KR20020061768A - A Method for Depositing Diamond Films Without Fracture by a Control of Substrate Temperatures Using Powders - Google Patents
A Method for Depositing Diamond Films Without Fracture by a Control of Substrate Temperatures Using Powders Download PDFInfo
- Publication number
- KR20020061768A KR20020061768A KR1020010002721A KR20010002721A KR20020061768A KR 20020061768 A KR20020061768 A KR 20020061768A KR 1020010002721 A KR1020010002721 A KR 1020010002721A KR 20010002721 A KR20010002721 A KR 20010002721A KR 20020061768 A KR20020061768 A KR 20020061768A
- Authority
- KR
- South Korea
- Prior art keywords
- substrate
- diamond film
- powder
- powder layer
- substrate holder
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4585—Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
본 발명은 다이아몬드막의 제조방법 및 장치에 관한 것으로 보다 구체적으로는, 기상합성법에 의하여 다이아몬드의 막을 합성할 때 기판의 온도를 정확히 제어함으로써 합성 중에 기판온도의 상승을 막고, 기판 수평면상의 온도구배를 최소화함으로써 파괴가 없는 다이아몬드막의 제조방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for manufacturing a diamond film, and more particularly, to precisely control the temperature of a substrate when synthesizing a diamond film by vapor phase synthesis, thereby preventing an increase in substrate temperature during synthesis and minimizing a temperature gradient on a substrate horizontal plane. The present invention relates to a method and apparatus for producing a diamond film without breaking.
기상합성법에 의한 다이아몬드합성은 도 1에 나타낸 바와 같이, 다이아몬드막(1)은, 진공용기(2) 내에서 형성된 플라즈마(3)에 의해 탄화가스로부터 분해된 래디컬(radical)이 기판으로 이동하는 과정에 의해 기판(4) 위에 막의 형태로 증착된다. 사용되는 기판의 크기는, 직경이 수 - 20 cm, 두께가 0.05 - 1 cm 정도이며, 기판의 재질은 텅스텐, 몰리브데늄 또는 실리콘이 사용된다. 열 또는 플라즈마에 의해 가열되는 기판상면의 온도는 700 ℃∼1000 ℃로 유지되기 때문에 기판이 놓여지는 기판홀더(5)는 수냉되며 그 재질은 주로 열전도도가 양호한 구리로 제작된다.As shown in FIG. 1, the diamond film is formed by the vapor phase synthesis method. The diamond film 1 is a process in which radicals decomposed from the carbonized gas are moved to the substrate by the plasma 3 formed in the vacuum vessel 2. Is deposited on the substrate 4 in the form of a film. The size of the substrate used is several-20 cm in diameter and 0.05-1 cm in thickness, and the material of the substrate is tungsten, molybdenum or silicon. Since the temperature of the upper surface of the substrate heated by heat or plasma is maintained at 700 ° C. to 1000 ° C., the substrate holder 5 on which the substrate is placed is water cooled, and the material is mainly made of copper having good thermal conductivity.
기상합성법에 의한 다이아몬드합성에서 기판온도(증착온도)는, 막의 결정도 뿐만 아니라 막의 파괴를 야기할 수 있는 응력의 형성과도 밀접한 관계가 있는 매우 중요한 변수이기 때문에 정확하게 제어되어야 한다.In diamond synthesis by vapor phase synthesis, the substrate temperature (deposition temperature) must be precisely controlled because it is a very important parameter that is closely related to not only the crystallinity of the film but also the formation of stresses that can cause the film to break.
이러한 기판온도 제어에서 크게 두 가지의 문제점이 있다. 하나는 특정의 온도로의 온도조절이 어려운 것인데, 이는 기판의 가열이 독립적으로 이루어지는 것이 아니라 플라즈마 자체의 에너지로 유지되기 때문이다. 이 경우 기판온도는 투입전력(다이아몬드합성에 필요한 전력임) 또는 기판홀더를 흐르는 물의 유량을 조절하거나, 일정 두께의 원판을 끼워 넣는 등의 방법(기판온도가 낮을 경우)을 사용하여 조절된다. 그러나 이들 방법은, 각각, 합성조건(투입전력)의 변화를 초래할 수있으며, 기판온도 제어 효과가 작고, 정교하지 못하다.There are two main problems in such substrate temperature control. One is that it is difficult to control the temperature to a particular temperature, because the heating of the substrate is not done independently but is maintained by the energy of the plasma itself. In this case, the substrate temperature is controlled using input power (which is necessary for diamond synthesis) or the flow rate of water flowing through the substrate holder, or by inserting a disc of a certain thickness (when the substrate temperature is low). However, these methods, respectively, can lead to a change in the synthesis conditions (input power), and the substrate temperature control effect is small and inexact.
