found that the laminate had a sufficient peel strength of 0.8 N / mm.
しかし、この積層体の誘電特性を上記実施例1と同様の条件で評価した結果、比誘電率は3.7、誘電正接は0.018と、誘電特性は十分なものではなかった。 However, as a result of evaluating the dielectric characteristics of this laminate under the same conditions as in Example 1, the dielectric constant was 3.7, the dielectric loss tangent was 0.018, and the dielectric characteristics were not sufficient.
以上の結果のとおり、光活性金属酸化物結晶を混合する樹脂として誘電特性が悪い樹脂を用いて回路形成樹脂層を形成した場合は、積層体全体の誘電特性に優れたレーザー照射選択めっき性付与電子回路基板用積層体が得られないことが分かった。 As described above, when a resin layer with a poor dielectric property is used as the resin for mixing the photoactive metal oxide crystal, the laser irradiation selective plating property with excellent dielectric property of the entire laminate is imparted. It turned out that the laminated body for electronic circuit boards is not obtained.
比較例4
25μm厚の液晶ポリマーフィルムの代わりに25μm厚のポリイミドフィルム(東レデュポン社製「カプトン100H」)を用いた以外は上記実施例1と同様にして電子回路基板用積層体を作製した。
Comparative Example 4
A laminate for an electronic circuit board was prepared in the same manner as in Example 1 except that a 25 μm-thick polyimide film (“Kapton 100H” manufactured by Toray DuPont) was used instead of the 25 μm-thick liquid crystal polymer film.
得られた電子回路基板用積層体の銅パターンの密着性を上記実施例1と同様の条件で評価したところ、0.8N/mmと十分な剥離強度を有していることが分かった。 When the adhesiveness of the copper pattern of the obtained laminate for an electronic circuit board was evaluated under the same conditions as in Example 1, it was found that the laminate had a sufficient peel strength of 0.8 N / mm.
しかし、この積層体の誘電特性を上記実施例1と同様の条件で評価した結果、比誘電率は3.4、誘電正接は0.011と、誘電特性は十分なものではなかった。 However, as a result of evaluating the dielectric characteristics of this laminate under the same conditions as in Example 1, the dielectric constant was 3.4, the dielectric loss tangent was 0.011, and the dielectric characteristics were not sufficient.
以上の結果のとおり、基材フィルムとして誘電特性が悪い樹脂フィルムを用いた場合は、積層体全体の誘電特性に優れたレーザー照射選択めっき性付与電子回路基板用積層体が得られないことが分かった。 As can be seen from the above results, when a resin film having poor dielectric properties is used as the base film, it is not possible to obtain a laminate for an electronic circuit board that imparts selective laser-plating properties with excellent dielectric properties of the entire laminate. It was.
Claims (14)
AB 2 O 4 またはBABO 4
[式中、Aは、二価銅、または、二価銅と、カドミウム、亜鉛、コバルト、マグネシウム、スズ、チタン、鉄、アルミニウム、ニッケル、マンガンおよびクロムからなる群から選択される二価金属との組み合わせを示し;Bは、三価クロム、または、三価クロムと、カドミウム、マンガン、ニッケル、亜鉛、銅、コバルト、マグネシウム、スズ、チタン、鉄およびアルミニウムからなる群から選択される三価金属との組み合わせを示す]
上記回路形成樹脂層に対する上記光活性金属酸化物結晶の割合が5質量%以上、20質量%以下であり、且つ、
全体の比誘電率が3.4以下で且つ誘電正接が0.005以下であることを特徴とする電子回路基板用積層体。 A circuit-forming resin layer made of a resin composition in which a photoactive metal oxide crystal represented by the following chemical formula and having a spinel crystal structure is dispersed in a resin was laminated on a base film formed from a liquid crystal polymer. Is,
AB 2 O 4 or BABO 4
[Wherein A is divalent copper or divalent copper and a divalent metal selected from the group consisting of cadmium, zinc, cobalt, magnesium, tin, titanium, iron, aluminum, nickel, manganese and chromium. B represents trivalent chromium or trivalent metal selected from the group consisting of trivalent chromium and cadmium, manganese, nickel, zinc, copper, cobalt, magnesium, tin, titanium, iron and aluminum Show combination with]
The ratio of the photoactive metal oxide crystal to the circuit-forming resin layer is 5% by mass or more and 20% by mass or less, and
A laminate for an electronic circuit board, wherein the overall relative dielectric constant is 3.4 or less and the dielectric loss tangent is 0.005 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014187634A JP6405817B2 (en) | 2014-09-16 | 2014-09-16 | Laminate for electronic circuit board and electronic circuit board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014187634A JP6405817B2 (en) | 2014-09-16 | 2014-09-16 | Laminate for electronic circuit board and electronic circuit board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016062954A JP2016062954A (en) | 2016-04-25 |
JP6405817B2 true JP6405817B2 (en) | 2018-10-17 |
Family
ID=55798110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014187634A Active JP6405817B2 (en) | 2014-09-16 | 2014-09-16 | Laminate for electronic circuit board and electronic circuit board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6405817B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11258184B2 (en) | 2019-08-21 | 2022-02-22 | Ticona Llc | Antenna system including a polymer composition having a low dissipation factor |
US11555113B2 (en) | 2019-09-10 | 2023-01-17 | Ticona Llc | Liquid crystalline polymer composition |
US11637365B2 (en) | 2019-08-21 | 2023-04-25 | Ticona Llc | Polymer composition for use in an antenna system |
US11646760B2 (en) | 2019-09-23 | 2023-05-09 | Ticona Llc | RF filter for use at 5G frequencies |
US11721888B2 (en) | 2019-11-11 | 2023-08-08 | Ticona Llc | Antenna cover including a polymer composition having a low dielectric constant and dissipation factor |
US11729908B2 (en) | 2020-02-26 | 2023-08-15 | Ticona Llc | Circuit structure |
US11728559B2 (en) | 2021-02-18 | 2023-08-15 | Ticona Llc | Polymer composition for use in an antenna system |
US11917753B2 (en) | 2019-09-23 | 2024-02-27 | Ticona Llc | Circuit board for use at 5G frequencies |
US11912817B2 (en) | 2019-09-10 | 2024-02-27 | Ticona Llc | Polymer composition for laser direct structuring |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6365760B2 (en) | 2015-03-06 | 2018-08-01 | 株式会社村田製作所 | COMPOSITE SHEET, ITS MANUFACTURING METHOD, RESIN MULTILAYER SUBSTRATE AND ITS MANUFACTURING METHOD |
US10813213B2 (en) | 2017-02-16 | 2020-10-20 | Azotek Co., Ltd. | High-frequency composite substrate and insulating structure thereof |
US11044802B2 (en) * | 2017-02-16 | 2021-06-22 | Azotek Co., Ltd. | Circuit board |
US11225563B2 (en) | 2017-02-16 | 2022-01-18 | Azotek Co., Ltd. | Circuit board structure and composite for forming insulating substrates |
US10743423B2 (en) | 2017-09-15 | 2020-08-11 | Azotek Co., Ltd. | Manufacturing method of composite substrate |
JP7286676B2 (en) * | 2018-12-18 | 2023-06-05 | ローム株式会社 | semiconductor equipment |
JPWO2022113961A1 (en) * | 2020-11-24 | 2022-06-02 | ||
CN220785102U (en) * | 2021-05-13 | 2024-04-16 | 株式会社村田制作所 | Laminated substrate and antenna substrate |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2982133B2 (en) * | 1990-09-27 | 1999-11-22 | ダイセル化学工業株式会社 | Composite film |
JP2000233448A (en) * | 1998-12-16 | 2000-08-29 | Sumitomo Chem Co Ltd | Method for thermally welding molten liquid crystal polyester resin molded object and metal |
JP2002029002A (en) * | 1999-10-07 | 2002-01-29 | Toray Ind Inc | Liquid crystal resin laminated film, method for manufacturing the same, and circuit board using liquid crystal resin laminated film |
JP2003321659A (en) * | 2002-04-26 | 2003-11-14 | Dengiken:Kk | Electric and electronic insulating material |
JP2004083681A (en) * | 2002-08-26 | 2004-03-18 | Hitachi Ltd | Composite film between resin composition having low dielectric dissipation factor and liquid-crystal polymer and flexible circuit board using the same |
US7547849B2 (en) * | 2005-06-15 | 2009-06-16 | E.I. Du Pont De Nemours And Company | Compositions useful in electronic circuitry type applications, patternable using amplified light, and methods and compositions relating thereto |
-
2014
- 2014-09-16 JP JP2014187634A patent/JP6405817B2/en active Active
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11258184B2 (en) | 2019-08-21 | 2022-02-22 | Ticona Llc | Antenna system including a polymer composition having a low dissipation factor |
US11637365B2 (en) | 2019-08-21 | 2023-04-25 | Ticona Llc | Polymer composition for use in an antenna system |
US11705641B2 (en) | 2019-08-21 | 2023-07-18 | Ticoan Llc | Antenna system including a polymer composition having a low dissipation factor |
US11555113B2 (en) | 2019-09-10 | 2023-01-17 | Ticona Llc | Liquid crystalline polymer composition |
US11912817B2 (en) | 2019-09-10 | 2024-02-27 | Ticona Llc | Polymer composition for laser direct structuring |
US11646760B2 (en) | 2019-09-23 | 2023-05-09 | Ticona Llc | RF filter for use at 5G frequencies |
US11917753B2 (en) | 2019-09-23 | 2024-02-27 | Ticona Llc | Circuit board for use at 5G frequencies |
US12107617B2 (en) | 2019-09-23 | 2024-10-01 | Ticona Llc | RF filter for use at 5G frequencies |
US11721888B2 (en) | 2019-11-11 | 2023-08-08 | Ticona Llc | Antenna cover including a polymer composition having a low dielectric constant and dissipation factor |
US11729908B2 (en) | 2020-02-26 | 2023-08-15 | Ticona Llc | Circuit structure |
US12035467B2 (en) | 2020-02-26 | 2024-07-09 | Ticona Llc | Circuit structure |
US11728559B2 (en) | 2021-02-18 | 2023-08-15 | Ticona Llc | Polymer composition for use in an antenna system |
Also Published As
Publication number | Publication date |
---|---|
JP2016062954A (en) | 2016-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6405817B2 (en) | Laminate for electronic circuit board and electronic circuit board | |
JP6405818B2 (en) | Film for electronic circuit board and electronic circuit board | |
JP6590113B2 (en) | Metal-clad laminate, circuit board, and multilayer circuit board | |
TWI466970B (en) | Cyanate esters based adhesive resin composition for manufacturing circuit board and flexible metal clad laminate comprising the same | |
KR101103451B1 (en) | Multilayer body, method for producing substrate, substrate and semiconductor device | |
JP6413831B2 (en) | Circuit board and manufacturing method thereof | |
TW201630481A (en) | Magneto-dielectric substrate, circuit material, and assembly having the same | |
TWI756552B (en) | Thermosetting epoxy resin composition, adhesive film for insulating layer formation, prepreg for insulating layer formation, insulator for printed wiring board, multilayer printed wiring board, and semiconductor device | |
JP2010524265A (en) | Circuit material, multilayer circuit, and method for manufacturing the same | |
WO2015180206A1 (en) | Thermoset resin sandwiched pre-preg body, manufacturing method and copper clad plate | |
JP7212626B2 (en) | Resin composition for printed wiring board, resin-coated copper foil, copper-clad laminate, and printed wiring board | |
JPWO2007040125A1 (en) | Manufacturing method of prepreg with carrier, prepreg with carrier, manufacturing method of thin double-sided board, thin double-sided board, and manufacturing method of multilayer printed wiring board | |
US11365353B2 (en) | Black liquid-crystal polymer film and multilayer board | |
JP5130698B2 (en) | Insulating resin composition for multilayer printed wiring board, insulating sheet with substrate, multilayer printed wiring board, and semiconductor device | |
WO2012090733A1 (en) | Circuit board and method of manufacturing same | |
WO2007013330A1 (en) | Process for producing wiring board covered with thermoplastic liquid crystal polymer film | |
JP2018168262A (en) | Resin composition | |
TWI821399B (en) | Laminated body, printed circuit board and manufacturing method thereof | |
JP2008244091A (en) | Interlayer connection bonding sheet for multilayer wiring circuit board | |
JP2018137402A (en) | Printed wiring board and method for manufacturing the same | |
JP2008244189A (en) | Circuit board and semiconductor device | |
JP7533695B2 (en) | Resin composition | |
KR102126657B1 (en) | Curable resin composition | |
KR20160052423A (en) | Circuit board and method for manufacturing thereof | |
JP7131311B2 (en) | resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20170403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170404 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170605 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180313 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180821 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6405817 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |