JPS62155000A - Ultrasonic wave probe - Google Patents

Ultrasonic wave probe

Info

Publication number
JPS62155000A
JPS62155000A JP29261885A JP29261885A JPS62155000A JP S62155000 A JPS62155000 A JP S62155000A JP 29261885 A JP29261885 A JP 29261885A JP 29261885 A JP29261885 A JP 29261885A JP S62155000 A JPS62155000 A JP S62155000A
Authority
JP
Japan
Prior art keywords
matching layer
irradiation
acoustic matching
acoustic
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29261885A
Other languages
Japanese (ja)
Other versions
JPH0832110B2 (en
Inventor
Shinichiro Umemura
晋一郎 梅村
Aran Kein Chiyaaruzu
チヤールズ・アラン・ケイン
Hiroshi Kanda
浩 神田
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60292618A priority Critical patent/JPH0832110B2/en
Publication of JPS62155000A publication Critical patent/JPS62155000A/en
Publication of JPH0832110B2 publication Critical patent/JPH0832110B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a probe structure for large power irradiation by providing a mechanism which cools a piezoelectric vibrator and an acoustic matching layer. CONSTITUTION:The ultrasonic vibrator 1 made of piezoelectric ceramics such as PZT-based ceramics and lead titanate ceramics is adhered to the 1st acoustic matching layer 2 made of metal which is smaller in acoustic impedance than piezoelectric ceramics represented by light metal such as aluminum. The 2nd acoustic matching layer 4 made of acrylic resin,etc., is adhered to the acoustic matching layer 2 and an ultrasonic wave generated by the vibrator 1 passes through the 1st and the 2nd acoustic matching layers and a water bag 3 and then enters an object of irradiation, such as a living body, which has acoustic impedance close to that of water. Thus, a >=50% specific band width is obtained because of the presence of those two layers. The acoustic matching layer 2 of light metal is cooled with the circulating water in the water bag 3.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超音波療法装置、超音波加熱装置。[Detailed description of the invention] [Field of application of the invention] The present invention relates to an ultrasonic therapy device and an ultrasonic heating device.

超音波化学反応促進装置、超音波破砕装置などの超音波
照射袋「jの探触子に係り、特に照射パワの大きな装置
の送波器として好適な超音波探触子に関する。
This invention relates to probes for ultrasonic irradiation bags such as ultrasonic chemical reaction accelerators and ultrasonic crushing devices, and particularly to ultrasonic probes suitable as transmitters for devices with large irradiation power.

〔発明の背景〕[Background of the invention]

大きな照射パワの超音波探触子の構造としては、ハイパ
サーミア・イン・キャンサ・セラピ(1!yperth
ermta  In  Cancer  Therap
y)  第344〜345ページに記載のような構造が
知られている。この探触子は、電気・音響変換子として
機械的Q値。
Hyperthermia in cancer therapy (1!yperth
ermta In Cancer Therapy
y) Structures as described on pages 344-345 are known. This probe has a mechanical Q value as an electrical/acoustic transducer.

電気的Q値がともに高い水晶振動子を用いているので、
大パワ照射時においても振動子自体の発熱は小さく、振
動子を冷却するための機構は特に必要としない。
Since both use a crystal resonator with a high electrical Q value,
Even during high-power irradiation, the vibrator itself generates only a small amount of heat, and no special mechanism for cooling the vibrator is required.

しかし、水晶と比較して電気・音響変換効率が10倍程
大きく、また、一般に低コストな圧電セラミクスなどを
電気・音響変換子として用いようとする場合には、機械
的Q値があまり大きくないため、大パワ照射時における
振動子自体の発熱が問題となる。
However, the electrical/acoustic conversion efficiency is about 10 times higher than that of crystal, and the mechanical Q value is not very large when using low-cost piezoelectric ceramics as electrical/acoustic transducers. Therefore, heat generation of the vibrator itself during high power irradiation becomes a problem.

さらに、下に例として示す様に、実際の応用面において
は、照射用探触子においてもある程度の広さを持つ帯域
(高すぎない機械的Q値)が要求されることが多く、こ
の場合、超音波振動子と照射用媒体との間に音響整合層
を設ける必要がある。
Furthermore, as shown in the example below, in actual applications, the irradiation probe is often required to have a certain wide band (mechanical Q value that is not too high); , it is necessary to provide an acoustic matching layer between the ultrasonic transducer and the irradiation medium.

(1)定在波による目的外照射領域の発生を防ぐため、
1−っの周波数の超音波だけでなく、複数周波数の超音
波や周波数掃引した超音波や振幅変調した超音波を照射
する。
(1) To prevent the occurrence of unintended irradiation areas due to standing waves,
Not only ultrasonic waves of one frequency, but also ultrasonic waves of multiple frequencies, frequency swept ultrasonic waves, and amplitude modulated ultrasonic waves are irradiated.

(2)目的照射領域をアレイ型探触子を用いて電子的に
高速走査する。このとき、1素子に着目すると、たとえ
〕11周の超音波による照射を行っている際でも、その
駆動信号は位相変調される必要がある。また、探触子構
造による機械的帯域幅は、最低限、素子の中心周波数の
ばらつきより犬でなくてはならない。
(2) Electronically scan the target irradiation area at high speed using an array probe. At this time, focusing on one element, even when irradiating with ultrasonic waves for 11 rounds, the drive signal needs to be phase modulated. Furthermore, the mechanical bandwidth of the probe structure must be at least as large as the variation in the center frequency of the element.

<3> Fl的照射領域の位置ぎめをエコー法による撮
像により行う。このとき、照射用超音波は、撮像用超音
波の送受信中、その照射を一時休止するので、その駆動
信号は振幅変調される。また、照射用探触子に広帯域な
構造を持たせれば、撮像用探触子と兼用することも可能
となる。
<3> The FL irradiation area is located by imaging using the echo method. At this time, since the irradiation of the irradiation ultrasound is temporarily suspended during the transmission and reception of the imaging ultrasound, the drive signal thereof is amplitude-modulated. Furthermore, if the irradiation probe has a broadband structure, it can also be used as an imaging probe.

以J−,、(1)、(2)、(3)に示された様な要求
は、従来構造の照射用超音波探触子では満たすことが不
可能である。
The requirements shown in (1), (2), and (3) below cannot be met by an irradiation ultrasonic probe with a conventional structure.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、大パワ照射時における振動子自体の発
熱の問題を解決することにより、電気・機械結合係数が
大きく、低コストな圧電セラミクスなどを電気・音響変
換子として用いることができ、かつ帯域の狭くない大パ
ワ照射用超音波探触子構造を提供することを目的とする
The purpose of the present invention is to solve the problem of heat generated by the vibrator itself during high power irradiation, thereby making it possible to use low-cost piezoelectric ceramics with a large electrical-mechanical coupling coefficient as an electrical-acoustic transducer. Another object of the present invention is to provide an ultrasonic probe structure for high power irradiation that does not have a narrow band.

〔発明の概要〕[Summary of the invention]

かかる目的に従い、本発明においては、圧電振動子を電
気・音響変換子として用いる超音波探触子において、該
圧電振動子を冷却する機構と、音響整合層とを具備する
構造を提案する。さらに、その倶体的実現方法のひとつ
として、圧電振動子に接する音響整合層として熱伝導率
の大きな軽金属板を用い、その軽金属板に冷却用媒体が
接する構造を与えることを提案する。
In accordance with this objective, the present invention proposes a structure that includes a mechanism for cooling the piezoelectric vibrator and an acoustic matching layer in an ultrasonic probe that uses a piezoelectric vibrator as an electric/acoustic transducer. Furthermore, as one method for realizing this in an integrated manner, we propose using a light metal plate with high thermal conductivity as the acoustic matching layer in contact with the piezoelectric vibrator, and providing a structure in which the cooling medium is in contact with the light metal plate.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例を参照しで、本発明をさl゛)に詳しく説
明する。第1図(a)、(+、))は、とtノに、本発
明の一実施例たる大パワ照射用超音波!″′A触子の外
事面図及び断面図である。
Hereinafter, the present invention will be explained in detail with reference to Examples. FIG. 1(a), (+, )) is an ultrasonic wave for high-power irradiation, which is an embodiment of the present invention! ``'' They are an external view and a sectional view of the A-toucher.

PZT系セラミクスやヂタン酸釦系!イラミクスなどの
圧電セラミクスより成る超音波1141す1子!は、ア
ルミニウムなどの軽金属に代表されろ圧電セラミクスよ
り音響インピーダンスの小さい金属より成る第1音響整
合層2に接着されている。図の実施例においては、音I
!I整合層2の厚みは1/4波長であるが、一般に、1
−//I波長の奇数倍であればよい。また、音ll!J
!整合層2にはアクリル樹脂(PMMA)  などより
成る第2音l!I整合層4が接着されており、振動子1
で発生した超r′−f波は第1・第2音W整合層を通り
、水袋3を介して、牛体など水に近い音響インピーダン
スを有する照射対象物に入射する。これら2層の整合層
により、50%1以上の比帯域幅を実現している。第1
図の例では、軽金属音tfIJ整合層2が水袋3の循環
水により冷却される構造となっており、一方、第2図の
例では、軽金属音響整合層2に冷却用配管5が設けられ
、その中を循環する冷却用媒体により冷却される構造と
なっている。
PZT ceramics and ditanic acid buttons! Ultrasonic 1141 element made of piezoelectric ceramics such as Iramix! is bonded to the first acoustic matching layer 2 made of a metal having a smaller acoustic impedance than piezoelectric ceramics, typically a light metal such as aluminum. In the illustrated embodiment, the sound I
! The thickness of the I matching layer 2 is 1/4 wavelength, but generally 1
-//It is sufficient if it is an odd number multiple of I wavelength. Also, the sound! J
! The matching layer 2 is made of acrylic resin (PMMA) or the like. The I matching layer 4 is bonded, and the vibrator 1
The super r'-f waves generated pass through the first and second sound W matching layers, enter the water bag 3, and enter an irradiation target having an acoustic impedance close to that of water, such as a cow's body. These two matching layers realize a fractional bandwidth of 50%1 or more. 1st
In the example shown in the figure, the light metal acoustic tfIJ matching layer 2 has a structure in which it is cooled by the circulating water of the water bag 3, while in the example shown in FIG. 2, the light metal acoustic matching layer 2 is provided with cooling piping 5. It has a structure in which it is cooled by a cooling medium circulating therein.

この構造により、超音波振動子1において発生する熱は
軽金属音響整合層を介して冷却用媒体に奪われ、その結
果、大パワ照射時に振動子1が加熱することによる破壊
ならびに性能劣化が防止される。
With this structure, the heat generated in the ultrasonic transducer 1 is absorbed by the cooling medium through the light metal acoustic matching layer, and as a result, damage and performance deterioration due to heating of the transducer 1 during high power irradiation are prevented. Ru.

また、整合層により探触子の広帯域化が実現されている
ので、圧電振動子の中心周波数だけでなく、中心周波数
から数%ずれた周波数の超音波や、周波数掃引した超音
波や、振幅変調した超音波を照射することができる。定
在波による目的外照射領域の位置は、複数の音源・反射
体からの音波の干渉により生じた定在波の腹の位置にあ
るため、周波数により移動する。従って、複数周波数照
射。
In addition, since the matching layer allows the probe to have a wide band, it can handle not only the center frequency of the piezoelectric vibrator, but also ultrasonic waves at a frequency several percent off the center frequency, frequency-swept ultrasonic waves, and amplitude-modulated ultrasonic waves. It is possible to irradiate ultrasonic waves. The position of the non-target irradiation area due to the standing wave is located at the antinode of the standing wave caused by the interference of sound waves from a plurality of sound sources and reflectors, and therefore moves depending on the frequency. Hence, multiple frequency irradiation.

周波数掃引、振幅変調などの技術を用いて超音波照射を
行えば、目的外照射領域に時間平均用Tf波パワが集中
することが防止され、結果として、問題となる様な目的
外照射領域の発生を防ぐことができる。
If ultrasonic irradiation is performed using techniques such as frequency sweep and amplitude modulation, it will be possible to prevent the time-averaged Tf wave power from concentrating on the unintended irradiation area, and as a result, it will be possible to prevent the unintended irradiation area from becoming problematic. This can be prevented from occurring.

第2図(a)(b)は本発明の他の実施例の(l/、面
図、及び部分断面図である。第1図(n、)(b)と同
一の符号によりそれぞれ第]−図(n)(+))にて述
べた部品に対応する部品を示している。
2(a) and 2(b) are (l/, top view, and partial cross-sectional view of another embodiment of the present invention. The same reference numerals as in FIG. - Figures (n) (+)) show parts corresponding to the parts described in (+)).

第1図、第2図の実施例は、ともにアレイ型探触子の例
であるが、これを用いて焦域を電子的に高速走査する場
合にも、探触子の広’Ill’域化が役立つ。すなわち
、単一周波数による照射を行っている際でも、1素子に
着目すると、その駆動信号は、電子走査にともなって位
相変調される。その位相変調度は走査速度に比例して大
きくなる。また、アレイを形成する素子の中心周波数は
!12造行程により数%ばらつくことがあるが、探触子
の比イ;F域幅がこれより大となっていれば、アレイ型
探触子の動作時に問題となることはない。
The embodiments shown in Fig. 1 and Fig. 2 are both examples of array type probes, but even when using this to electronically scan the focal range at high speed, the wide 'Ill' area of the probe ization is helpful. That is, even when performing irradiation with a single frequency, when focusing on one element, its drive signal is phase-modulated in accordance with electronic scanning. The degree of phase modulation increases in proportion to the scanning speed. Also, what is the center frequency of the elements forming the array? Although it may vary by a few percent depending on the manufacturing process, if the ratio A/F range width of the probe is larger than this, there will be no problem when operating the array type probe.

両実施例は、また、照射モニタのための撮像用探触子8
とその機械走査機構9を有する。この撮像用探触子は、
目的照射領域の超音波による位置ぎめや照射中のモニタ
のために必要なものである。
Both embodiments also include an imaging probe 8 for illumination monitoring.
and its mechanical scanning mechanism 9. This imaging probe is
This is necessary for positioning the target irradiation area using ultrasound and for monitoring during irradiation.

撮像用超音波周波数と照射用超音波周波数が近接してい
る場合、撮像用超音波の送受信中は、照射用超音波の照
射を休止せねばならない。照射用超音波は間欠照射され
ることになり、いいかえれば、振幅変調されることにな
る。従って、この見地からも、照射用探触子の広帯域化
は有効である。さらに、ここでは撮像専用の超音波振動
子を用いたが、照射用探触子の広帯域特性を利用して撮
像用探触子を兼用することも可能である。
When the imaging ultrasound frequency and the irradiation ultrasound frequency are close to each other, the irradiation of the irradiation ultrasound must be stopped while the imaging ultrasound is being transmitted and received. The irradiation ultrasonic waves will be irradiated intermittently, or in other words, the amplitude will be modulated. Therefore, from this point of view as well, it is effective to widen the band of the irradiation probe. Furthermore, although an ultrasonic transducer exclusively used for imaging is used here, it is also possible to use the irradiation probe also as an imaging probe by utilizing its broadband characteristics.

なお、第2図(a)、(b)の実施例では、軽金属整合
層5は、同時に、超音波振動子1の素子指向性を内側に
向けるための音響フレネル・レンズも同時に兼ねること
を目的に、軽金属板の厚みを1/4波長を中心に素子の
外側から内側にかけて洗濯板状に変化させている。
In the embodiments shown in FIGS. 2(a) and 2(b), the light metal matching layer 5 is intended to simultaneously serve as an acoustic Fresnel lens for directing the element directivity of the ultrasonic transducer 1 inward. In addition, the thickness of the light metal plate is changed from the outside to the inside of the element in a washboard shape around 1/4 wavelength.

これら実施例の超音波探触子により構成される超音波照
射システムの一実施例のブロック図を第3図に示す。
FIG. 3 shows a block diagram of an embodiment of an ultrasound irradiation system constituted by the ultrasound probes of these embodiments.

目的照射領域の位置と大きさならびに付近に存在する強
い反射体の位置に応じて、焦点位置、焦点走査手法4周
波数掃引幅、振幅変調手法が決定され、主制御回路10
から駆動信号演算回路11へ与えられ、11では、次式
により一般的に表わされるような、走査、掃引の1周期
分の各素子の波形1./k(t)が演算されて、各素子
の波形メモリ〕2に書き込まれる。
The focal position, focal scanning method 4 frequency sweep width, and amplitude modulation method are determined according to the position and size of the target irradiation area and the position of strong reflectors existing in the vicinity, and the main control circuit 10
is applied to the drive signal calculation circuit 11, where the waveform 1. of each element for one cycle of scanning and sweeping is generally expressed by the following equation. /k(t) is calculated and written to the waveform memory]2 of each element.

Vh(t + τk(t))=Ah(t)sin(2x
 f (t) t)・・(1)ここで、kは素子の番号
、Ah(t)は素子ごとの駆動振幅、f D)は駆動周
波数、τk(t)は素子ごとの駆動遅延時間である。走
査される焦点の位置は、τk(1)ならびにA、b(t
)により定まる。メモリ12に記録された波形は、主制
御回路]Oからのクロックにより素子間の周期がとられ
て読み出され、送信アンプ13により増幅されて、照射
用探触子素子Jが駆動される。
Vh(t + τk(t))=Ah(t)sin(2x
f (t) t)...(1) Here, k is the element number, Ah(t) is the drive amplitude for each element, fD) is the drive frequency, and τk(t) is the drive delay time for each element. be. The position of the scanned focus is τk(1) and A,b(t
) is determined by The waveform recorded in the memory 12 is read out with the period between the elements determined by a clock from the main control circuit O, and is amplified by the transmission amplifier 13 to drive the irradiation probe element J.

次に、撮像用ブロックについて説明を加える。Next, the imaging block will be explained.

第3図において、探触子8のそれぞれの素子は、送受波
アンプJ−5を介して送波制御回路]−6と受信フォー
カス回路17に接続されている。得られたエコー断層像
20は、照射領域マーク2]と複数断層面の交線22と
重畳されて、表示回路18により表示器19に表示され
る。
In FIG. 3, each element of the probe 8 is connected to a wave transmission control circuit ]-6 and a reception focus circuit 17 via a wave transmission/reception amplifier J-5. The obtained echo tomographic image 20 is displayed on the display 19 by the display circuit 18 while being superimposed on the intersection line 22 of the irradiation region mark 2 and the plurality of tomographic planes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、電気・機械結合
係数が大きく低コストな圧電体を電気・音響変換子とし
て用いることができ、かつ照射目的領域を限定的に照射
するための各処理を実施可能とする、広帯減大パワ超音
波探触子が実現可能となる。従って、本発明の各産業分
野ならびに医療における効果はきわめて大である。
As explained above, according to the present invention, a low-cost piezoelectric material with a large electrical-mechanical coupling coefficient can be used as an electrical-acoustic transducer, and various treatments for irradiating a target irradiation area in a limited manner can be used. It becomes possible to realize a broadband reduced-power ultrasonic probe that enables implementation of the following. Therefore, the effects of the present invention in various industrial fields and medical care are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、ともに、本発明の一実施例たる大パ
ワ照射用広帯域超音波探触子の外形および断面の図であ
る。第3図は、本発明の探触子を用いた超音波照射シス
テムの一実施例のブロック図である。 1・・・超音波振動子、2・・・軽金属製箔1−音響整
合層。 3・・・水袋、4・・・第2音W整合層、5・・・冷却
用配管、6・・・冷却用媒体流入口、7・・・冷却用媒
体流出口、8・・・撮像用超音波探触子、9・・・撮像
用超音波探触子機械走査機構、10・・・主制御回路、
11・・・駆動信号演算回路、12・・・波形メモリ、
13・・・送信アンプ、15・・・送受波アンプ、16
・・・送波制御回路、]−7・・・受信フォーカス回路
、18・・・表示回路、19・・・表示器、20・・・
エコー断層像、21・・・照射領域マーク、22・・・
複数断層面の交線。
FIG. 1 and FIG. 2 are both an external view and a cross-sectional view of a broadband ultrasonic probe for high power irradiation, which is an embodiment of the present invention. FIG. 3 is a block diagram of an embodiment of an ultrasound irradiation system using the probe of the present invention. 1... Ultrasonic transducer, 2... Light metal foil 1-acoustic matching layer. 3... Water bag, 4... Second sound W matching layer, 5... Cooling piping, 6... Cooling medium inlet, 7... Cooling medium outlet, 8... Ultrasonic probe for imaging, 9... Ultrasonic probe for imaging mechanical scanning mechanism, 10... Main control circuit,
11... Drive signal calculation circuit, 12... Waveform memory,
13... Transmission amplifier, 15... Transmission/reception amplifier, 16
... Transmission control circuit, ]-7 ... Reception focus circuit, 18 ... Display circuit, 19 ... Display device, 20 ...
Echo tomographic image, 21... Irradiation area mark, 22...
Intersection line of multiple fault planes.

Claims (1)

【特許請求の範囲】 1、圧電振動子を電気・音響変換子として用いる超音波
探触子において、該圧電振動子を冷却する機構と、音響
整合層とを具備することを特徴とする超音波探触子。 2、特許請求の範囲第1項に記載の超音波探触子におい
て、前記音響整合層は前記圧電振動子より小さな音響イ
ンピーダンスを有する金属より成り、該音響整合層に冷
却用媒体が接する構造を有することを特徴とする超音波
探触子。 3、特許請求の範囲第1項に記載の超音波探触子におい
て、前ic音響整合層は、複数層から成り、前記圧電振
動子は圧電セラミクス振動子から成り、該複数層のうち
該圧電セラミクス振動子に接する第1の層は金属より成
ることを特徴とする超音波探触子。
[Claims] 1. An ultrasonic probe using a piezoelectric vibrator as an electric/acoustic transducer, characterized by comprising a mechanism for cooling the piezoelectric vibrator and an acoustic matching layer. probe. 2. The ultrasonic probe according to claim 1, wherein the acoustic matching layer is made of a metal having a smaller acoustic impedance than the piezoelectric vibrator, and the acoustic matching layer has a structure in which a cooling medium is in contact with the acoustic matching layer. An ultrasonic probe comprising: 3. In the ultrasonic probe according to claim 1, the front IC acoustic matching layer is made up of a plurality of layers, the piezoelectric vibrator is made of a piezoelectric ceramic vibrator, and among the plurality of layers, the piezoelectric An ultrasonic probe characterized in that a first layer in contact with a ceramic vibrator is made of metal.
JP60292618A 1985-12-27 1985-12-27 Ultrasonic probe Expired - Lifetime JPH0832110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60292618A JPH0832110B2 (en) 1985-12-27 1985-12-27 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60292618A JPH0832110B2 (en) 1985-12-27 1985-12-27 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS62155000A true JPS62155000A (en) 1987-07-09
JPH0832110B2 JPH0832110B2 (en) 1996-03-27

Family

ID=17784130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60292618A Expired - Lifetime JPH0832110B2 (en) 1985-12-27 1985-12-27 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JPH0832110B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134298A (en) * 1987-11-19 1989-05-26 Konica Corp Radiograph conversion panel having protective layer via low-refractive index layer
WO2009115523A1 (en) * 2008-03-18 2009-09-24 Super Sonic Imagine Insonification device having an internal cooling chamber
JP2010227417A (en) * 2009-03-27 2010-10-14 Chiba Univ Focused oscillation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953270U (en) * 1982-09-30 1984-04-07 日本鋼管株式会社 ultrasonic probe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953270U (en) * 1982-09-30 1984-04-07 日本鋼管株式会社 ultrasonic probe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134298A (en) * 1987-11-19 1989-05-26 Konica Corp Radiograph conversion panel having protective layer via low-refractive index layer
WO2009115523A1 (en) * 2008-03-18 2009-09-24 Super Sonic Imagine Insonification device having an internal cooling chamber
FR2929040A1 (en) * 2008-03-18 2009-09-25 Super Sonic Imagine Sa INSONIFYING DEVICE HAVING AN INTERNAL COOLING CHAMBER
US8310132B2 (en) 2008-03-18 2012-11-13 Super Sonic Imagine Insonification device having an internal cooling chamber
JP2010227417A (en) * 2009-03-27 2010-10-14 Chiba Univ Focused oscillation device

Also Published As

Publication number Publication date
JPH0832110B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US9272162B2 (en) Imaging, therapy, and temperature monitoring ultrasonic method
CN107580474B (en) Deformable ultrasound array and system
US6500121B1 (en) Imaging, therapy, and temperature monitoring ultrasonic system
US7393325B2 (en) Method and system for ultrasound treatment with a multi-directional transducer
US20150011889A1 (en) Ultrasonic probe and manufacturing method thereof
JP4625145B2 (en) Acoustic vibrator and image generation apparatus
US7405510B2 (en) Thermally enhanced piezoelectric element
US8446071B2 (en) Thermally enhanced ultrasound transducer system
KR20110091829A (en) System and method for variable depth ultrasound treatment
US8237335B2 (en) Thermally enhanced ultrasound transducer means
JPWO2010131394A1 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP2001136599A (en) Ultrasonic-wave generation source for medical treatment and ultrasonic-wave medical treating equipment
JP2009273838A (en) Ultrasonic probe, ultrasonic diagnostic device and ultrasonic endoscopic apparatus
JPH11155863A (en) Ultrasonic probe
EP2605237A2 (en) Ultrasonic Probe And Manufacturing Method Thereof
JPS62155000A (en) Ultrasonic wave probe
Fleury et al. New piezocomposite transducers for therapeutic ultrasound
JPH03112546A (en) Calculus crushing device
KR20160084255A (en) Ultrasound Probe and Manufacturing Method thereof
Yamada et al. Tube-type double-parabolic-reflector ultrasonic transducer (T-DPLUS)
JP2011109448A (en) Ultrasonic probe and ultrasonic diagnostic apparatus employing the same
US20070055182A1 (en) Thermally enhanced ultrasound transducer method
JP2742207B2 (en) Ultrasonic transducer
KR101586297B1 (en) Ultrasound Probe and Manufacturing Method thereof
TWI597497B (en) Ultrasound probe and ultrasound system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term