또 하나의 문제점은 합성 중 기판온도가 상승하거나 기판 수평면에서 온도구배가 형성되는 것인데, 이는 합성 중에 막을 파괴시키는 심각한 문제를 초래한다. 이의 원인은 합성 중 기판의 휨에 의하여 발생한다. 이 휨의 원인은 두 가지로 요약되는데, 하나는 기판 상하면의 온도차에 의한 열팽창계수의 차이에 의한 것이고, 다른 하나는 합성 중 막에 인가되는 응력 때문이다. 전자를 좀더 상세히 설명하자면, 기판은 기판상면에 있는 열 또는 플라즈마의 에너지에 의해 가열되고 이 열은 기판하면에 위치한 수냉되는 기판홀더로 빠져나가기 때문에, 기판온도는 상면에서 하면으로 갈수록 낮아진다(도 2a 및 도2b). 따라서, 기판상면의 열팽창 정도가 하면보다 크게되기 때문에 기판은 위로 볼록하게 휜게 되어 기판과 기판홀더 사이에 공간(8)이 형성된다(도 3a). 이러한 현상은 기판이 가열되기 시작하는 다이아몬드막의 합성초기, 즉 막이 형성되지 않은 단계에 일어날 수 있다.Another problem is that the substrate temperature rises during synthesis or a temperature gradient is formed in the substrate horizontal plane, which causes a serious problem of destroying the film during synthesis. The cause of this is caused by the warpage of the substrate during synthesis. The causes of this warpage are summarized in two ways, one due to the difference in coefficient of thermal expansion due to the temperature difference between the upper and lower surfaces of the substrate, and the other due to the stress applied to the film during synthesis. To describe the former in more detail, the substrate temperature is lowered from the upper surface to the lower surface because the substrate is heated by the energy of heat or plasma on the upper surface of the substrate and escapes to the water-cooled substrate holder located on the lower surface of the substrate (FIG. 2A). And Figure 2b). Therefore, since the degree of thermal expansion of the upper surface of the substrate becomes larger than the lower surface, the substrate is convexly convex upward, and a space 8 is formed between the substrate and the substrate holder (FIG. 3A). This phenomenon may occur at the beginning of the synthesis of the diamond film, that is, at the stage where the film is not formed, when the substrate starts to heat up.
이에 반해, 합성 중 막에 인가되는 응력에 의한 기판의 휨은 다이아몬드가 기판상에서 핵생성하고 성장하여 막이 형성된 이후단계에 일어난다. 다이아몬드막에서 응력은, 다이아몬드가 이종의 기판에서 합성되고 성장하면서 격자결함을 함유하며 집합조직을 형성하기 때문에 발생된다. 이 응력은 일반적으로 인장응력으로 알려져 있는데, 이러한 응력에 의하여 기판은 아래로 볼록하게 휜다(도 4b). 물론, 다이아몬드 막에 인가된 응력이 압축응력일 경우는 반대로 된다. 또한 만일 다이아몬드 막에 인가된 응력이 위치에 따라 불균일할 경우 기판의 휨은 불규칙할 것이다. 이와 같이, 기판이 휠 경우, 기판하면의 일부만이 평탄한 기판홀더와 접촉할것이고, 이에 따라 기판으로부터 기판홀더로의 열전달이 부분적으로 이루어져 기판온도는 상승되고, 또한 기판의 위치에 따라 온도구배가 생길 수 있다. 예를 들어, 기판이 위로 볼록하게 휠 경우, 기판의 중간부분만이 기판홀더와 접촉하게되어 기판의 가장자리의 온도가 기판의 가운데 부분보다 높게 유지될 것이며(도 3b), 이와 반대로 기판이 아래로 볼록하게 휠 경우는 기판의 가운데 부분만이 기판홀더와 접촉하게되어 기판의 가장자리부분의 온도가 기판 가운데에 비해 높을 수 있다.In contrast, warpage of the substrate due to the stress applied to the film during synthesis occurs after the diamond is nucleated and grown on the substrate to form a film. Stresses in diamond films occur because diamonds contain lattice defects and form textures as they are synthesized and grown on dissimilar substrates. This stress is generally known as tensile stress, which causes the substrate to convex downward (Figure 4b). Of course, the opposite is true when the stress applied to the diamond film is a compressive stress. Also, if the stress applied to the diamond film is nonuniform with position, the warpage of the substrate will be irregular. As such, when the substrate is bent, only a portion of the lower surface of the substrate will be in contact with the flat substrate holder, thereby partially transferring heat from the substrate to the substrate holder, thereby increasing the substrate temperature and generating a temperature gradient depending on the position of the substrate. Can be. For example, if the substrate is convex upward, only the middle portion of the substrate will come into contact with the substrate holder so that the temperature of the edge of the substrate will be kept higher than the center portion of the substrate (FIG. 3B), on the contrary In the case of convex wheels, only the center portion of the substrate is in contact with the substrate holder, so that the temperature of the edge portion of the substrate may be higher than that of the center of the substrate.
또한 상기한 바와 같은 두 경우 모두에 있어서는 기판온도도 상승될 것이다. 이러한 기판의 수평면상에서의 온도구배 및 기판온도의 상승은 합성 중 다이아몬드막에 인가되는 응력을 증가시켜 다이아몬드막을 파괴시키는 문제점이 있다.In both cases, the substrate temperature will also rise. The temperature gradient and the increase of the substrate temperature on the horizontal plane of the substrate have a problem of destroying the diamond film by increasing the stress applied to the diamond film during synthesis.
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명에서는 기상합성법에 의한 다이아몬드합성에서, 기판의 온도를 정확히 제어함으로써 합성 중에 기판온도의 상승을 막고, 기판 수평면상의 온도구배를 최소화함으로써 파괴가 없는 다이아몬드막의 제조방법 및 장치를 제공하고자 하는데 그 목적이 있다.The present invention has been made to solve the problems described above, in the present invention, in the diamond synthesis by the vapor phase synthesis method, by accurately controlling the temperature of the substrate to prevent the rise of the substrate temperature during synthesis, minimizing the temperature gradient on the substrate horizontal plane It is an object of the present invention to provide a method and apparatus for producing a diamond film without fracture.
도 1은 종래의 일반적인 기상합성에 의한 다이아몬드막의 합성방법을 설명하기 위하여 나타낸 것이다.1 is a diagram illustrating a conventional method for synthesizing a diamond film by general gas phase synthesis.
도 2a 및 도 2b는 도1에 나타낸 기판 높이에 따른 온도구배를 나타낸 것이다.2A and 2B show a temperature gradient according to the substrate height shown in FIG.
도 3a 및 도 3b는 기판의 온도구배에 의한 기판상면의 열팽창 정도에 따라 기판이 위로 볼록하게 휘는 것을 나타낸 것이다.3A and 3B show that the substrate is convexly curved upward according to the degree of thermal expansion of the upper surface of the substrate due to the temperature gradient of the substrate.
도 4a, 도 4b 및 도 4c는 기판상에서 일정 두께로 성장된 다이아몬드막에 의해 발생하는 인장응력에 의한 기판의 휨을 나타낸 것이다.4A, 4B and 4C show the warpage of the substrate due to the tensile stress generated by the diamond film grown to a certain thickness on the substrate.
도 5 는 본 발명의 일 실시예에 따라, 기판과 기판홀더 사이에 일정 두께의 분말층을 충진시킨 구조를 나타낸 것이다.5 shows a structure in which a powder layer having a predetermined thickness is filled between a substrate and a substrate holder according to an embodiment of the present invention.
도 6a, 도 6b 및 도 6c는 도 5와 같은 조건에서 다이아몬드막을 형성할 경우 기판의 위치에 따른 온도구배의 변화를 설명하기 위한 모식도이다.6A, 6B and 6C are schematic diagrams for explaining a change in temperature gradient according to the position of the substrate when the diamond film is formed under the same conditions as in FIG. 5.
이와 같은 목적을 달성하기 위하여 본 발명에 따르면, 기상합성법에의한 다이아몬드막의 제조방법에 있어서, 다이아몬드막이 증착되는 기판과 이 기판이 놓여지는 기판홀더 사이에 유동성이 있는 분말층을 형성하여 상기 분말층을 기판과 기판홀더 사이의 열전달 매체로 이용하는 것을 특징으로 하는 다이아몬드막의 제조방법이 제공된다.In order to achieve the above object, according to the present invention, in the method for producing a diamond film by the gas phase synthesis method, a powder layer having a fluidity is formed between the substrate on which the diamond film is deposited and the substrate holder on which the substrate is placed. Is used as a heat transfer medium between a substrate and a substrate holder, a method for producing a diamond film is provided.
또한 본 발명에 의하면, 다이아몬드막이 증착되는 기판, 상기 기판을 지지하는 기판홀더 및 이들을 수용하며 플라즈마 발생장치와 연결된 진공용기를 포함하는 기상합성법에 의한 다이아몬드막의 제조장치에 있어서, 상기 제조장치는, 상기 기판과 기판홀더와의 사이에 형성된 분말층을 더 포함하는 것을 특징으로 하는 다이아몬드막의 제조장치가 제공된다.Further, according to the present invention, in the apparatus for producing a diamond film by the vapor phase synthesis method comprising a substrate on which the diamond film is deposited, a substrate holder for supporting the substrate and a vacuum container containing them and connected to a plasma generating device, the manufacturing apparatus includes: There is provided a diamond film production apparatus further comprising a powder layer formed between the substrate and the substrate holder.
이하에서는 첨부된 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
본 발명의 구성을 도5에 나타내었다. 다이아몬드막(1)이 합성될 기판(4)과 기판홀더(5) 사이에 일정 두께의 분말층(9)을 충진시켰다. 분말이 유동하여 외부로 빠져나가는 것을 방지하기 위하여 기판(4)과 기판홀더(5)와의 접촉부의 외측에는 분말층(9)의 외부이탈을 방지하기 위하여, 예를 들면 링(10)과 같은 이탈방지부재를 형성하는 것이 좋다.The configuration of the present invention is shown in FIG. A powder layer 9 having a predetermined thickness was filled between the substrate 4 and the substrate holder 5 on which the diamond film 1 was to be synthesized. In order to prevent the powder layer 9 from coming off the outer side of the contact portion between the substrate 4 and the substrate holder 5 in order to prevent the powder from flowing out of the outside, for example, a separation such as a ring 10 It is preferable to form the prevention member.
이와 같은 본 발명의 구성에 따라 합성 중 700 ℃∼1000 ℃의 고온으로 유지되는 기판의 열은 분말층(9)을 통하여 수냉되는 기판홀더(5)로 전달된다.According to the configuration of the present invention, the heat of the substrate maintained at a high temperature of 700 ° C. to 1000 ° C. during the synthesis is transferred to the substrate holder 5 which is cooled by water through the powder layer 9.
이러한 구조에서 합성 중에 어떠한 이유에 의해 기판이 휘어져 변형될 경우, 이 변형에 따라 분말이 유동하여, 도6a 및 도6b에 나타낸 바와 같이, 기판의 전체면이 분말층(9)과 접촉할 수 있다. 따라서 휜 기판의 열이 휘기 전과 같이 균일하게 기판홀더(5)로 전달되어, 기판온도의 상승 또는 기판위치에 따른 온도구배가 발생하는 것을 최소화할 수 있다.In this structure, if the substrate is bent and deformed for some reason during synthesis, powder may flow in accordance with this deformation, so that the entire surface of the substrate may contact the powder layer 9 as shown in Figs. 6A and 6B. . Therefore, the heat of the substrate may be uniformly transferred to the substrate holder 5 as before bending, thereby minimizing the increase of the substrate temperature or the temperature gradient according to the substrate position.
또한, 본 발명에서 사용되는 분말층은 분말의 종류(열전도도 차이), 분말의모양, 크기 및 크기분포, 분말층의 높이를 변화시켜 적절하게 선택할 수 있으며 특히 직경이 1㎜이하인 것을 사용하는 것이 열전달의 제어측면에서 효율적이다. 분말의 재질로서는 금속재 또는 세라믹제 분말등을 사용할 수 있다.In addition, the powder layer used in the present invention can be appropriately selected by changing the type of powder (difference in thermal conductivity), the shape of the powder, the size and size distribution, and the height of the powder layer, and in particular, the one having a diameter of 1 mm or less is used. Efficient in terms of heat transfer control. As the material of the powder, a metal material or a ceramic powder can be used.
본 발명에 따라 다이아몬드막의 합성을 행할 경우, 기판에서 기판홀더로의 열전달은 분말층을 통하여 이루어지기 때문에, 사용하는 분말의 종류(열전도도 차이), 분말의 모양, 크기 및 크기분포, 분말 층의 높이를 변화를 통해 열전달을 제어할 수 있어 기판의 온도변화를 최소로 할 수 있다.In the case of synthesizing the diamond film according to the present invention, since the heat transfer from the substrate to the substrate holder is made through the powder layer, the type of powder used (difference in thermal conductivity), the shape, size and size distribution of the powder, The heat transfer can be controlled by changing the height to minimize the temperature change of the substrate.
또한, 합성 중에 기판이 휠 경우, 이 휨에 따라 분말층의 유동에 의하여 기판과 기판홀더와의 접촉을 계속 유지하게 함으로써, 다이아몬드막의 합성 중에 기판온도 변화를 최소화할 수 있었다. 기판을 직경 4", 두께 10㎜의 것으로 사용할 경우 기판의 온도 상승을 10도 이하로 유지할 수 있었으며, 기판 위치에 따른 온도편차도 5도 이하로 줄일 수 있었다. 이 경우 직경 4인지, 두께 2㎜의 후막 다이아몬드웨이퍼를 파괴 없이 합성할 수 있었다.In addition, when the substrate was warped during the synthesis, by maintaining the contact between the substrate and the substrate holder by the flow of the powder layer in accordance with this bending, it was possible to minimize the substrate temperature change during the synthesis of the diamond film. When the substrate was used with a diameter of 4 "and a thickness of 10 mm, the temperature rise of the substrate could be maintained at 10 degrees or less, and the temperature deviation according to the position of the substrate could be reduced to 5 degrees or less. In this case, the diameter was 4 or 2 mm. Thick film diamond wafers could be synthesized without breaking.
이상에서는 본 발명을 특정의 바람직한 실시예를 예로 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and the general knowledge in the technical field to which the present invention pertains without departing from the spirit of the present invention. Various changes and modifications will be made by those who possess.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0002721A KR100375335B1 (en) | 2001-01-17 | 2001-01-17 | A Method for Depositing Diamond Films Without Fracture by a Control of Substrate Temperatures Using Powders |
JP2001293136A JP2002226289A (en) | 2001-01-17 | 2001-09-26 | Method for manufacturing diamond membrane, and device for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0002721A KR100375335B1 (en) | 2001-01-17 | 2001-01-17 | A Method for Depositing Diamond Films Without Fracture by a Control of Substrate Temperatures Using Powders |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020061768A true KR20020061768A (en) | 2002-07-25 |
KR100375335B1 KR100375335B1 (en) | 2003-03-06 |
Family
ID=19704765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0002721A KR100375335B1 (en) | 2001-01-17 | 2001-01-17 | A Method for Depositing Diamond Films Without Fracture by a Control of Substrate Temperatures Using Powders |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2002226289A (en) |
KR (1) | KR100375335B1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100893408B1 (en) * | 2007-08-22 | 2009-04-17 | 주식회사 테라세미콘 | Substrate Holder |
KR20110076152A (en) * | 2009-12-29 | 2011-07-06 | 재단법인 포항산업과학연구원 | Manufacturing method of copper films |
US8859058B2 (en) | 2010-12-23 | 2014-10-14 | Element Six Limited | Microwave plasma reactors and substrates for synthetic diamond manufacture |
US8955456B2 (en) | 2010-12-23 | 2015-02-17 | Element Six Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US9142389B2 (en) | 2010-12-23 | 2015-09-22 | Element Six Technologies Limited | Microwave power delivery system for plasma reactors |
US9410242B2 (en) | 2010-12-23 | 2016-08-09 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US9637838B2 (en) | 2010-12-23 | 2017-05-02 | Element Six Limited | Methods of manufacturing synthetic diamond material by microwave plasma enhanced chemical vapor deposition from a microwave generator and gas inlet(s) disposed opposite the growth surface area |
US10403477B2 (en) | 2010-12-23 | 2019-09-03 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US11371147B2 (en) | 2010-12-23 | 2022-06-28 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070224285A1 (en) | 2004-03-31 | 2007-09-27 | Calpis Co., Ltd | Agent for Preventing or Suppressing Hepatopathy and Functional Food for Preventing or Suppressing Hepatopathy |
CN109537048A (en) * | 2018-11-27 | 2019-03-29 | 西安碳星半导体科技有限公司 | CVD single-crystal diamond eliminates edge polycrystalline method |
-
2001
- 2001-01-17 KR KR10-2001-0002721A patent/KR100375335B1/en not_active IP Right Cessation
- 2001-09-26 JP JP2001293136A patent/JP2002226289A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100893408B1 (en) * | 2007-08-22 | 2009-04-17 | 주식회사 테라세미콘 | Substrate Holder |
KR20110076152A (en) * | 2009-12-29 | 2011-07-06 | 재단법인 포항산업과학연구원 | Manufacturing method of copper films |
US8859058B2 (en) | 2010-12-23 | 2014-10-14 | Element Six Limited | Microwave plasma reactors and substrates for synthetic diamond manufacture |
US8955456B2 (en) | 2010-12-23 | 2015-02-17 | Element Six Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US9142389B2 (en) | 2010-12-23 | 2015-09-22 | Element Six Technologies Limited | Microwave power delivery system for plasma reactors |
US9410242B2 (en) | 2010-12-23 | 2016-08-09 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US9637838B2 (en) | 2010-12-23 | 2017-05-02 | Element Six Limited | Methods of manufacturing synthetic diamond material by microwave plasma enhanced chemical vapor deposition from a microwave generator and gas inlet(s) disposed opposite the growth surface area |
US9738970B2 (en) | 2010-12-23 | 2017-08-22 | Element Six Limited | Microwave plasma reactors and substrates for synthetic diamond manufacture |
US10403477B2 (en) | 2010-12-23 | 2019-09-03 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US11371147B2 (en) | 2010-12-23 | 2022-06-28 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
US11488805B2 (en) | 2010-12-23 | 2022-11-01 | Element Six Technologies Limited | Microwave plasma reactor for manufacturing synthetic diamond material |
Also Published As
Publication number | Publication date |
---|---|
KR100375335B1 (en) | 2003-03-06 |
JP2002226289A (en) | 2002-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2532401Y2 (en) | Bias ECR plasma CVD equipment | |
KR100852098B1 (en) | Method and apparatus for preventing edge deposition | |
KR100375335B1 (en) | A Method for Depositing Diamond Films Without Fracture by a Control of Substrate Temperatures Using Powders | |
WO1996011797A1 (en) | Wafer support fixtures for rapid thermal processing | |
JP2008159740A (en) | METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL, AND APPARATUS FOR MANUFACTURING SiC SINGLE CRYSTAL | |
JP2008085283A (en) | Heating apparatus with enhanced thermal uniformity, and method for making thereof | |
JP2007331955A (en) | Method for producing diamond | |
JP2009021534A (en) | Vapor-phase growth apparatus and vapor-phase growth method | |
JP3004846B2 (en) | Susceptor for vapor phase growth equipment | |
US20100043709A1 (en) | Chemical vapor deposition apparatus for equalizing heating temperature | |
JP2009071210A (en) | Susceptor and epitaxial growth system | |
EP0581438B1 (en) | Etching a diamond body with a molten or partially molten metal | |
JP2003086516A (en) | Susceptor, cvd unit, film-forming method and semiconductor device | |
EP0304337B1 (en) | Hybrid substrate | |
JPH10251062A (en) | Production of silicon carbide formed body | |
JP2009182009A (en) | Apparatus and method for vapor phase epitaxy | |
JP2001003172A (en) | Semiconductor epitaxial growth method | |
CN217418861U (en) | Epitaxial graphite base | |
JP2006103997A (en) | Method for manufacturing semiconductor crystal | |
JPH07243044A (en) | Diamond vapor phase synthesis method | |
JP2009021533A (en) | Vapor-phase growth apparatus and vapor-phase growth method | |
JP2963310B2 (en) | Chemical vapor deposition equipment | |
JP2007191362A (en) | Method for producing diamond | |
JPH06232054A (en) | Manufacture of susceptor | |
JP2004063985A (en) | Hot wall heating chemical vapor-phase growth apparatus and method of manufacturing epitaxial wafer using the appaartus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20080131 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |