JP2010227417A - Focused oscillation device - Google Patents

Focused oscillation device Download PDF

Info

Publication number
JP2010227417A
JP2010227417A JP2009080401A JP2009080401A JP2010227417A JP 2010227417 A JP2010227417 A JP 2010227417A JP 2009080401 A JP2009080401 A JP 2009080401A JP 2009080401 A JP2009080401 A JP 2009080401A JP 2010227417 A JP2010227417 A JP 2010227417A
Authority
JP
Japan
Prior art keywords
vibration
subject
focusing
signal
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009080401A
Other languages
Japanese (ja)
Other versions
JP5435455B2 (en
Inventor
Mikio Suga
幹生 菅
Takayuki Obata
隆行 小畠
Masa Sekine
雅 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
National Institute of Radiological Sciences
Original Assignee
Chiba University NUC
National Institute of Radiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, National Institute of Radiological Sciences filed Critical Chiba University NUC
Priority to JP2009080401A priority Critical patent/JP5435455B2/en
Publication of JP2010227417A publication Critical patent/JP2010227417A/en
Application granted granted Critical
Publication of JP5435455B2 publication Critical patent/JP5435455B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve such the problem that the conventional oscillation device can not be used for finding a small hardness change in an early stage since it is hard in the device to control the frequency, amplitude, and phase, etc., of oscillation to be generated, and, for example, the device is not suitable in the case of a narrow measurement object and not suitable for measuring the minute distribution of viscoelastic moduli though it is suitable for obtaining the average value of the viscoelastic moduli in the wide range area of the measurement object. <P>SOLUTION: The focused oscillation device is used for an MR imaging apparatus or a magnetic resonance microscopy apparatus in order to acquire an image for identifying viscoelasticity of a subject by NMR. The device includes: a plurality of oscillation generating parts for generating oscillation to be given to the subject; a signal generating part for giving a signal for oscillation generation to the oscillation generating parts; and vibration transmission chips which are arranged between the oscillation generating parts and the subject and directionally disposed in a focus area, so that the generated vibration can be propagated inside the subject as an elastic wave and focused in the focus area. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、MR撮像装置、またはMRI顕微鏡装置に利用される集束型加振装置であって、複数の振動子を備え、当該振動子が発生させる振動弾性波が被検体内部の特定領域で振動弾性波が集束するよう構成された集束型加振装置に関する。   The present invention is a focusing type excitation device used in an MR imaging apparatus or an MRI microscope apparatus, and includes a plurality of vibrators, and vibrational elastic waves generated by the vibrators vibrate in a specific region inside a subject. The present invention relates to a focusing vibration exciter configured to focus an elastic wave.

医学の分野において、生体組織の弾性や粘性といった物理的な性質の定量的計測は、病変とその進行の程度を知る重要な指標と考えられており、非侵襲にそれらの情報を得る方法が開発されてきた。例えば、MRE(Magnetic Resonance Elastography)法である。MRE法は、外部から被験体に対して振動を与え、被験体内を伝達する弾性波に基づいて組織の硬さなどを測定する方法であり、外部加振装置によって被験体内部に発生させた弾性波を画像化し、当該画像から粘弾性率などの力学的特性を定性的又は定量的に測定する。   In the field of medicine, quantitative measurement of physical properties such as elasticity and viscosity of living tissue is considered an important index for knowing the extent of lesions and their progress, and a method for obtaining such information in a non-invasive manner has been developed. It has been. For example, the MRE (Magnetic Resonance Elastography) method. The MRE method is a method of measuring the hardness of a tissue based on an elastic wave that is transmitted to the subject from the outside and transmitted through the subject. The elasticity generated inside the subject by an external vibration device. Waves are imaged and mechanical properties such as viscoelastic modulus are qualitatively or quantitatively measured from the image.

MR撮像装置またはMRI顕微鏡装置に使用される外部加振装置としては、被験体が配置される台を機械的に振動させて被験体に振動を伝達するものがある(特許文献1)。当該加振装置によれば、広範囲に一様な弾性波を生成することができるため、被験体内の広範囲にわたる定量的な計測や定性的な判断等が可能である。   As an external vibration device used for an MR imaging apparatus or an MRI microscope apparatus, there is an apparatus that mechanically vibrates a table on which a subject is placed and transmits the vibration to the subject (Patent Document 1). According to the vibration apparatus, since a uniform elastic wave can be generated over a wide range, quantitative measurement over a wide range in the subject, qualitative determination, and the like are possible.

しかしながら、被験体が配置されている台自体を振動させるため、局所的に振動を与えることができず、また装置の小型化が難しいという問題点があった。また、外部加振装置の構成物の共鳴周波数が複雑に影響するため、高精度での制御が不可能であった。更には、被験体がヒトである場合、身体全体に振動が伝わるため不快感を与えてしまうという問題点もある。   However, since the table on which the subject is placed is vibrated, there is a problem that vibration cannot be given locally and it is difficult to downsize the apparatus. Further, since the resonance frequency of the components of the external vibration device has a complicated influence, it is impossible to control with high accuracy. Furthermore, when the subject is a human, vibrations are transmitted to the entire body, which causes discomfort.

また、被験体に直接振動を伝達するものとして、音響ドライバと、可撓性チューブと、受動アクチュエータで構成された加振装置も開発されている(特許文献2、3)。当該加振装置は、音響ドライバで生成した圧縮空気を、可撓性チューブを介して受動アクチュエータに送り、被験体に振動を伝達する方法を採用している。被験体全体を振動させず、受動アクチュエータを被験体の任意の場所に配置することにより、被験体内に局所的に弾性波を生成することができる。   In addition, as a device that directly transmits vibration to a subject, a vibration device including an acoustic driver, a flexible tube, and a passive actuator has been developed (Patent Documents 2 and 3). The vibration exciter employs a method in which compressed air generated by an acoustic driver is sent to a passive actuator via a flexible tube to transmit vibration to a subject. An elastic wave can be generated locally in the subject by arranging the passive actuator at any location on the subject without vibrating the entire subject.

しかしながら、特許文献2,3に記載の加振装置は音響ドライバを利用するため騒音が大きい。また周波数が100ヘルツ以上では音圧エネルギーの伝搬経路である可撓性チューブでの減衰が大きくなる問題がある。また、可撓性チューブやエネルギー伝搬の媒介となる空気においてエネルギー吸収が生じるため、エネルギー効率が低く、装置が大型化してしまう問題もある。更には、外部加振装置の構成物の共鳴周波数が複雑に影響するため、高精度での制御が非常に難しい。また、所定の対象領域にのみ振動を伝達することが困難で、被験体がヒトの場合には不快感を与えてしまうという問題もある。   However, the vibration devices described in Patent Documents 2 and 3 are loud because they use an acoustic driver. Further, when the frequency is 100 Hz or more, there is a problem that the attenuation in the flexible tube that is the propagation path of the sound pressure energy becomes large. In addition, since energy absorption occurs in the flexible tube and air that mediates energy propagation, there is a problem that the energy efficiency is low and the apparatus is enlarged. Furthermore, since the resonance frequency of the components of the external vibration device has a complicated influence, it is very difficult to control with high accuracy. In addition, it is difficult to transmit vibration only to a predetermined target region, and there is a problem that unpleasant feeling is given when the subject is a human.

そして、上記特許文献1乃至3に記載の発明においては、発生させる振動の周波数、振幅、位相などの制御は周波数が高くなるほど難しい。例えば低い周波数を利用した場合には、測定対象の広範囲領域における粘弾性率の平均値を求めるには適していても、測定対象が狭く、また詳細な粘弾性率の分布を測定するのには不向きである。これでは小さな硬さ変化を早期に発見する目的には利用できない。   And in invention of the said patent documents 1 thru | or 3, control of the frequency of the vibration to generate | occur | produce, an amplitude, a phase, etc. is so difficult that a frequency becomes high. For example, when using a low frequency, it is suitable for obtaining the average value of viscoelasticity over a wide area of the object to be measured. It is unsuitable. This cannot be used for the purpose of detecting small changes in hardness at an early stage.

特開2005−304898JP-A-2005-304898 特開2006−314787JP 2006-314787 A 特表2008−201416Special table 2008-201416

そこで、本発明者らは上記問題点に鑑み、MRI装置などのガントリ内に配置可能な小型の加振装置の開発を行ってきた。振動子として圧電素子を用いるのは、圧電素子が略50ヘルツから1000ヘルツ以上もの広い周波数帯域で正確に振幅と位相が制御可能だからである。本発明者らは振動子として圧電素子を利用した横波発生用の外部加振装置(横波装置)(被験体に剪断応力を与える装置)と、縦波発生用の外部加振装置(縦波装置)(被験体に垂直応力を与える装置)について評価した。弾性波画像の評価指標としては、信号対ノイズ比(SNR:SNR=振幅の平均値/ノイズの標準偏差)を用いた。ここで、当該SNRが大きい装置の方が測定精度が高く、より有効な加振装置と言える。なお、図8に示すように、(a)の横波装置(0801a)は、被験体(0802a)に横波のみを伝搬させる。また、(b)の縦波装置(0801b)は、被験体(0802b)内に縦波とともに横波をも伝搬させる。   In view of the above problems, the present inventors have developed a small vibration apparatus that can be placed in a gantry such as an MRI apparatus. The reason why the piezoelectric element is used as the vibrator is that the piezoelectric element can accurately control the amplitude and phase in a wide frequency band of about 50 Hz to 1000 Hz or more. The present inventors have used an external vibration device for generating a transverse wave (transverse wave device) (device for applying a shear stress to a subject) using a piezoelectric element as a vibrator, and an external vibration device for generating a longitudinal wave (longitudinal wave device). ) (Apparatus that applies normal stress to the subject). As an evaluation index of the elastic wave image, a signal-to-noise ratio (SNR: SNR = average value of amplitude / standard deviation of noise) was used. Here, it can be said that a device having a large SNR has higher measurement accuracy and is a more effective vibration device. As shown in FIG. 8, the transverse wave device (0801a) of (a) propagates only the transverse wave to the subject (0802a). Further, the longitudinal wave device (0801b) of (b) propagates a transverse wave as well as a longitudinal wave in the subject (0802b).

ここで、縦波と横波において、縦波は波長が長く、被験体内で狭い領域の粘弾性率を測定するのは不向きであるため、横波を検知して対象領域の粘弾性率を測定する手法を採用することとした。また、横波装置で発生させた弾性波画像と、縦波装置で発生させた弾性波画像を比較すると縦波装置の方がSNRが大きく,弾性波画像を利用して被験体の均一領域における粘弾性率を測定したところ、縦波装置の方がその標準偏差が小さかった。つまり、縦波装置で横波を発生させる手法が最も有効であることが示された。   Here, in the longitudinal wave and the transverse wave, the longitudinal wave has a long wavelength, and it is unsuitable to measure the viscoelastic modulus of a narrow region in the subject. Therefore, the method of measuring the viscoelastic modulus of the target region by detecting the transverse wave It was decided to adopt. In addition, when the elastic wave image generated by the shear wave device is compared with the elastic wave image generated by the longitudinal wave device, the longitudinal wave device has a larger SNR, and the elastic wave image is used to determine the viscosity in the uniform region of the subject. When the elastic modulus was measured, the standard deviation of the longitudinal wave device was smaller. That is, it has been shown that a method of generating a transverse wave with a longitudinal wave device is most effective.

しかしながら、縦波装置で発生させた横波でも、被験体内部で急速に減衰するため、振動が十分に伝達せず、測定対象領域が被験体の比較的深部である場合は不十分であった。
そこで、本発明の集束型加振装置は上記問題を解決するため、振動を発生する振動子を複数備え、各振動子から発生した振動が測定対象領域で集束するように構成された加振装置を提供する。
However, since the transverse wave generated by the longitudinal wave device is rapidly attenuated inside the subject, the vibration is not sufficiently transmitted, and it is insufficient when the measurement target region is relatively deep in the subject.
Accordingly, in order to solve the above-described problem, the focusing-type vibration device of the present invention includes a plurality of vibrators that generate vibrations, and the vibration device configured to focus the vibrations generated from the vibrators in the measurement target region. I will provide a.

(1)本発明は、被験体の粘弾性を識別できる画像をNMRにより取得するために、MR撮像装置またはMRI顕微鏡装置に利用される集束型加振装置であって、被験体に対して与える振動を発生するための複数の振動発生部と、振動発生のための信号を振動発生部に与える信号発生部と、前記振動発生部と被験体との間に配設され、発生した振動が弾性波として被験体内部を伝搬しフォーカス領域で集束するようにフォーカス領域へ指向配置される振動伝達チップと、を有する集束型加振装置を提供する。   (1) The present invention is a focusing type vibration apparatus used for an MR imaging apparatus or an MRI microscope apparatus for obtaining an image that can identify viscoelasticity of a subject by NMR, and is provided to a subject A plurality of vibration generating units for generating vibrations, a signal generating unit for providing a signal for generating vibrations to the vibration generating unit, and disposed between the vibration generating unit and the subject. There is provided a converging-type vibration device having a vibration transmitting chip that is directed to a focus region so as to propagate inside a subject as a wave and converge in the focus region.

(2)本発明は、前記振動発生部は圧電素子である上記(1)に記載の集束型加振装置を提供する。   (2) The present invention provides the converging-type vibration device according to (1), wherein the vibration generating unit is a piezoelectric element.

(3)本発明は、一の振動発生部に対して、一の振動伝達チップを備えている上記(1)又は(2)に記載の集束型加振装置を提供する。   (3) The present invention provides the converging-type vibration device according to (1) or (2) above, wherein one vibration generating chip is provided for one vibration generating unit.

(4)本発明は、前記振動伝達チップはアクリルブロックである上記(1)から(3)のいずれか一に記載の集束型加振装置を提供する。   (4) The present invention provides the converging-type vibration device according to any one of (1) to (3), wherein the vibration transmission chip is an acrylic block.

(5)本発明は、前記振動伝達チップの被験体と直接的、又は間接的に接する面が凹型曲面形状である上記(1)から(4)のいずれか一に記載の集束型加振装置を提供する。   (5) The present invention relates to the converging-type vibration device according to any one of (1) to (4), wherein the surface of the vibration transmitting chip that directly or indirectly contacts the subject has a concave curved surface shape. I will provide a.

(6)本発明は、信号発生部は振動発生部が100ヘルツ以上の周波数で振動するための信号を与える上記(1)から(5)のいずれか一に記載の集束型加振装置を提供する。   (6) The present invention provides the converging type excitation device according to any one of (1) to (5), wherein the signal generation unit provides a signal for the vibration generation unit to vibrate at a frequency of 100 hertz or more. To do.

(7)本発明は、3個以上の振動伝達チップを備える上記(1)から(6)のいずれか一に記載の集束型加振装置。   (7) The present invention relates to the converging-type vibration device according to any one of (1) to (6), which includes three or more vibration transmission chips.

(8)本発明は、振動伝達チップは、観察のために収容されている被験体を配置する台上の側面付近から振動を与えるように配置されている上記(1)から(7)のいずれか一に記載の集束型加速装置を提供する。   (8) In the present invention, any of the above (1) to (7), wherein the vibration transmitting chip is arranged so as to give vibration from the vicinity of the side surface on the table on which the subject accommodated for observation is arranged. A focusing accelerator according to claim 1 is provided.

(9)本発明は、振動を発生させるために複数の振動子に信号を与える信号発生工程と、複数の振動子により被験体に与える振動を発生させて、振動が弾性波として被験体内部を伝搬し、フォーカス領域で集束させる振動集束工程と、集束させた弾性波の横波を検出し、MR撮像装置またはMRI顕微鏡装置を用いてNMR画像を取得するNMR画像取得工程と、を有する被験体測定領域のNMR画像取得方法を提供する。   (9) In the present invention, a signal generation step for giving a signal to a plurality of vibrators to generate vibrations, and a vibration to be given to the subject by the plurality of vibrators are generated. A subject measurement comprising: a vibration focusing step for propagating and focusing in a focus region; and an NMR image acquisition step for detecting a transverse wave of the focused elastic wave and acquiring an NMR image using an MR imaging device or an MRI microscope device A method for acquiring an NMR image of a region is provided.

(10)本発明は、上記(1)から(8)のいずれか一に記載の集束型加振装置を備えたMR撮像装置を提供する。
(11)本発明は、上記(1)から(8)のいずれか一に記載の集束型加振装置を備えたMRI顕微鏡装置を提供する。
(10) The present invention provides an MR imaging device including the converging-type vibration device according to any one of (1) to (8).
(11) The present invention provides an MRI microscope apparatus including the converging-type vibration apparatus according to any one of (1) to (8).

本発明の集束型加振装置によれば、被験体に伝達する振動の周波数と位相とを高精度に制御可能である。また、装置の小型化も可能であるためMRI装置等のガントリ内に配置し、被験体と密着させて振動を伝達でき、エネルギー効率も良い。また、高い周波数帯域の振動も発生可能であるため、測定精度も高い。更には、振動による被験体への不快感も抑制できる。   According to the converging-type vibration apparatus of the present invention, the frequency and phase of vibration transmitted to the subject can be controlled with high accuracy. In addition, since the apparatus can be miniaturized, it can be placed in a gantry such as an MRI apparatus, and can be brought into close contact with a subject to transmit vibration, resulting in high energy efficiency. Moreover, since vibrations in a high frequency band can be generated, the measurement accuracy is high. Furthermore, discomfort to the subject due to vibration can be suppressed.

本発明の概要図Overview of the present invention 振動伝達チップ形状を示す例図Example diagram showing the shape of a vibration transmission chip 本発明の一実施例の外観図External view of one embodiment of the present invention 本発明の一実施例の断面図Sectional drawing of one Example of this invention 本発明の一実施例の断面図Sectional drawing of one Example of this invention 実施形態2の処理フロー図Process flow diagram of embodiment 2 パルスシーケンスの一例図Example of pulse sequence 縦波装置と横波装置により伝搬する弾性波を示す概要図Schematic diagram showing elastic waves propagating by longitudinal and transverse wave devices

以下、本件発明の実施の形態について、添付図面を用いて説明する。なお、本件発明は、これら実施形態に何ら限定されるべきものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施し得る。なお、実施形態1は請求項1乃至8、10、11などに関する。実施形態2は請求項9などに関する。
<<実施形態1>>
<実施形態1:概要>
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, this invention should not be limited to these embodiments at all, and can be implemented in various modes without departing from the gist thereof. The first embodiment relates to claims 1 to 8, 10, 11 and the like. The second embodiment relates to claim 9 and the like.
<< Embodiment 1 >>
<Embodiment 1: Overview>

本実施形態の集束型加振装置は、複数の振動発生部と、信号発生部と、振動伝達チップとから構成される。当該振動伝達チップは、複数の振動発生部が発生した振動の弾性波が被験体内部を伝搬し、特定フォーカス領域にて集束するように指向配置されている。   The converging-type vibration device according to the present embodiment includes a plurality of vibration generation units, a signal generation unit, and a vibration transmission chip. The vibration transmitting chip is oriented so that elastic waves of vibrations generated by a plurality of vibration generating units propagate through the subject and converge in a specific focus region.

よって、被験体内部の測定対象領域において、測定に必要な振幅の弾性波を検知できる。
<実施形態1:構成>
Therefore, an elastic wave having an amplitude necessary for measurement can be detected in the measurement target region inside the subject.
<Embodiment 1: Configuration>

図1に本発明に係る集束型加振装置の概念図を示す。MRI装置の寝台(0108)に配置した被験体(0103)に、集束型加振装置を密着させた図の断面図である。本発明の集束型加振装置は、MR撮像装置またはMRI顕微鏡装置に利用される加振装置であって、複数の振動発生部(0101)と、振動伝達チップ(0102)と、信号発生部(0105)と、からなる。   FIG. 1 is a conceptual diagram of a converging type vibration apparatus according to the present invention. It is sectional drawing of the figure which made the focusing type vibration apparatus contact | adhere to the test subject (0103) arrange | positioned on the bed (0108) of an MRI apparatus. A focusing-type vibration apparatus of the present invention is a vibration apparatus used in an MR imaging apparatus or an MRI microscope apparatus, and includes a plurality of vibration generation units (0101), a vibration transmission chip (0102), and a signal generation unit ( 0105).

MR撮像装置とは、例えばMRI装置、臨床用MRI装置などであり、MRI顕微鏡装置とは、NMRマイクロスコープ(Nuclear Magnetic Resonance マイクロスコープ)、MRM(Magnetic Resonance Microscopy)などである。以下、「MR撮像装置またはMRI顕微鏡装置」をMRI装置等という。   The MR imaging apparatus is, for example, an MRI apparatus, a clinical MRI apparatus or the like, and the MRI microscope apparatus is an NMR microscope (Nuclear Magnetic Resonance microscope), an MRM (Magnetic Resonance Microscope), or the like. Hereinafter, the “MR imaging apparatus or MRI microscope apparatus” is referred to as an MRI apparatus or the like.

「信号発生部」(0105)とは、例えば振動発生部(0101)を駆動する電気信号及びその発生手段のことである。振動発生部(0101)が圧電素子の場合は、図7中の「Oscillation」で示される波形をもつ信号である。後述する振動発生部が発生する振動の振幅、波長、位相などは、当該信号発生部(0105)が振動発生部(0101)に対して出力する信号によって制御する。なお、図7については実施例2で説明する。   The “signal generation unit” (0105) is, for example, an electric signal that drives the vibration generation unit (0101) and its generation means. When the vibration generating unit (0101) is a piezoelectric element, the signal has a waveform indicated by “Oscillation” in FIG. The amplitude, wavelength, phase, and the like of vibration generated by a vibration generating unit, which will be described later, are controlled by a signal output from the signal generating unit (0105) to the vibration generating unit (0101). FIG. 7 will be described in the second embodiment.

なお、当該信号発生部(0105)が与える信号は、被験体の粘弾性を識別できる画像を取得する手法に必要な振動を発生できる内容であれば特に限定しない。好ましくは後述する振動発生部(0101)が略50ヘルツ以上の周波数の振動を発生するように制御された信号である。略50ヘルツ未満の周波数の振動では、被験体の粘弾性を識別できる画像を取得する手法に必要な信号対ノイズ比の高い画像が得られない場合があるからである。より好ましくは、100ヘルツ以上である。画像取得に適した振幅(0.01mm程度)で信号対ノイズ比の高い画像が得られるからである。また、周波数が大きいほどに波長が短くなるため、被験体が比較的小さい場合や、被験体内部の小さい組織の粘弾性を測定する場合など、後述する測定対象領域が狭い場合にも、正確に被験体の粘弾性を識別できる画像が得られる。なお、振動発生部(0101)に圧電素子を用いる場合は、200ヘルツ以上の高周波数帯域の信号を与えることができ、かつ振幅と位相を正確に制御できる。   In addition, the signal which the said signal generation part (0105) gives is not specifically limited if it is the content which can generate | occur | produce the vibration required for the method of acquiring the image which can identify the viscoelasticity of a test subject. Preferably, the signal is controlled so that a vibration generating unit (0101), which will be described later, generates vibrations having a frequency of approximately 50 hertz or higher. This is because vibration with a frequency of less than about 50 hertz may not provide an image with a high signal-to-noise ratio that is necessary for obtaining an image that can identify the viscoelasticity of the subject. More preferably, it is 100 hertz or more. This is because an image with a high signal-to-noise ratio can be obtained with an amplitude suitable for image acquisition (about 0.01 mm). In addition, since the wavelength becomes shorter as the frequency is larger, even when the subject is relatively small, or when measuring the viscoelasticity of a small tissue inside the subject, the measurement target region described later is accurate. An image is obtained that can identify the viscoelasticity of the subject. When a piezoelectric element is used for the vibration generating unit (0101), a signal in a high frequency band of 200 Hz or higher can be given, and the amplitude and phase can be accurately controlled.

信号発生部(0105)としては、例えば、MRI装置等と同期して任意の振動波形を生成するためのファンクションジェネレータ(0107)と、振動波形を増幅するためのアンプ(0106)によって構成される。   The signal generator (0105) includes, for example, a function generator (0107) for generating an arbitrary vibration waveform in synchronization with an MRI apparatus or the like, and an amplifier (0106) for amplifying the vibration waveform.

「振動発生部」(0101)は、被験体(0103)に対して与える振動を発生する。例えば、電磁石ドライバ、音響ドライバ(特許文献2、3)、超音波モータ(又は圧電モータ)、圧電素子などが該当する。なかでも圧電素子が好ましい。200ヘルツ以上の高周波数帯域を利用でき、かつ当該高周波数帯域においても振幅及び位相の制御が可能だからである。また、集束型加振装置の小型化も可能となる。   The “vibration generator” (0101) generates a vibration to be applied to the subject (0103). For example, an electromagnet driver, an acoustic driver (Patent Documents 2 and 3), an ultrasonic motor (or a piezoelectric motor), a piezoelectric element, and the like are applicable. Of these, piezoelectric elements are preferred. This is because a high frequency band of 200 Hz or higher can be used, and the amplitude and phase can be controlled even in the high frequency band. In addition, it is possible to reduce the size of the converging-type excitation device.

なお、本発明は複数の振動発生部(0101)を備え、各振動発生部(0101)が発生した振動を被験体内部のフォーカス領域で集束させ、当該集束させた振動を利用して被験体の粘弾性を識別できる画像を取得することを特徴とするものである。従って、本発明に係る集束型加振装置は、二以上の振動発生部(0101)を有する。当該複数の振動発生部(0101)は、後述するように、振動伝達チップ(0102)をフォーカス領域(0104)へ指向配置し易いように、円弧上に配置してもよく、球面格子上に配置してもよい。   The present invention includes a plurality of vibration generating units (0101), and the vibration generated by each vibration generating unit (0101) is focused in a focus region inside the subject, and the subject's An image capable of identifying viscoelasticity is acquired. Therefore, the converging-type vibration apparatus according to the present invention has two or more vibration generating units (0101). As will be described later, the plurality of vibration generating units (0101) may be arranged on a circular arc or on a spherical lattice so that the vibration transmitting chip (0102) can be easily oriented to the focus area (0104). May be.

また、各振動発生部(0101)が発生する振動の周波数、振幅、波長、位相などは、測定対象領域の被験体内における深度や、測定対象組織の種別などに合わせて適宜決定すればよい。また、振動発生のタイミングや、被験体内部での弾性波の伝搬速度、NMRによる画像取得のタイミングなど、それぞれ相互の関係を考慮して制御する。なお、これらは全て前記信号発生部(0105)に基づいて決定され、制御されるように構成されていてもよい。   In addition, the frequency, amplitude, wavelength, phase, and the like of the vibration generated by each vibration generator (0101) may be appropriately determined according to the depth of the measurement target region in the subject, the type of the measurement target tissue, and the like. In addition, control is performed in consideration of the mutual relations such as the timing of vibration generation, the propagation speed of elastic waves inside the subject, and the timing of image acquisition by NMR. Note that all of these may be determined and controlled based on the signal generator (0105).

また、「被験体」(0103)とは、画像取得対象のことであり、ヒトに限定されず、マウスなどの動物、植物、更に、加工品なども含む。   The “subject” (0103) is an image acquisition target, and is not limited to humans, but includes animals such as mice, plants, and processed products.

「振動伝達チップ」(0102)とは、前記振動発生部(0101)と被験体(0103)との間に配設され、発生した振動が弾性波として被験体内部を伝搬しフォーカス領域(0104)で集束するようにフォーカス領域へ指向配置されるものである。つまり、前記振動発生部(0101)で発生した振動は、当該振動伝達チップ(0102)を介して被験体に伝達される。   The “vibration transmitting chip” (0102) is disposed between the vibration generating unit (0101) and the subject (0103), and the generated vibration propagates inside the subject as an elastic wave to focus the region (0104). In such a manner, it is directed to the focus area so as to be converged at the center. That is, the vibration generated by the vibration generating unit (0101) is transmitted to the subject via the vibration transmitting chip (0102).

「弾性波」とは、横波と縦波で構成され、本発明の集束型加振装置は、被験体内部に縦波と横波を伝搬するように、被験体に対して振動を与える。なお、NMR画像を取得するために利用するのは、縦波と横波のどちらでもよいが、好ましくは波長の短い横波である。なお、横波を利用して画像を取得する場合において、縦波が発生していても画像取得には影響なく、またその逆も同様である。   The “elastic wave” is composed of a transverse wave and a longitudinal wave, and the focused vibration exciter of the present invention applies vibration to the subject so as to propagate the longitudinal wave and the transverse wave inside the subject. In addition, although either a longitudinal wave or a transverse wave may be used for acquiring an NMR image, a transverse wave having a short wavelength is preferable. Note that when acquiring an image using a transverse wave, even if a longitudinal wave is generated, the image acquisition is not affected, and vice versa.

また、「フォーカス領域」とは、被験体内部における画像取得対象領域(0110)のうち、特に粘弾性を測定したい測定対象領域(0111)の中心付近をいう。ここで、画像取得対象領域(0110)とは、本発明の集束型加振装置を利用するMRI装置等において、画像取得可能な領域のことであり、その中でもより正確に粘弾性を計測したい領域を中心としてそれを含む周辺領域を測定対象領域(0111)という。また、「フォーカス領域へ指向配置」とは、図4、5に示すように、フォーカス領域(0406、0506)を中心とする放射状に振動伝達チップ(0402、0502)を配置することをいう。換言すれば、被験体と接する面、つまり振動伝達チップの天井面の法線方向に弾性波が進行する場合に、各振動伝達チップの天井面の法線が「フォーカス領域」で交わるように配置することをいう。   Further, the “focus area” refers to the vicinity of the center of the measurement target area (0111) in which the viscoelasticity is to be measured, among the image acquisition target areas (0110) inside the subject. Here, the image acquisition target region (0110) is a region in which an image can be acquired in an MRI apparatus or the like using the focusing type vibration device of the present invention, and among these, a region where viscoelasticity is to be measured more accurately. A peripheral region including the center is called a measurement target region (0111). “Directional arrangement in the focus area” means that the vibration transmitting chips (0402 and 0502) are arranged radially with the focus area (0406 and 0506) as the center, as shown in FIGS. In other words, when the elastic wave travels in the direction normal to the surface in contact with the subject, that is, the ceiling surface of the vibration transmission chip, the normal line of the ceiling surface of each vibration transmission chip intersects at the “focus area” To do.

測定対象領域(0111)とは、例えば画像取得対象領域(0110)の上部領域や、下部領域、などでもよく、特定の組織、例えば肝臓、腎臓、脳、などでもよい。   The measurement target region (0111) may be, for example, an upper region or a lower region of the image acquisition target region (0110), or may be a specific tissue such as a liver, kidney, brain, or the like.

なお、振動伝達チップ(0102)は、振動の吸収が小さく、かつ振動に歪みを生じさせにくい硬質の非磁性体であれば特に限定しない。例えば、木、竹、非磁性体プラスチックなどが該当する。好ましくは、アクリルブロックである。頑丈で、安く、大量生産可能であり、また加工が容易だからである。振動伝達チップと振動発生部の接続方法は互いの機能が損なわれない限り限定するものではなく、振動伝達チップと振動発生部とが一体に接続されていてもよい。また、振動発生部(0101)が発生した振動が吸収されず、また振動波形に歪みを生じないように、振動発生部(0101)と被験体(0103)との距離、つまり振動伝達チップ(0102)の長さは短いのが好ましい。   The vibration transmission chip (0102) is not particularly limited as long as it is a hard non-magnetic material that absorbs less vibration and hardly causes distortion in vibration. For example, wood, bamboo, non-magnetic plastic, etc. are applicable. An acrylic block is preferable. This is because it is robust, cheap, can be mass-produced, and easy to process. The connection method of the vibration transmitting chip and the vibration generating unit is not limited as long as the functions of each other are not impaired, and the vibration transmitting chip and the vibration generating unit may be integrally connected. In addition, the distance between the vibration generating unit (0101) and the subject (0103), that is, the vibration transmitting chip (0102) is not so absorbed that the vibration generated by the vibration generating unit (0101) is not absorbed and the vibration waveform is not distorted. ) Is preferably short.

また、当該振動伝達チップ(0102)が被験体と直接的、又は間接的に接する面の形状は被験体に合わせて適宜変更できる構成が望ましい。当該形状の一例を図2に示す。(a)の振動伝達チップ(0201a)は略直方体の形状で、被験体と接する面は、振動発生部(0202a)の断面形状と同一である。また、(b)の振動伝達チップ(0201b)は被験体と接する面が平面四角形であり、振動発生部(0202b)の断面形状より大きく構成されている。また、(c)の振動伝達チップ(0201c)は被験体と接する面が凹型曲面形状であり、かつ振動発生部(0202c)の断面形状より大きく構成されている。(a)より(b)、(b)より(c)の振動伝達チップの方が、被験体内部を伝搬する弾性波がより集束し易い。特に(c)は被験体と接する面が凹型曲面形状であるため、より高度に弾性波の集束を制御できるため好ましい。また、振動発生部(0101)が発生する振動エネルギーのロスを抑制できるため、エネルギー効率がよい点でも好ましい。   In addition, it is desirable that the shape of the surface where the vibration transmitting chip (0102) directly or indirectly contacts the subject can be appropriately changed according to the subject. An example of the shape is shown in FIG. The vibration transmitting chip (0201a) in (a) has a substantially rectangular parallelepiped shape, and the surface in contact with the subject is the same as the cross-sectional shape of the vibration generating unit (0202a). In addition, the vibration transmission chip (0201b) in (b) has a plane quadrangular surface in contact with the subject, and is configured to be larger than the cross-sectional shape of the vibration generating unit (0202b). Further, the vibration transmission chip (0201c) in (c) has a concave curved surface on the surface in contact with the subject, and is configured to be larger than the cross-sectional shape of the vibration generator (0202c). The vibration transmission chip of (b) and (b) of (a) is easier to converge the elastic wave propagating inside the subject than (a) and (b). In particular, (c) is preferable because the surface in contact with the subject has a concave curved surface shape, and the focusing of elastic waves can be controlled to a higher degree. Moreover, since the loss of the vibration energy which a vibration generation part (0101) generate | occur | produces can be suppressed, it is preferable also at the point that energy efficiency is good.

なお、「当該振動伝達チップが被験体と直接的」とは、振動伝達チップと被験体とが、何も介さずに直接接することをいう。対して「間接的に接する」とは、例えば振動伝達チップと被験体とをより密着させ、また振動が伝達しやすいように、振動伝達チップと被験体との間にジェル状の物質を介することなどをいう。但し、かかる場合、ジェル状の物質が振動を吸収し、又は振動に歪みを生じさせるものであってはならない。   Note that “the vibration transmission chip is directly in contact with the subject” means that the vibration transmission chip and the subject are in direct contact with each other without any intervention. In contrast, “indirect contact” means, for example, that the vibration transmission chip and the subject are more closely attached and that a gel-like substance is interposed between the vibration transmission chip and the subject so that vibration can be easily transmitted. And so on. However, in such a case, the gel-like substance must not absorb vibrations or cause distortions in the vibrations.

なお、振動伝達チップ(0102)は、複数の振動発生部(0101)に対して、一つでもよく、また複数有する構成でもよく、特に限定しない。好ましくは、図1に示すとおり、一の振動発生部(0101)に対して、一の振動伝達チップ(0102)を備える構成である。各振動発生部が発生した振動を弾性波として伝搬する向きを細かく制御できるため、弾性波のフォーカス領域での集束をより厳密に制御できるからである。   Note that there may be one vibration transmission chip (0102) for the plurality of vibration generating units (0101), or a plurality of vibration transmission chips (0101), and there is no particular limitation. Preferably, as shown in FIG. 1, one vibration transmission chip (0102) is provided for one vibration generator (0101). This is because the direction in which the vibration generated by each vibration generating unit propagates as an elastic wave can be finely controlled, so that the focusing of the elastic wave in the focus region can be controlled more precisely.

また、振動発生部(0101)の数に係わらず、振動伝達チップ(0102)を三個以上備える構成が好ましい。振動伝達チップ(0102)が多いほど、一の振動伝達チップ(0102)が被験体に対して伝達する振動を相対的に小さく設定できるため、被験体に与える不快感を抑制できるからである。また各振動伝達チップ(0102)をそれぞれ制御することにより、被験体に対して与える振動の制御も可能である。図3乃至5に、9個の振動発生部と9個の振動伝達チップを備えた加振装置を例示する。当該図3乃至5については、後述する実施例1にて説明する。   In addition, a configuration including three or more vibration transmitting chips (0102) is preferable regardless of the number of vibration generating units (0101). This is because as the number of vibration transmission chips (0102) increases, the vibration transmitted from one vibration transmission chip (0102) to the subject can be set to be relatively small, so that discomfort given to the subject can be suppressed. In addition, by controlling each vibration transmission chip (0102), it is possible to control the vibration applied to the subject. 3 to 5 exemplify a vibration exciter including nine vibration generators and nine vibration transmission chips. 3 to 5 will be described in Example 1 described later.

なお、振動伝達チップ(0102)は、観察のために収容されている被験体の上面や底面から振動を伝達するように配置されていてもよい。好ましくは、図1のように、被験体(0103)を配置する台上(0108)の側面付近から振動を与えるように配置する。これは、MRI装置等の寝台は、幅に比較的余裕があるため、被験体(0103)を台上(0108)に配置した場合に、側面付近の空いているスペースに本発明の集束型加振装置を設置し、被験体(0103)に対して適切に振動を伝達するためである。よって、本実施形態にかかる加振装置は、その設置場所等を用意する必要もなく、既存のMRI装置等をそのまま利用できるため好ましい。また、振動伝達チップ(0102)と被験体(0103)とをより近く配置できるため、振動発生部(0101)が発生する振動エネルギーのロスを抑制できるため、エネルギー効率がよい。更には、被験体に対して容易に所望の位置に設置できるため、被験体への負担もなく、かつ測定準備も短時間で行える。
<実施形態1:効果>
The vibration transmission chip (0102) may be arranged to transmit vibration from the upper surface or the bottom surface of the subject accommodated for observation. Preferably, it arrange | positions so that a vibration may be given from the side surface vicinity of the stand (0108) which arrange | positions a test subject (0103) like FIG. This is because a bed such as an MRI apparatus has a relatively large width, so that when the subject (0103) is placed on the table (0108), the focusing type addition of the present invention is added to the empty space near the side surface. This is because a vibration device is installed to appropriately transmit vibration to the subject (0103). Therefore, the vibration apparatus according to the present embodiment is preferable because it is not necessary to prepare an installation place or the like and an existing MRI apparatus or the like can be used as it is. In addition, since the vibration transmitting chip (0102) and the subject (0103) can be arranged closer to each other, loss of vibration energy generated by the vibration generating unit (0101) can be suppressed, so that energy efficiency is good. Furthermore, since it can be easily installed at a desired position with respect to the subject, there is no burden on the subject, and preparation for measurement can be performed in a short time.
<Embodiment 1: Effect>

本実施形態の集束型加振装置によれば、被験体に伝達する振動の周波数と位相とを高精度に制御可能で、エネルギー効率も良く、また装置の小型化も可能である。また、高い周波数帯域の振動も発生可能であるため、測定精度も高い。更には、被験体への不快感も抑制できる。
<<実施形態2>>
<実施形態2:概要>
According to the focusing type vibration device of this embodiment, the frequency and phase of vibration transmitted to the subject can be controlled with high accuracy, energy efficiency is good, and the device can be downsized. Moreover, since vibrations in a high frequency band can be generated, the measurement accuracy is high. Furthermore, discomfort to the subject can also be suppressed.
<< Embodiment 2 >>
<Embodiment 2: Overview>

本実施形態のNMR画像取得方法は、複数の振動子に信号を与えて振動を発生させ(信号発生工程)、当該振動子が発生した振動が被験体内部を弾性波として伝搬し、フォーカス領域にて集束させ(振動集束工程)、集束させた弾性波の横波を検出しNMR画像を取得する(NMR画像取得工程)。   In the NMR image acquisition method of the present embodiment, signals are given to a plurality of vibrators to generate vibrations (signal generation step), and the vibrations generated by the vibrators propagate as elastic waves inside the subject and enter the focus region. And then focusing (vibration focusing step), and the transverse wave of the focused elastic wave is detected and an NMR image is acquired (NMR image acquiring step).

当該方法によれば、被験体種別や、被験体内部の測定対象領域の種別に合わせて、振動子が発生させる振動及びフォーカス領域にて集束させる弾性波を高度に制御できるため、所望のNMR画像を取得できる。
<実施形態2:構成>
According to the method, it is possible to highly control the vibration generated by the vibrator and the elastic wave focused in the focus area according to the type of the subject and the type of the measurement target area inside the subject, so that a desired NMR image can be obtained. Can be obtained.
<Embodiment 2: Configuration>

図6に本実施形態の処理フロー図を示す。本実施形態のNMR画像取得方法は、複数の振動子に信号を与える信号発生工程(0601)と、振動子が発生した振動を弾性波として被験体内部のフォーカス領域にて集束する振動集束工程(0602)と、集束させた弾性波の横波を検出し、NMR装置等を用いてNMR画像を取得するNMR画像取得工程(0603)と、からなる。   FIG. 6 shows a processing flow diagram of this embodiment. The NMR image acquisition method of the present embodiment includes a signal generation step (0601) that gives signals to a plurality of transducers, and a vibration focusing step that focuses the vibrations generated by the transducers as elastic waves in a focus region inside the subject ( 0602) and an NMR image acquisition step (0603) of detecting a transverse wave of the focused elastic wave and acquiring an NMR image using an NMR apparatus or the like.

「信号発生工程」(0601)とは、振動を発生させるために複数の振動子に信号を与える工程である。「振動子」とは、前記実施形態1における振動発生部に相当する。また、「信号」とは、当該振動子を駆動するための電気信号のことをいう。振動子に与える信号は、振動子が発生する振動がフォーカス領域において弾性波として集束し、所望のNMR画像を取得できるものであれば特に限定しない。複数の振動子に与える信号が全て同一の信号でもよく、振動子によって異なる信号でもよい。これはら、被験体種別、測定対象領域種別、フォーカス領域までの距離などを考慮して、適宜決定すればよい。本工程で与えた信号に基づいて、後述する振動集束工程にて振動が発生される。   The “signal generation step” (0601) is a step of giving signals to a plurality of vibrators in order to generate vibration. The “vibrator” corresponds to the vibration generating unit in the first embodiment. The “signal” refers to an electric signal for driving the vibrator. The signal given to the vibrator is not particularly limited as long as the vibration generated by the vibrator is focused as an elastic wave in the focus region and a desired NMR image can be acquired. The signals given to the plurality of vibrators may all be the same signal, or may be different signals depending on the vibrator. This may be appropriately determined in consideration of the subject type, the measurement target region type, the distance to the focus region, and the like. Based on the signal given in this step, vibration is generated in a vibration focusing step described later.

「振動集束工程」(0602)とは、複数の振動子により被験体に与える振動を発生させて(0604)、振動が弾性波として被験体内部を伝搬し、フォーカス領域で集束させる(0605)工程である。「弾性波として被験体内部を伝搬し」とは、横波と縦波がともに被験体内部を伝わることをいう。当該弾性波のうち、横波のみが後述するNMR画像取得工程において検知される。横波は波長が短いため、高精度の画像が取得でき、また伝搬速度が遅く、伝搬する波を計測しやすいためである。   The “vibration focusing step” (0602) is a step of generating a vibration given to the subject by a plurality of vibrators (0604), and the vibration propagates inside the subject as an elastic wave to be focused in the focus region (0605). It is. “Propagating inside the subject as an elastic wave” means that both a transverse wave and a longitudinal wave propagate inside the subject. Of the elastic wave, only the transverse wave is detected in the NMR image acquisition step described later. This is because the transverse wave has a short wavelength, so that a highly accurate image can be acquired, the propagation speed is slow, and the propagating wave is easy to measure.

「NMR画像取得工程」(0603)とは、集束させた弾性波の横波を検出し、MR撮像装置またはMRI顕微鏡装置を用いてNMR画像を取得する工程である。ここで、弾性波の横波を検出し、NMR装置等を用いてNMR画像を取得する方法は既存の方法を用いればよい。   The “NMR image acquisition step” (0603) is a step of detecting a transverse wave of a focused elastic wave and acquiring an NMR image using an MR imaging apparatus or an MRI microscope apparatus. Here, an existing method may be used as a method for detecting a transverse wave of an elastic wave and acquiring an NMR image using an NMR apparatus or the like.

なお、本実施形態のNMR画像取得方法により被験体のNMR画像を取得し、被験体内部の粘弾性を測定する方法にMRE法(Magnetic Resonance Elastography)がある。   In addition, there exists MRE method (Magnetic Resonance Elastography) in the method of acquiring the NMR image of a test subject by the NMR image acquisition method of this embodiment, and measuring the viscoelasticity inside a test subject.

MRE法とは、核磁気共鳴(Nuclear Magnetic Resonance,NMR)の技術を用いて物体が含有するプロトンの共鳴信号(Magnetic Resonance 信号,MR信号)を画像化する磁気共鳴イメージング(Magnetic Resonance Imaging,MRI)を用いた撮影法の一つである。被験体外部から振動を与えながら撮影することにより被験体内を伝搬する振動のパターンを画像化するものである。   The MRE method is a magnetic resonance imaging (MRI) for imaging a resonance signal (Magnetic Resonance signal, MR signal) of a proton contained in an object by using a technique of Nuclear Magnetic Resonance (NMR). Is one of the photography methods using A pattern of vibration propagating through the subject is imaged by photographing while applying vibration from outside the subject.

NMRデータを取得するために利用するパルスシーケンスは、SE法(Spine Echo)、EPI法(Echo Plannar)、GRE法(Gradient Echo)や、これらをベースにした種々のシーケンスなど、特に限定しない。なお、MRE法の基本的なパルスシーケンスでは、外部加振装置を用いて被験体を振動させ、被験体内に弾性波を誘発させる(信号発生工程、振動集束工程)。そして撮影の際、振動に同期した傾斜磁場(Motion Sensitizing Gradients,MSG)を印加すると、被験体が発生するMR信号が傾斜磁場を印加しない場合の信号に対して位相差を生じる。そして、当該位相差を含むMR信号を二次元フーリエ変換し、位相の変化量に相当する虚数部分を画像化することにより、被験体内を伝搬する振動を可視化する。   The pulse sequence used for acquiring the NMR data is not particularly limited, such as SE method (Spine Echo), EPI method (Echo Planner), GRE method (Gradient Echo), and various sequences based on these methods. In the basic pulse sequence of the MRE method, the subject is vibrated using an external vibration device, and an elastic wave is induced in the subject (signal generation process, vibration focusing process). When a gradient magnetic field (Motion Sensitizing Gradients, MSG) synchronized with vibration is applied during imaging, the MR signal generated by the subject causes a phase difference with respect to the signal when no gradient magnetic field is applied. Then, the MR signal including the phase difference is subjected to two-dimensional Fourier transform, and an imaginary part corresponding to the phase change amount is imaged to visualize the vibration propagating in the subject.

得られた画像から、被験体内を伝搬する弾性波の波長、周波数、減数係数を算出し、波動方程式により被験体の粘弾性率を測定する。
<実施形態2:効果>
From the obtained image, the wavelength, frequency, and reduction factor of the elastic wave propagating through the subject are calculated, and the viscoelastic modulus of the subject is measured by the wave equation.
<Embodiment 2: Effect>

本実施形態のNMR画像取得方法によれば、フォーカス領域においてNMR画像取得に必要な振幅が得られ、また、被験体に与える振動を高度に制御可能であるため、所望のNMR画像が得られる。   According to the NMR image acquisition method of the present embodiment, the amplitude necessary for acquiring the NMR image in the focus region can be obtained, and the vibration applied to the subject can be controlled to a high degree, so that a desired NMR image can be obtained.

図3に本実施形態に係る加振装置の振動発生部と、振動伝達チップの構成の一例を示す。(a)、(b)が斜視図を示し、(c)が上面図、(d)が底面図を示す。また、図3(a)におけるA−A´の断面図を図4に、B−B´の断面図を図5に示す。本実施例の集束型加振装置は、9個の振動発生部と、9個の振動伝達チップを備えている。なお、図3においては、便宜上、1個の振動伝達チップ(0301)のみ図示する。また、振動伝達チップ(0301)が並ぶ面は凹型曲面形状である。   FIG. 3 shows an example of the configuration of the vibration generating unit and the vibration transmitting chip of the vibration exciter according to this embodiment. (A), (b) shows a perspective view, (c) shows a top view, (d) shows a bottom view. FIG. 4 is a sectional view taken along line AA ′ in FIG. 3A, and FIG. 5 is a sectional view taken along line BB ′ in FIG. The converging-type vibration apparatus of the present embodiment includes nine vibration generation units and nine vibration transmission chips. In FIG. 3, only one vibration transmission chip (0301) is shown for convenience. The surface on which the vibration transmitting chips (0301) are arranged has a concave curved surface shape.

図3において、振動伝達チップ(0301)は格子状に9個配置されている。また、各振動伝達チップ(0301)はフォーカス領域にて弾性波が集束するように指向配置されている。つまり、振動伝達チップの先端(被験体に接する面)を繋げた面が凹型曲面形状になるように配置されている。当該凹型曲面形状の中心点は、フォーカス領域に相当する。0302は圧電素子配線用および放熱用の穴である。なお、振動発生部は隠れているため図示していない。   In FIG. 3, nine vibration transmission chips (0301) are arranged in a lattice pattern. Further, each vibration transmission chip (0301) is oriented so that the elastic wave is focused in the focus region. That is, the surface which connected the front-end | tip (surface which contacts a test subject) of a vibration transmission chip | tip is arrange | positioned so that it may become a concave curved surface shape. The center point of the concave curved surface shape corresponds to the focus area. Reference numeral 0302 denotes holes for piezoelectric element wiring and heat dissipation. In addition, since the vibration generation part is hidden, it is not illustrated.

図4は、図3(a)におけるA−A´の断面図を示す。図1においては、紙面の上面方向から見た断面図である。圧電素子からなる振動発生部(0401)と、当該振動発生部と被験体(0405)との間に配設されたアクリルブロックからなる振動伝達チップ(0402)とを備える。これらは2枚のアクリル材料からなる厚さ5mmの平板(0403)に挟まれるように配置される(図5)。なお、各アクリルブロック(0402)はフォーカス領域(0406)へ指向配置されている。本実施例においては、フォーカス領域(0406)は被験体の表面から100mmの深さに設定されている。なお、圧電素子(0401)とは、その長手方向に伸び縮みして、アクリルブロック(0402)を介して振動を被験体(0405)に与えるため、それらの側面は固定されておらず、圧電素子(0401)の底面のみが固定されている。また、当該側面はアクリル平板(0403)との間で摩擦が生じないように構成されている。圧電素子の伸び縮みを阻害しないためである。   FIG. 4 is a cross-sectional view taken along the line AA ′ in FIG. In FIG. 1, it is sectional drawing seen from the upper surface direction of the paper surface. A vibration generating unit (0401) made of a piezoelectric element and a vibration transmission chip (0402) made of an acrylic block disposed between the vibration generating unit and the subject (0405) are provided. These are arranged so as to be sandwiched between two flat plates (0403) made of acrylic material and having a thickness of 5 mm (FIG. 5). Each acrylic block (0402) is oriented to the focus area (0406). In this embodiment, the focus area (0406) is set to a depth of 100 mm from the surface of the subject. The piezoelectric element (0401) is stretched and contracted in the longitudinal direction and imparts vibration to the subject (0405) via the acrylic block (0402). Only the bottom surface of (0401) is fixed. Further, the side surface is configured so as not to cause friction with the acrylic flat plate (0403). This is because the expansion and contraction of the piezoelectric element is not hindered.

なお、本実施例の圧電素子(0401)は、40mm×3mm×2mmである。また、アクリルブロック(0402)は、10mm×3mm×2mmである。   In addition, the piezoelectric element (0401) of a present Example is 40 mm x 3 mm x 2 mm. The acrylic block (0402) is 10 mm × 3 mm × 2 mm.

図5は、図3(a)におけるB−B´の断面図を示す。図1においては、紙面の右側面から見た断面図である。圧電素子からなる振動発生部(0501)と、当該振動発生部と被験体(0505)との間に配設されたアクリルブロックからなる振動伝達チップ(0502)とを備える。各アクリルブロック(0502)はフォーカス領域(0506)へ指向配置されている。また、圧電素子(0501)は、2枚のアクリル平板(0503)(図4の0403)に挟まれるように配置されている。また、当該アクリル平板(0503)と別の圧電素子を挟むアクリル平板との間には、厚さ5mmの略扇状のアクリル平板(0504)が配置されている。その他の構成は図3、4と同一であるため説明は省略する。   FIG. 5 is a sectional view taken along line BB ′ in FIG. In FIG. 1, it is sectional drawing seen from the right side of the paper surface. A vibration generation unit (0501) made of a piezoelectric element and a vibration transmission chip (0502) made of an acrylic block disposed between the vibration generation unit and the subject (0505) are provided. Each acrylic block (0502) is oriented to the focus area (0506). The piezoelectric element (0501) is disposed so as to be sandwiched between two acrylic flat plates (0503) (0403 in FIG. 4). Also, a substantially fan-shaped acrylic flat plate (0504) having a thickness of 5 mm is disposed between the acrylic flat plate (0503) and an acrylic flat plate sandwiching another piezoelectric element. Other configurations are the same as those shown in FIGS.

図7に超高速撮影法(SE−EPI)を利用した弾性波撮影用パルスシーケンスの一例を示す。図中「TR」(Repetition Time)とはMR信号収集の繰り返し時間を示す、「TE」(Echo Time)とは90°RF(Rario Frequency)パルス印加からMR信号のエコーが現れるまでの時間を示す。また、「Delay Time」とは、加振開始時刻から90°RFパルス印加までの遅延時間である。また、「Gx、Gy、Gz」は、3次元直行空間(x、y、z)からRFパルスとの組合せによる撮影断面の選択や、断面内の位置情報をMR信号の周波数や位相に付加するための傾斜磁場を示す。また、「MSG」(Motion Sensitizing Gradient)は、振動増感傾斜磁場のことであり、弾性体内に発生させた微弱な弾性波におけるMSGと同じ周波数と向きの変位情報を、MR信号の位相に付加するための傾斜磁場を示す。また、「Oscillation」は、本発明に係る集束型加振装置が発生し、被験体に与える振動を示す。
なお、振動をフォーカス領域に収束させた結果を見て、振動を発生させる振動発生部を選択し、あるいは振動発生部により信号発生部の信号を変化させ、再度振動をフォーカス領域に収束させることでよりよい効果を得ることもできる。
FIG. 7 shows an example of a pulse sequence for elastic wave imaging using the ultra high speed imaging method (SE-EPI). In the figure, “TR” (Repetition Time) indicates the repetition time of MR signal acquisition, and “TE” (Echo Time) indicates the time from application of a 90 ° RF (Rario Frequency) pulse until the echo of the MR signal appears. . “Delay Time” is a delay time from the vibration start time to the application of the 90 ° RF pulse. In addition, “Gx, Gy, Gz” is used to select an imaging section from a three-dimensional orthogonal space (x, y, z) in combination with an RF pulse, and to add position information in the section to the frequency and phase of the MR signal. The gradient magnetic field for is shown. “MSG” (Motion Sensitizing Gradient) is a vibration-sensitized gradient magnetic field, and the displacement information of the same frequency and direction as MSG in the weak elastic wave generated in the elastic body is added to the phase of the MR signal. The gradient magnetic field to do is shown. “Oscillation” indicates vibration generated by the focusing type vibration device according to the present invention and applied to the subject.
By looking at the result of converging the vibration to the focus region, selecting the vibration generating unit that generates the vibration, or changing the signal of the signal generating unit by the vibration generating unit and converging the vibration to the focus region again. A better effect can also be obtained.

0101 振動発生部
0102 振動伝達チップ
0103 被験体
0104 フォーカス領域
0105 信号発生部
0106 アンプ
0107 ファンクションジェネレータ
0108 寝台
0109 ガントリ
0110 画像取得領域
0111 測定対象領域
0101 Vibration generator 0102 Vibration transmission chip 0103 Subject 0104 Focus area 0105 Signal generator 0106 Amplifier 0107 Function generator 0108 Sleeper 0109 Gantry 0110 Image acquisition area 0111 Measurement object area

Claims (11)

被験体の粘弾性を識別できる画像をNMRにより取得するために、MR撮像装置またはMRI顕微鏡装置に利用される集束型加振装置であって、
被験体に対して与える振動を発生するための複数の振動発生部と、
振動発生のための信号を振動発生部に与える信号発生部と、
前記振動発生部と被験体との間に配設され、発生した振動が弾性波として被験体内部を伝搬しフォーカス領域で集束するようにフォーカス領域へ指向配置される振動伝達チップと、
を有する集束型加振装置。
In order to obtain an image capable of identifying the viscoelasticity of a subject by NMR, it is a focusing type vibration apparatus used in an MR imaging apparatus or an MRI microscope apparatus,
A plurality of vibration generators for generating vibrations applied to the subject;
A signal generation unit that gives a signal for vibration generation to the vibration generation unit;
A vibration transmitting chip disposed between the vibration generating unit and the subject and oriented to the focus region so that the generated vibration propagates through the subject as an elastic wave and converges in the focus region;
A converging-type excitation device having
前記振動発生部は圧電素子である請求項1に記載の集束型加振装置。   The focusing vibration exciter according to claim 1, wherein the vibration generating unit is a piezoelectric element. 一の振動発生部に対して、一の振動伝達チップを備えている請求項1又は2に記載の集束型加振装置。   The focusing-type vibration apparatus according to claim 1, wherein one vibration transmission chip is provided for one vibration generation unit. 前記振動伝達チップはアクリルブロックである請求項1から3のいずれか一に記載の集束型加振装置。   The focusing vibration exciter according to any one of claims 1 to 3, wherein the vibration transmitting chip is an acrylic block. 前記振動伝達チップの被験体と直接的、又は間接的に接する面が凹型曲面形状である請求項1から4のいずれか一に記載の集束型加振装置。   5. The converging-type vibration device according to claim 1, wherein a surface of the vibration transmission chip that directly or indirectly contacts the subject has a concave curved surface shape. 信号発生部は振動発生部が100ヘルツ以上の周波数で振動するための信号を与える請求項1から5のいずれか一に記載の集束型加振装置。   6. The converging-type excitation device according to claim 1, wherein the signal generating unit provides a signal for the vibration generating unit to vibrate at a frequency of 100 hertz or higher. 3個以上の振動伝達チップを備える請求項1から6のいずれか一に記載の集束型加振装置。   The focusing-type excitation apparatus as described in any one of Claim 1 to 6 provided with three or more vibration transmission chips. 振動伝達チップは、観察のために収容されている被験体を配置する台上の側面付近から振動を与えるように配置されている請求項1から7のいずれか一に記載の集束型加速装置。   The focusing type acceleration device according to any one of claims 1 to 7, wherein the vibration transmission chip is arranged so as to apply vibration from a vicinity of a side surface on a table on which a subject accommodated for observation is arranged. 振動を発生させるために複数の振動子に信号を与える信号発生工程と、
複数の振動子により被験体に与える振動を発生させて、振動が弾性波として被験体内部を伝搬し、フォーカス領域で集束させる振動集束工程と、
集束させた弾性波の横波を検出し、MR撮像装置またはMRI顕微鏡装置を用いてNMR画像を取得するNMR画像取得工程と、
を有する被験体測定領域のNMR画像取得方法。
A signal generating step of giving signals to a plurality of vibrators to generate vibrations;
A vibration focusing step that generates vibrations to be given to the subject by a plurality of vibrators, and the vibrations propagate inside the subject as elastic waves and are focused in the focus region;
An NMR image acquisition step of detecting a transverse wave of the focused elastic wave and acquiring an NMR image using an MR imaging device or an MRI microscope device;
The NMR image acquisition method of the subject measurement area | region which has this.
請求項1から8のいずれか一に記載の集束型加振装置を備えたMR撮像装置。   An MR imaging apparatus comprising the converging-type excitation device according to claim 1. 請求項1から8のいずれか一に記載の集束型加振装置を備えたMRI顕微鏡装置。   The MRI microscope apparatus provided with the focusing type vibration apparatus as described in any one of Claim 1 to 8.
JP2009080401A 2009-03-27 2009-03-27 Focused vibration exciter Expired - Fee Related JP5435455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080401A JP5435455B2 (en) 2009-03-27 2009-03-27 Focused vibration exciter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080401A JP5435455B2 (en) 2009-03-27 2009-03-27 Focused vibration exciter

Publications (2)

Publication Number Publication Date
JP2010227417A true JP2010227417A (en) 2010-10-14
JP5435455B2 JP5435455B2 (en) 2014-03-05

Family

ID=43043896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080401A Expired - Fee Related JP5435455B2 (en) 2009-03-27 2009-03-27 Focused vibration exciter

Country Status (1)

Country Link
JP (1) JP5435455B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002159A1 (en) * 2011-06-28 2013-01-03 株式会社日立製作所 Magnetic resonance measuring equipment
JP2014012139A (en) * 2012-07-04 2014-01-23 Siemens Aktiengesellschaft Elastography method, and magnetic resonance apparatus
KR101408656B1 (en) 2013-04-08 2014-06-17 건국대학교 산학협력단 Mr-compatible appratus and method for somatosensory stimulation
JP2015519168A (en) * 2012-06-12 2015-07-09 コーニンクレッカ フィリップス エヌ ヴェ Vibration applicator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155000A (en) * 1985-12-27 1987-07-09 Hitachi Ltd Ultrasonic wave probe
JPH10248854A (en) * 1997-03-11 1998-09-22 Olympus Optical Co Ltd Ultrasonic treatment device
US6246895B1 (en) * 1998-12-18 2001-06-12 Sunnybrook Health Science Centre Imaging of ultrasonic fields with MRI
JP2002505596A (en) * 1997-05-23 2002-02-19 トランサージカル,インコーポレイテッド MRI guided therapy device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155000A (en) * 1985-12-27 1987-07-09 Hitachi Ltd Ultrasonic wave probe
JPH10248854A (en) * 1997-03-11 1998-09-22 Olympus Optical Co Ltd Ultrasonic treatment device
JP2002505596A (en) * 1997-05-23 2002-02-19 トランサージカル,インコーポレイテッド MRI guided therapy device and method
US6246895B1 (en) * 1998-12-18 2001-06-12 Sunnybrook Health Science Centre Imaging of ultrasonic fields with MRI

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013041198; N. McDannold et al: 'Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI)' Proc. Intl. Soc. Mag. Reson. Med. 15 , 200705, #967 *
JPN6013041199; T. J. Royston et al: 'Modulated Radiation Force of US as Shear Wave Source in Microscopic MRE' Proc. Intl. Soc. Mag. Reson. Med. 14 , 200605, #1283 *
JPN6013055991; R. Muthupillai et al: 'Magnetic resonance elastography by direct visualization of propagating acoustic strain waves' Science vol.269, no.5232, 19950929, pp.1854-1857 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002159A1 (en) * 2011-06-28 2013-01-03 株式会社日立製作所 Magnetic resonance measuring equipment
JPWO2013002159A1 (en) * 2011-06-28 2015-02-23 株式会社日立製作所 Magnetic resonance measuring device
DE112012002705B4 (en) * 2011-06-28 2017-03-23 Hitachi, Ltd. Magnetic resonance measuring equipment
US9632151B2 (en) 2011-06-28 2017-04-25 Hitachi, Ltd. Magnetic resonance measuring equipment
JP2015519168A (en) * 2012-06-12 2015-07-09 コーニンクレッカ フィリップス エヌ ヴェ Vibration applicator
JP2014012139A (en) * 2012-07-04 2014-01-23 Siemens Aktiengesellschaft Elastography method, and magnetic resonance apparatus
US9480414B2 (en) 2012-07-04 2016-11-01 Siemens Aktiengesellschaft Elastography method, and magnetic resonance system for implementing an elastography method
KR101408656B1 (en) 2013-04-08 2014-06-17 건국대학교 산학협력단 Mr-compatible appratus and method for somatosensory stimulation

Also Published As

Publication number Publication date
JP5435455B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP7228214B2 (en) Systems and methods for elastography and viscoelastography imaging
Chen et al. Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity
US6984209B2 (en) Harmonic motion imaging
JP4885129B2 (en) Pressure-driven driver for magnetic resonance elastography representation on federally sponsored research
US10835202B2 (en) System and method for analyzing tissue using shear waves
Aglyamov et al. Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification
KR101379648B1 (en) Ultrasound imaging probe for imaging a temporary change in an environment
Kim et al. Phantom evaluation of stacked-type dual-frequency 1–3 composite transducers: A feasibility study on intracavitary acoustic angiography
JP2018531138A6 (en) Elasticity detection method and apparatus
JP2018531138A (en) Elasticity detection method and apparatus
JP6125613B2 (en) Apparatus for measuring ultrasonic or biomechanical parameters of viscoelastic media
US11439367B2 (en) Hybrid elastography Method, probe and device for hybrid elastography
JP5773171B2 (en) MRE vibration apparatus, vibration system, and vibration method
Liu et al. Viscoelastic property measurement in thin tissue constructs using ultrasound
JP5435455B2 (en) Focused vibration exciter
Clement et al. The role of internal reflection in transskull phase distortion
Burgess et al. Fast qualitative two-dimensional mapping of ultrasound fields with acoustic cavitation-enhanced ultrasound imaging
Chen et al. Measurement of dynamic and static radiation force on a sphere
JPH0246214B2 (en)
JP4076007B2 (en) Medical ultrasonic diagnostic equipment
Certon et al. Low frequency cMUT technology: Application to measurement of brain movement and assessment of bone quality
JP2004283372A (en) Magnetic resonance elastographic imaging apparatus and probe used for this apparatus
Asfandiyarov et al. Doppler Ultrasonic Technique for Measuring the Skeletal Muscle Elasticity
Heikkilä et al. Simulations of lesion detection using a combined phased array LHMI-technique
Madelin et al. NMR characterization of mechanical waves

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R150 Certificate of patent or registration of utility model

Ref document number: 5435455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees