JPS62154651A - Integrated circuit substrate - Google Patents

Integrated circuit substrate

Info

Publication number
JPS62154651A
JPS62154651A JP29581485A JP29581485A JPS62154651A JP S62154651 A JPS62154651 A JP S62154651A JP 29581485 A JP29581485 A JP 29581485A JP 29581485 A JP29581485 A JP 29581485A JP S62154651 A JPS62154651 A JP S62154651A
Authority
JP
Japan
Prior art keywords
substrate
holes
integrated circuit
plate
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29581485A
Other languages
Japanese (ja)
Inventor
Tamotsu Hattori
服部 有
Nobue Ito
伊藤 信衛
Kazuhiro Inokuchi
和宏 井ノ口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP29581485A priority Critical patent/JPS62154651A/en
Publication of JPS62154651A publication Critical patent/JPS62154651A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/481Insulating layers on insulating parts, with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To obtain an integrated circuit substrate which has excellent electric insulation and thermal conductivity by forming many through holes in the platelike substrate made of metal or ceramics, burying the through holes, and forming a diamond layer for covering the surface of the substrate. CONSTITUTION:Many through holes 1a which pass a platelike substrate 1 made of silicon carbide are formed in the substrate 1, the substrate 1 is covered entirely with a diamond layer 2, and the layer 2 is buried in the holes 1a. To form the substrate 1, a silica film 3 is formed on an SiC plate 1', the plate 1' is coated with a resist 4, the pattern of the holes 1a is exposed and developed. The film 3 exposed in punched holes 4a is then etched with hydrogen fluoride solution to separate and remove the resist 4. The holes 1a are formed in the plate 1' by alkali etching or dry etching in this state, and the film 3 is again removed with the hydrogen fluoride solution. To form the layer 2 on the substrate 1 manufactured in this manner, a diamond is precipitated by a microwave plasma CVD device.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は集積回路基板に関し、特にその構造に関する。[Detailed description of the invention] [Industrial application field 1 TECHNICAL FIELD This invention relates to integrated circuit boards, and more particularly to their structures.

[従来の技術] 集積回路基板としては、従来、電気絶縁性に優れ、かつ
焼成や研磨か容易であるアルミナ(△4Q203)セラ
ミックスが多用されている。
[Prior Art] Conventionally, alumina (Δ4Q203) ceramics, which have excellent electrical insulation properties and are easily fired and polished, have been widely used for integrated circuit boards.

[発明が解決しようとする問題点1 ところで近年、集積回路はその集積疫か飛躍的に向上し
ており、例えばウェハ規模の1.−3Iてt、1その発
熱量は1Kw程にbなる。
[Problem to be Solved by the Invention 1]In recent years, the integration rate of integrated circuits has improved dramatically.For example, 1. -3It, 1The calorific value is about 1Kw.

ここにおいて、上記従来のアルミナ基板ではその熱伝導
性が比較的悪いため、現状以上の回路集積度の向」二は
困難である。
Here, since the conventional alumina substrate described above has relatively poor thermal conductivity, it is difficult to increase the degree of circuit integration beyond the current level.

本発明はかかる問題点に鑑み、電気絶縁性および熱伝導
性共に優れる集積回路基板を提供することを目的とする
SUMMARY OF THE INVENTION In view of these problems, an object of the present invention is to provide an integrated circuit board having excellent electrical insulation and thermal conductivity.

[問題点を解決するための手段] 本発明の構成を第1図、第2図で説明すると、金属ない
しセラミックスよりなる板状基板1には多数の貫通孔1
aが設けてあり、上記基体1にはダイヤモンド層2が形
成しである。ダイヤモンド層2は上記各貫通孔1aを埋
めるとともに基体1表面を覆っている。
[Means for Solving the Problems] The configuration of the present invention will be explained with reference to FIGS. 1 and 2. A plate-shaped substrate 1 made of metal or ceramics has a large number of through holes 1.
A is provided, and a diamond layer 2 is formed on the base 1. The diamond layer 2 fills each of the through holes 1a and covers the surface of the base 1.

[作用、効果] 上記構造の集積回路基板は、熱伝導率が従来のアルミナ
基板の約50倍にも達し、しかも電気絶縁性も充分であ
る。
[Operations and Effects] The integrated circuit board having the above structure has a thermal conductivity approximately 50 times that of a conventional alumina board, and also has sufficient electrical insulation.

すなわち、板状基体に多数の貫通孔を設けてこれらをダ
イヤモンド層で埋めたから、集積回路を形成する一方の
面より他方の面へ大量の熱伝達が可能となったのである
That is, by providing a large number of through holes in the plate-shaped substrate and filling them with a diamond layer, a large amount of heat could be transferred from one surface of the integrated circuit to the other surface.

かかる回路基板を使用することにより、回路集積度を更
に飛躍的に向上せしめることができる。
By using such a circuit board, the degree of circuit integration can be further dramatically improved.

[実施例] 第1図には本発明になる回路基板の断面図を示し、第2
図にはその平面図を示す。図中、1は炭化ケイ素(Si
C)よりなる板状基体であり、該基体1には板面を貫通
する多数の貫通孔1aが設けである。図は理解を容易に
するために各部の寸法比を実際と異ならしめてあり、基
体1は約10mm角、貫通孔1aは直径約10μでおる
。開口率は基体1の機械的強度を損なわない程度に大き
くする。
[Example] FIG. 1 shows a cross-sectional view of a circuit board according to the present invention, and FIG.
The figure shows the plan view. In the figure, 1 is silicon carbide (Si
C), and the substrate 1 is provided with a large number of through holes 1a that penetrate through the plate surface. In the figure, the dimensional ratio of each part is made different from the actual size to facilitate understanding, and the base body 1 is approximately 10 mm square, and the through hole 1a is approximately 10 μm in diameter. The aperture ratio is made large enough not to impair the mechanical strength of the base 1.

そして、上記基体1は全体をダイヤモンド層2で覆って
おり、ダイヤモンド層2は各貫通孔1a内を埋めている
。ダイヤモンド層2の厚さは約10μである。
The base body 1 is entirely covered with a diamond layer 2, and the diamond layer 2 fills each through hole 1a. The thickness of the diamond layer 2 is approximately 10μ.

かかる回路基板は以下の手順で製作する。第3図には基
体1の製作工程を示す。図において、SiC板1′には
スパッタ等によりシリカ(S102)膜3を形成する(
第3図(1))。続いて上記5in2膜3上にレジスト
4を塗布し、上記貫通孔1aのパターンを露光し現象す
る(第3図(2))。これにより、レジスト4には貫通
孔1aを形成すべき位置に扱き穴4aが形成される(第
3図(3))。続いて、フッ化水素系溶液で上記抜き穴
4a内に露出したSiO2膜3をエツチングしく第3図
(4))、その後レジスト4をはく離除去する(第3図
(5))。この状態で、水酸化ナトリウム(NaOH>
溶液等を使用したアルカリエツチング、あるいはドライ
エツチングによりSiC板1−に貫通孔1aを形成しく
第3図(6))、再びフッ化水素系溶液で5i02膜3
を除去して基体1とする(第3図(7))。
Such a circuit board is manufactured by the following procedure. FIG. 3 shows the manufacturing process of the base body 1. In the figure, a silica (S102) film 3 is formed on a SiC plate 1' by sputtering or the like (
Figure 3 (1)). Subsequently, a resist 4 is applied on the 5in2 film 3, and the pattern of the through holes 1a is exposed to light (FIG. 3(2)). As a result, a handling hole 4a is formed in the resist 4 at the position where the through hole 1a should be formed (FIG. 3(3)). Subsequently, the SiO2 film 3 exposed in the hole 4a is etched using a hydrogen fluoride solution (FIG. 3 (4)), and then the resist 4 is peeled off (FIG. 3 (5)). In this state, sodium hydroxide (NaOH>
The through-holes 1a are formed in the SiC plate 1- by alkaline etching using a solution or dry etching (Fig. 3 (6)), and the 5i02 film 3 is again etched with a hydrogen fluoride solution.
is removed to obtain a base 1 (FIG. 3 (7)).

このようにして製作した基体1にダイヤモンド層2を形
成するには、例えばマイクロ波プラズマCVD装置によ
る。装置構成を第4図に示す。図において、石英反応管
51内にはホルダ52が設けてあり、該ホルダ52上に
上記基体1が支持せしめである。反応管51内は図略の
真空排気装置により約50Torrの真空に保たれてい
る。上記基体1付近にはマイクロ波電源56に接続され
た導波管53により2450MHzのマイクロ波が供給
されている。なお、図中、54.55はそれぞれ整合器
およびアイソレータである。
To form the diamond layer 2 on the substrate 1 manufactured in this manner, for example, a microwave plasma CVD apparatus is used. The device configuration is shown in FIG. 4. In the figure, a holder 52 is provided inside a quartz reaction tube 51, and the base 1 is supported on the holder 52. The inside of the reaction tube 51 is maintained at a vacuum of about 50 Torr by an unillustrated vacuum evacuation device. A microwave of 2450 MHz is supplied to the vicinity of the base 1 by a waveguide 53 connected to a microwave power source 56. In addition, in the figure, 54 and 55 are a matching box and an isolator, respectively.

この状態で上記反応管51内にガス供給管57を介して
原料カスを供給する。原料ガスはメタンと水素の混合ガ
スであり、本実施例ではメタン/水索=0.8 (体積
%)とした。かがる原料ガスは基体1付近でマイクロ波
電力を受けてプラズマBとなり、基体1上にダイヤモン
ドが析出する。
In this state, raw material waste is supplied into the reaction tube 51 via the gas supply pipe 57. The raw material gas is a mixed gas of methane and hydrogen, and in this example, methane/water line=0.8 (volume %). The raw material gas for darning receives microwave power near the base 1 and becomes plasma B, and diamond is deposited on the base 1.

発明者らの実験では、マイクロ波電力500W、メタン
流fN0.8cc  /min 、水素流ff199.
2cc  /minの条件で、ダイヤンド層2の成長速
度は0.6μ/hであった。
In the experiments conducted by the inventors, microwave power was 500 W, methane flow was fN0.8 cc/min, and hydrogen flow was f199.
Under the condition of 2 cc/min, the growth rate of the diamond layer 2 was 0.6 μ/h.

上記構造の集積回路基板は、レーザフラッシュ法による
測定で熱伝導率が約1200w/mkと大きな値を示し
、これは従来のアルミナ基板の約50倍であり、銅と比
較しても約3倍である。また、電気絶縁性についても比
抵抗が1o13 Ω・cmと充分大きな値を示す。
The integrated circuit board with the above structure exhibits a large thermal conductivity of approximately 1200 W/mK when measured using the laser flash method, which is approximately 50 times that of conventional alumina boards and approximately three times that of copper. It is. Furthermore, regarding electrical insulation, the specific resistance shows a sufficiently large value of 1013 Ω·cm.

しかして、本発明の回路基板を使用することにより、回
路集積度を更に飛躍的に向上せしめることか可能でおる
Therefore, by using the circuit board of the present invention, it is possible to further dramatically improve the degree of circuit integration.

本発明の回路基板においては、その表面をダイヤモンド
層2て覆うとともに上下面を4通する多数の通孔1aを
設りて該通孔1a内をダイヤモンド層で満たしたから、
集積回路を形成する基板上面より下面へ向けて大量の熱
を効率的に伝熱せしめることができるのでおる。
In the circuit board of the present invention, its surface is covered with a diamond layer 2, and a large number of through holes 1a are provided in the upper and lower surfaces, and the insides of the through holes 1a are filled with the diamond layer.
A large amount of heat can be efficiently transferred from the upper surface to the lower surface of the substrate forming the integrated circuit.

また、発明者らの実験によると、基体1へのダイヤモン
ド析出は、貫通孔1a開口のエツジ部にダイヤモンドの
核か効果的に生じることにより促進されることか確認さ
れた。
Further, according to experiments conducted by the inventors, it was confirmed that diamond precipitation on the substrate 1 is promoted by the effective formation of diamond nuclei at the edge portion of the opening of the through hole 1a.

基体1へのダイヤモンド層2の形成は、高周波プラズマ
CVD装置、必るいは熱フィラメントC\/D装置によ
っても行ない得る。これをそれぞれ第5図、第6図に示
す。
The formation of the diamond layer 2 on the substrate 1 can be carried out by means of a high frequency plasma CVD apparatus, or alternatively also by a hot filament C\/D apparatus. This is shown in FIGS. 5 and 6, respectively.

第5図に示す高周波プラズマCVD装置において、58
は水冷されたワークコイルであり、該コイル58には図
略の高周波電源より例えば13゜56M1iZの高周波
電力が供給される。この状態で石英反応管51内を約3
0〜100Torrの真空に保ら、カス供給管57より
メタン/水素−1(体積%)の混合カスを供給する。混
合カスは高周波電力を受けてプラズマBとなり、ダイヤ
モンドか基体1上に析出する。
In the high frequency plasma CVD apparatus shown in FIG.
is a water-cooled work coil, and a high frequency power of, for example, 13°56M1iZ is supplied to the coil 58 from a high frequency power source (not shown). In this state, the inside of the quartz reaction tube 51 is
A vacuum of 0 to 100 Torr is maintained, and a mixed sludge of methane/hydrogen-1 (volume %) is supplied from the sludge supply pipe 57. The mixed scum becomes plasma B by receiving high-frequency power, and is deposited on the diamond substrate 1.

第6図に示す“熱フイラメントCVD装置において、6
英反応管51内にホルダ52で支持された基体1の近傍
にはQ、3mm 径のタングスデンフィラメント59が
位置せしめてあり、識フィラメン1〜59は図略の電源
より通電されて2000’C以上に赤熱せしめられてい
る。基体1が位置号る石英反応管51の外周には環状炉
60が設けられ、吊体1同囲の雰囲気を700〜900
°Cに保っている。また、上記反応管51内は約30T
o r rの真空に保持されている。この状態でガス供
給管57よりメタン/水素=1(体積%〉の混合)jス
を供給すると、これは上記フィラメント59により分解
励起され、基体1上にダイへアモンドが析出する。
In the "thermal filament CVD apparatus" shown in FIG.
A tungsten filament 59 with a diameter of 3 mm is placed near the substrate 1 supported by a holder 52 in the reaction tube 51, and the filaments 1 to 59 are energized from an unillustrated power source to a temperature of 2000°C. It's even more red-hot. An annular furnace 60 is provided around the outer periphery of the quartz reaction tube 51 in which the base 1 is located, and the atmosphere around the hanging body 1 is heated to 700 to 900 ℃.
It is kept at °C. Moreover, the inside of the reaction tube 51 is about 30T.
It is kept in a vacuum of o r r. In this state, when methane/hydrogen=1 (volume % mixture) gas is supplied from the gas supply pipe 57, it is decomposed and excited by the filament 59, and almonds are deposited on the die on the substrate 1.

なお、上記基体1としては、上記SiC板以外に、窒化
アルミニウム、酸化ベリリウム等のセラミックス、ある
いは銅、アルミ、タングステン等の金属が使用できる。
In addition to the SiC plate, ceramics such as aluminum nitride and beryllium oxide, or metals such as copper, aluminum, and tungsten can be used as the substrate 1.

これらセラミックスおよび金属はできる限り熱伝導率が
大きく、かつ熱膨張率がダイヤモンドと近いものが望ま
しい。そして、上記ダイヤモンド形成用の各装置は、基
体1として使用する材料の耐熱性に応じて選択される。
It is desirable that these ceramics and metals have as high a thermal conductivity as possible and a coefficient of thermal expansion close to that of diamond. Each of the above diamond forming devices is selected depending on the heat resistance of the material used as the substrate 1.

また、貴通孔1aの形状は円形に限らず、四角おるいは
三角等でも良い。
Further, the shape of the through hole 1a is not limited to a circular shape, but may be square, triangular, or the like.

ざらに、金属基体への1通孔の形成はレーザ7JD工に
よっても良い。
In general, the formation of one hole in the metal substrate may be performed by laser 7JD machining.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は集積回路基板の断面図、第2図はその平面図、
第3図は基体の製造工稈を示す断面図、第4図ないし第
6図はそれぞれダイヤモンド層形成用の各装置の概略構
成図でおる。 1・・・・・・板状基体    1′・・・・・・炭化
ケイ素板2・・・・・・ダイヤモンド層 3・・・・・
・シリカ膜4・・・・・・レジスト ’;N;1@ “3暮 ニ1,5  図 ・6二
Figure 1 is a cross-sectional view of the integrated circuit board, Figure 2 is its plan view,
FIG. 3 is a cross-sectional view showing the process for manufacturing the substrate, and FIGS. 4 to 6 are schematic diagrams of each apparatus for forming a diamond layer. 1...Plate-shaped substrate 1'...Silicon carbide plate 2...Diamond layer 3...
・Silica film 4...Resist';N;1@"3 1, 5 Figure 62

Claims (6)

【特許請求の範囲】[Claims] (1)金属ないしセラミックスよりなる板状基体に多数
の貫通孔を設け、かつ該貫通孔を埋めるとともに基体表
面を覆うダイヤモンド層を形成したことを特徴とする集
積回路基板。
(1) An integrated circuit board characterized in that a plate-shaped base made of metal or ceramics is provided with a large number of through holes, and a diamond layer is formed to fill the through holes and cover the surface of the base.
(2)上記基体を銅、アルミ、およびタングステンのい
ずれかの金属板で構成した特許請求の範囲第1項記載の
集積回路基板。
(2) The integrated circuit board according to claim 1, wherein the base is made of a metal plate of copper, aluminum, or tungsten.
(3)上記基体を炭化ケイ素、窒化アルミニウム、およ
び酸化ベリリウムのいずれかのセラミックス板で構成し
た特許請求の範囲第1項記載の集積回路基板。
(3) The integrated circuit board according to claim 1, wherein the base is made of a ceramic plate of silicon carbide, aluminum nitride, or beryllium oxide.
(4)上記貫通孔の径を約10μとし、ダイヤモンド層
を約10μで形成してなる特許請求の範囲第1項記載の
集積回路基板。
(4) The integrated circuit board according to claim 1, wherein the through hole has a diameter of about 10 microns and the diamond layer has a diameter of about 10 microns.
(5)上記貫通孔を、炭化ケイ素板をエッチングして形
成した特許請求の範囲第1項記載の集積回路基板。
(5) The integrated circuit board according to claim 1, wherein the through hole is formed by etching a silicon carbide plate.
(6)上記ダイヤモンド層を、上記基板上にメタンおよ
び水素の混合ガスプラズマを析出せしめて形成した特許
請求の範囲第1項記載の集積回路基板。
(6) The integrated circuit board according to claim 1, wherein the diamond layer is formed on the substrate by depositing a mixed gas plasma of methane and hydrogen.
JP29581485A 1985-12-26 1985-12-26 Integrated circuit substrate Pending JPS62154651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29581485A JPS62154651A (en) 1985-12-26 1985-12-26 Integrated circuit substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29581485A JPS62154651A (en) 1985-12-26 1985-12-26 Integrated circuit substrate

Publications (1)

Publication Number Publication Date
JPS62154651A true JPS62154651A (en) 1987-07-09

Family

ID=17825508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29581485A Pending JPS62154651A (en) 1985-12-26 1985-12-26 Integrated circuit substrate

Country Status (1)

Country Link
JP (1) JPS62154651A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707741A1 (en) * 1994-05-05 1996-04-24 Siliconix Incorporated Surface mount and flip chip technology
US5757081A (en) * 1994-05-05 1998-05-26 Siliconix Incorporated Surface mount and flip chip technology for total integrated circuit isolation
US5767578A (en) * 1994-10-12 1998-06-16 Siliconix Incorporated Surface mount and flip chip technology with diamond film passivation for total integated circuit isolation
JP2006111500A (en) * 2004-10-15 2006-04-27 Sumitomo Electric Ind Ltd Diamond substrate and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707741A1 (en) * 1994-05-05 1996-04-24 Siliconix Incorporated Surface mount and flip chip technology
EP0707741A4 (en) * 1994-05-05 1997-07-02 Siliconix Inc Surface mount and flip chip technology
US5757081A (en) * 1994-05-05 1998-05-26 Siliconix Incorporated Surface mount and flip chip technology for total integrated circuit isolation
US5767578A (en) * 1994-10-12 1998-06-16 Siliconix Incorporated Surface mount and flip chip technology with diamond film passivation for total integated circuit isolation
JP2006111500A (en) * 2004-10-15 2006-04-27 Sumitomo Electric Ind Ltd Diamond substrate and its manufacturing method
JP4691952B2 (en) * 2004-10-15 2011-06-01 住友電気工業株式会社 Diamond substrate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TW472289B (en) Diamond coated parts in a plasma reactor
TWI300597B (en) Plasma nitriding method and device for insulating films
JP2532401Y2 (en) Bias ECR plasma CVD equipment
US6529362B2 (en) Monocrystalline ceramic electrostatic chuck
EP0289131B1 (en) Method of dry etching aluminum
JPH10139547A (en) Silicone carbide composite particularly useful for plasma reactor
JPH10236871A (en) Plasma resistant member
TW200525635A (en) Temperature controlled hot edge ring assembly for reducing plasma reactor etch rate drift
TW201533850A (en) Hermetic CVD-CAP with improved step coverage in high aspect ratio structures
JPH05500436A (en) Method and equipment for processing silicon plates
JPH1174064A (en) Wafer heating device
JPS62154651A (en) Integrated circuit substrate
JP5549834B2 (en) Thermal spray film and manufacturing method thereof
US3698947A (en) Process for forming monocrystalline and poly
KR20020061768A (en) A Method for Depositing Diamond Films Without Fracture by a Control of Substrate Temperatures Using Powders
JP3123449B2 (en) Multilayer wiring formation method
JPH1161448A (en) Dry etching
JPH0639709B2 (en) Plasma CVD equipment
JPH03261131A (en) Wafer heater for semiconductor manufacturing device
US5178727A (en) Ceramic membrane device and a method of producing the same
US5272009A (en) Laminate material and its use as heat-sink
JP3869160B2 (en) Multilayer ceramic heater and manufacturing method thereof
JPS59177919A (en) Selective growth of thin film
JPH0786379A (en) Semiconductor manufacturing suscepter
JPH09295882A (en) Ceramics