JP2002226289A - Method for manufacturing diamond membrane, and device for the same - Google Patents

Method for manufacturing diamond membrane, and device for the same

Info

Publication number
JP2002226289A
JP2002226289A JP2001293136A JP2001293136A JP2002226289A JP 2002226289 A JP2002226289 A JP 2002226289A JP 2001293136 A JP2001293136 A JP 2001293136A JP 2001293136 A JP2001293136 A JP 2001293136A JP 2002226289 A JP2002226289 A JP 2002226289A
Authority
JP
Japan
Prior art keywords
substrate
diamond film
powder
temperature
powder layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001293136A
Other languages
Japanese (ja)
Inventor
Kapu Lee Je
ジェ・カプ・リー
Yon Yun Kuwan
クヮン・ヨン・ユン
Ki Rii Te
テ・キ・リー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Science and Technology KIST
Original Assignee
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Science and Technology KIST filed Critical Korea Institute of Science and Technology KIST
Publication of JP2002226289A publication Critical patent/JP2002226289A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds

Abstract

PROBLEM TO BE SOLVED: To make it possible to synthesize a diamond wafer without breakage by accurately keeping the temperature of a substrate constant by using powder, wherein the temperature is one of important variables in a method for synthesizing a diamond membrane by vapor phase synthesizing method. SOLUTION: A powder layer having fluidity provided under the substrate to by synthesized with a diamond membrane is provided one used as heat conductive medium between the substrate and a substrate holder. Because the heat conductivity between the substrate and the substrate holder is performed through the powder layer, the heat conductivity can be controlled through the kind of used powder, the shape of powder, the size, and the distribution of the sizes, and the variation of thickness of the powder layer. Consequently, the temperature of the substrate can be accurately controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ダイヤモンド膜の
製造方法及び装置に係り、より詳しくは気相合成法によ
りダイヤモンド膜を合成する際、基板の温度を正確に制
御して、合成中に基板温度の上昇を防ぎ、また基板水平
面上の温度勾配を最小化させることによる破壊の無いダ
イヤモンド膜の製造方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a diamond film, and more particularly to a method for synthesizing a diamond film by a vapor phase synthesis method, wherein the temperature of the substrate is accurately controlled so that the substrate can be formed during the synthesis. The present invention relates to a method and an apparatus for producing a diamond film free from destruction by preventing a rise in temperature and minimizing a temperature gradient on a horizontal surface of a substrate.

【0002】[0002]

【従来の技術】従来の気相合成法によるダイヤモンド膜
の合成は、図1に示すとおりである。ダイヤモンド膜1
は、真空容器2内で形成されたプラズマ3により、炭化
ガスから分解されたラジカル(radical)が、基板へと移
動する過程において、基板4上に膜の形態で蒸着するこ
とにより形成される。このときに用いられる基板のサイ
ズは、直径が数cm〜20cm、厚さが、0.05cm〜1cm
程度であり、基板の材質はタングステン、モリブデンま
たはシリコンが用いられる。熱またはプラズマにより加
熱される基板上面の温度は700℃〜1000℃に保持
されるため、基板が載置される基板ホルダ−5は水冷さ
れ、更にその材質は主に熱伝導度の良好な銅で製作す
る。
2. Description of the Related Art The synthesis of a diamond film by a conventional vapor phase synthesis method is as shown in FIG. Diamond film 1
Is formed by evaporating a radical (radical) decomposed from the carbonized gas by the plasma 3 formed in the vacuum vessel 2 onto the substrate 4 in the form of a film in the process of moving to the substrate. The size of the substrate used at this time is several cm to 20 cm in diameter and 0.05 cm to 1 cm in thickness.
The material of the substrate is tungsten, molybdenum or silicon. Since the temperature of the upper surface of the substrate heated by heat or plasma is maintained at 700 ° C. to 1000 ° C., the substrate holder 5 on which the substrate is mounted is water-cooled, and the material is mainly copper having a good thermal conductivity. Produced in

【0003】気相合成法によるダイヤモンド膜の合成に
おいて、基板温度(蒸着温度)は、膜の結晶度だけでなく
膜の破壊を惹起し得る応力の形成とも密接な関係のあ
る、非常に重要な変数となるため、正確に制御されなけ
ればならない。
[0003] In the synthesis of a diamond film by a vapor phase synthesis method, the substrate temperature (deposition temperature) is very important because it has a close relationship not only with the crystallinity of the film but also with the formation of stress that can cause the film to break. Being a variable, it must be precisely controlled.

【0004】このような基板温度の制御には、大きく二
つの問題点がある。その一つは、特定の温度への温度調
節が難しいことであるが、これは基板の加熱が独立的に
行われるのでなくプラズマ自体のエネルギ−により保持
されるためである。この場合、基板温度は、投入電力
(ダイヤモンド膜の合成に必要な電力である)や基板ホル
ダ−を流れる水の流量を調節するか、または一定の厚さ
の円板を挿設するなどの方法(基板温度が低い場合)を利
用して調節することができる。しかし、これらの方法
は、それぞれ合成条件(投入電力)の変化を招く虞があ
り、基板温度の制御効果的でなく、また精巧性に劣る。
There are two main problems in controlling the substrate temperature. One is that it is difficult to adjust the temperature to a specific temperature because the substrate is not heated independently but is held by the energy of the plasma itself. In this case, the substrate temperature is the input power
(When the substrate temperature is low) such as adjusting the flow rate of the water flowing through the substrate holder or adjusting the flow rate of the water flowing through the substrate holder, or inserting a disk of a certain thickness Can be adjusted. However, each of these methods may cause a change in the synthesis conditions (input power), and is not effective in controlling the substrate temperature, and is inferior in precision.

【0005】もう一つの問題点は、合成中に基板温度が
上昇したり基板の水平面上に温度勾配が形成されること
であるが、これは合成中に膜を破壊する深刻な問題を招
くこととなる。その原因は、合成中の基板の撓みにより
発生する。前記撓みの原因は二つに要約されるが、その
一つは基板上下面の温度差による熱膨張係数差によるも
のであり、もう一つは合成中に膜に認可される応力によ
るものである。前者を更に詳しく説明すると、基板は、
基板上面にある熱またはプラズマのエネルギ−により加
熱され、前記熱は基板下面に位置する水冷される基板ホ
ルダ−を介して放出されるため、基板の温度は上面から
下面に進むに連れて低くなる(図2a及び図2b)。その
ため、基板上面の熱膨張程度が下面より大きくなり基板
は上方に凸状に撓み、その結果、基板と基板ホルダ−と
の間に空間8が形成される(図3a)。このような現像
は、基板が加熱され始めるダイヤモンド膜の合成初期、
即ち膜が形成されていない段階において生じ得る。
[0005] Another problem is that the substrate temperature rises during the synthesis and a temperature gradient is formed on the horizontal surface of the substrate, which leads to a serious problem of destroying the film during the synthesis. Becomes The cause is caused by the bending of the substrate during the synthesis. The cause of the bending can be summarized in two ways, one is due to the difference in thermal expansion coefficient due to the temperature difference between the upper and lower surfaces of the substrate, and the other is due to the stress approved for the film during the synthesis. . Explaining the former in more detail, the substrate is:
The substrate is heated by heat or plasma energy on the upper surface of the substrate, and the heat is released through a water-cooled substrate holder located on the lower surface of the substrate, so that the temperature of the substrate decreases from the upper surface to the lower surface. (FIGS. 2a and 2b). Therefore, the degree of thermal expansion of the upper surface of the substrate is larger than that of the lower surface, and the substrate is bent upward in a convex shape, and as a result, a space 8 is formed between the substrate and the substrate holder (FIG. 3A). Such development occurs during the initial stage of diamond film synthesis when the substrate starts to be heated.
That is, it may occur at a stage where a film is not formed.

【0006】それと比べて、合成中に膜に認可される応
力による基板の撓みは、ダイヤモンドが基板上で核生成
し成長して膜を形成した以降の段階で生じる。ダイヤモ
ンド膜での応力は、ダイヤモンドが異種の基板にて合成
され成長しながら、格子欠陥を含み、集合組織を形成す
るため発生する。前記応力は一般的に引っ張り応力と知
られているが、このような応力により基板は下方に凸状
に撓む(図4b)。もちろん、ダイヤモンド膜に認可され
た応力が圧縮応力である場合は反対になる。尚、もしダ
イヤモンド膜に認可された応力が位置によって不均一で
ある場合、基板の撓みは不規則なものとなる。以上のよ
うに基板が撓む場合、基板下面の一部だけが平坦な基板
ホルダ−と接触することになり、それによって基板から
基板ホルダ−への熱伝達は部分的に行われることから基
板温度は上昇し、更に基板の位置によって温度勾配が生
じ得る。例えば、基板が上方に凸状に撓む場合、基板の
縁部だけが基板ホルダ−と接触し、基板の中央部の温度
が基板の縁部より高く保持されることとなり(図3b)、
また反対に、基板が下方に凸状に撓む場合、基板の中央
部だけが基板ホルダ−と接触することになり、基板縁部
の温度が基板中央部と比べて高く保持されるようになる
のである。
[0006] In contrast, substrate deflection due to stresses applied to the film during synthesis occurs after diamond nucleates and grows on the substrate to form the film. The stress in the diamond film is generated because diamond includes lattice defects and forms a texture while being synthesized and grown on a different type of substrate. The stress is generally known as a tensile stress, and the substrate bends downwardly convexly due to such stress (FIG. 4B). Of course, the opposite is true when the stress approved for the diamond film is a compressive stress. It should be noted that if the approved stress on the diamond film is non-uniform depending on the location, the substrate will bend flexibly. When the substrate bends as described above, only a part of the lower surface of the substrate comes into contact with the flat substrate holder, and heat transfer from the substrate to the substrate holder is partially performed. Rise, and a temperature gradient may occur depending on the position of the substrate. For example, when the substrate bends upwardly in a convex shape, only the edge of the substrate comes into contact with the substrate holder, and the temperature of the central portion of the substrate is kept higher than the edge of the substrate (FIG. 3B).
Conversely, when the substrate bends downwardly in a convex shape, only the central portion of the substrate comes into contact with the substrate holder, and the temperature of the substrate edge is maintained higher than that of the substrate central portion. It is.

【0007】また、前記のような二つの要因両者におい
て、基板温度も上昇されることになる。このような基板
の水平面上の温度勾配及び基板温度の上昇は、合成中に
ダイヤモンド膜に認可される応力を増加させダイヤモン
ド膜を破壊する問題点があった。
[0007] Further, the substrate temperature is also increased due to both of the two factors as described above. Such a temperature gradient on the horizontal surface of the substrate and an increase in the substrate temperature have a problem that the stress applied to the diamond film during the synthesis is increased and the diamond film is broken.

【0008】[0008]

【発明が解決しようとする課題】本発明は、前記の問題
点を解決するために案出されたものとして、本発明にお
いては、気相合成法によるダイヤモンド膜の合成の際、
基板の温度を正確に制御して合成中に基板温度の上昇を
防ぎ、また基板水平面上の温度勾配を最小化させること
により、破壊の無いダイヤモンド膜の製造方法及び装置
を提供することにその目的がある。
DISCLOSURE OF THE INVENTION The present invention has been devised to solve the above-mentioned problems. In the present invention, there is provided a method for synthesizing a diamond film by a vapor phase synthesis method.
It is an object of the present invention to provide a method and an apparatus for producing a diamond film without destruction by accurately controlling the temperature of a substrate to prevent the temperature of the substrate from rising during synthesis and minimizing a temperature gradient on a horizontal surface of the substrate. There is.

【0009】[0009]

【課題を解決するための手段】このような目的を達成す
るために、本発明によると、気相合成法によるダイヤモ
ンド膜の製造方法において、ダイヤモンド膜が蒸着され
る基板と該基板が載置される基板ホルダ−との間に流動
性を有する粉末層を設け、該粉末層を基板と基板ホルダ
−との間の熱伝達媒体として用いることを特徴とするダ
イヤモンド膜の製造方法が提供される。
According to the present invention, there is provided a method for producing a diamond film by a vapor phase synthesis method, wherein the substrate on which the diamond film is deposited and the substrate are mounted. A method for producing a diamond film is provided, wherein a powder layer having fluidity is provided between the substrate and the substrate holder, and the powder layer is used as a heat transfer medium between the substrate and the substrate holder.

【0010】また、本発明によると、ダイヤモンド膜が
蒸着される基板と、前記基板を保持する基板ホルダ−及
びこれらを受容し且つプラズマ発生装置と連結された真
空容器とを含む気相合成法によるダイヤモンド膜の製造
装置において、前記製造装置は、前記基板と基板ホルダ
−との間に設けられた粉末層を更に含むことを特徴とす
るダイヤモンド膜の製造装置を提供する。
According to another aspect of the present invention, there is provided a gas-phase synthesis method including a substrate on which a diamond film is deposited, a substrate holder for holding the substrate, and a vacuum vessel receiving the substrate and connected to a plasma generator. In the apparatus for manufacturing a diamond film, the apparatus for manufacturing a diamond film may further include a powder layer provided between the substrate and the substrate holder.

【0011】[0011]

【発明の実施の形態】以下においては、添付の図面を参
照しながら本発明の具体例を詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

【0012】本発明の実施形態の具体的な構成を図5に
示す。ダイヤモンド膜1が合成される基板4と基板ホル
ダ−5との間に一定の厚さの粉末層9を充填した。粉末
が流動して外部に漏れるのを防ぐために基板4と基板ホ
ルダ−5との接触部の外側には粉末層9の外部離脱を防
ぐために、例えば、リング10のような離脱防止部材を
設けるのが好ましい。
FIG. 5 shows a specific configuration of the embodiment of the present invention. A powder layer 9 having a certain thickness was filled between the substrate 4 on which the diamond film 1 was synthesized and the substrate holder-5. In order to prevent the powder from flowing and leaking to the outside, a detachment preventing member such as a ring 10 is provided outside the contact portion between the substrate 4 and the substrate holder 5 to prevent the powder layer 9 from detaching outside. Is preferred.

【0013】このような本発明の構成により、合成中に
700℃〜1000℃の高温に保持される基板の熱は、
粉末層9を介して水冷される基板ホルダ−5へと伝達さ
れる。
According to the structure of the present invention, the heat of the substrate held at a high temperature of 700 ° C. to 1000 ° C. during the synthesis is as follows:
It is transmitted to the water-cooled substrate holder 5 via the powder layer 9.

【0014】このような構造において、合成中に何らか
の理由により基板が撓み変形された場合、該変形に従っ
て粉末が流動することから、図6a及び図6bに示すと
おり、基板の全面を粉末層9と接触させることができ
る。従って、撓んだ基板の熱は、撓む前と同様に均一に
基板ホルダ−5へと伝達されるので、基板温度の上昇ま
たは基板位置による温度勾配の発生を最小化させること
ができる。
In such a structure, if the substrate is bent and deformed for some reason during the synthesis, the powder flows in accordance with the deformation. Therefore, as shown in FIGS. Can be contacted. Therefore, since the heat of the bent substrate is uniformly transmitted to the substrate holder 5 as before the bending, the rise of the substrate temperature or the generation of the temperature gradient due to the substrate position can be minimized.

【0015】また、本発明にて用いられる粉末層は、粉
末の種類(熱伝導度差)、粉末の形、サイズ及びサイズ分
布、粉末層の高さを変化させて適切に選択することがで
き、特に直径1mm以下のものを用いるのが熱伝達制御の
側面でより効率的である。粉末の材質としては、金属ま
たはセラミック粉末などを用いることができる。
The powder layer used in the present invention can be appropriately selected by changing the type of powder (difference in thermal conductivity), the shape, size and size distribution of the powder, and the height of the powder layer. In particular, it is more efficient to use one having a diameter of 1 mm or less in terms of heat transfer control. As the material of the powder, metal or ceramic powder can be used.

【0016】[0016]

【発明の効果】本発明によりダイヤモンド膜の合成を行
う場合、基板から基板ホルダ−への熱伝達は粉末層を通
してなされるため、このとき用いられる粉末の種類(熱
伝導度の差)、粉末の形、サイズ及びサイズ分布、粉末
層の高さを変化させることにより、熱伝達の制御が可能
となり、基板の温度変化を最小化させることができる。
When synthesizing a diamond film according to the present invention, heat is transferred from the substrate to the substrate holder through the powder layer, so that the type of powder used (difference in thermal conductivity) and the By changing the shape, size and size distribution, and the height of the powder layer, heat transfer can be controlled and the temperature change of the substrate can be minimized.

【0017】また、合成中に基板が撓む場合、前記撓み
に従う粉末層の流動により基板と基板ホルダ−との接触
を保持し続けるようにして、ダイヤモンド膜の合成中の
基板温度の変化を最小化させることができた。直径4イ
ンチ、厚さ10mmの基板を用いた場合、基板の温度上昇
を10℃以下に保持することができ、また基板位置によ
る温度偏差も5℃以下に抑えることができた。この場
合、直径4インチ、厚さ2mmの厚膜ダイヤモンドウェ−
ハを破壊すること無く合成することができた。
Further, when the substrate is bent during the synthesis, the flow of the powder layer according to the bending keeps the contact between the substrate and the substrate holder to minimize the change in the substrate temperature during the synthesis of the diamond film. Was able to be transformed. When a substrate having a diameter of 4 inches and a thickness of 10 mm was used, the temperature rise of the substrate could be kept at 10 ° C. or less, and the temperature deviation depending on the substrate position could be kept at 5 ° C. or less. In this case, a thick diamond wafer with a diameter of 4 inches and a thickness of 2 mm
It could be synthesized without destroying C.

【0018】以上において、本発明を特定の好ましい実
施の形態を例として図示し説明したが、本発明は前記の
実施の形態に限定されるものではなく、本発明の精神を
逸脱しない範囲内において、当該発明の属する技術分野
にて通常の知識を有する者により様々な変形と修正が可
能であろう。
In the above, the present invention has been shown and described by taking a specific preferred embodiment as an example. However, the present invention is not limited to the above-described embodiment, and is not departed from the spirit of the present invention. Various changes and modifications may be made by those having ordinary knowledge in the technical field to which the present invention pertains.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の一般的な気相合成によるダイヤモンド膜
の合成方法を説明するための図。
FIG. 1 is a diagram for explaining a conventional method of synthesizing a diamond film by general vapor phase synthesis.

【図2】(a)(b)は、図1に示す基板の高さによる
温度勾配を示す図。
FIGS. 2A and 2B are diagrams showing a temperature gradient depending on the height of the substrate shown in FIG. 1;

【図3】(a)(b)は、基板の温度勾配による基板上
面の熱膨張程度によって上方に凸状に撓んだ基板を示す
図。
FIGS. 3A and 3B are diagrams showing a substrate that is bent upward in a convex shape due to the degree of thermal expansion of the upper surface of the substrate due to a temperature gradient of the substrate.

【図4】(a)(b)(c)は、基板上に一定の厚さに
成長したダイヤモンド膜により生じる引張応力による基
板の撓みを示す図。
FIGS. 4A, 4B, and 4C are diagrams showing the deflection of a substrate due to a tensile stress generated by a diamond film grown to a constant thickness on the substrate.

【図5】本発明の第1の実施の形態により、基板と基板
ホルダ−との間に一定の厚さの粉末層を充填させた構造
を示す図。
FIG. 5 is a view showing a structure in which a powder layer having a certain thickness is filled between a substrate and a substrate holder according to the first embodiment of the present invention.

【図6】(a)(b)(c)は、図5と同一な条件にお
いてダイヤモンド膜を形成する場合、基板の位置による
温度勾配の変化を説明するための模式図。
FIGS. 6A, 6B, and 6C are schematic diagrams for explaining a change in a temperature gradient depending on a position of a substrate when a diamond film is formed under the same conditions as in FIGS.

フロントページの続き (72)発明者 クヮン・ヨン・ユン 大韓民国、ソウル、ジュンラン−ク、シン ネ−ドン 654、ジンロ・アパートメント 703−901 (72)発明者 テ・キ・リー 大韓民国、ソウル、カンナム−ク、ノンヒ ュン−ドン 105、ドンヒュン・アパート メント 1−301 Fターム(参考) 4G077 AA03 BA03 DB16 EG03 EG04 TF01 TF03 4K030 BA28 FA10 GA02 KA23 Continuing on the front page (72) Inventor Gwang Yong Yoon South Korea, Seoul, Jung-Lang, Shin Nae Dong 654, Jinro Apartment 703-901 (72) Inventor Te Ki Lee South Korea, Seoul, Gangnam K, Nonhyung-Dong 105, Donghyung Apartment 1-301 F-term (reference) 4G077 AA03 BA03 DB16 EG03 EG04 TF01 TF03 4K030 BA28 FA10 GA02 KA23

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 気相合成法によるダイヤモンド膜の製造
方法において、ダイヤモンド膜が蒸着される基板と該基
板が載置される基板ホルダ−との間に流動性を有する粉
末層を設け、該粉末層を基板と基板ホルダ−との間の熱
伝達媒体として用いることを特徴とするダイヤモンド膜
の製造方法。
In a method for producing a diamond film by a gas phase synthesis method, a powder layer having fluidity is provided between a substrate on which a diamond film is deposited and a substrate holder on which the substrate is placed, A method for producing a diamond film, wherein the layer is used as a heat transfer medium between a substrate and a substrate holder.
【請求項2】 前記粉末層は、金属またはセラミック粉
末で成されることを特徴とする請求項1に記載のダイヤ
モンド膜の製造方法。
2. The method according to claim 1, wherein the powder layer is made of metal or ceramic powder.
【請求項3】 前記粉末層を成す粉末の直径は、1mm以
下の粉末粒子を含むことを特徴とする請求項1または請
求項2に記載のダイヤモンド膜の製造方法。
3. The method according to claim 1, wherein the diameter of the powder forming the powder layer includes powder particles of 1 mm or less.
【請求項4】 前記基板と基板ホルダ−との接触部の外
側に、粉末層の外部への離脱を防ぐための離脱防止部材
を設けることを特徴とする請求項1に記載のダイヤモン
ド膜の製造方法。
4. The diamond film according to claim 1, wherein a detachment preventing member for preventing detachment of the powder layer to the outside is provided outside a contact portion between the substrate and the substrate holder. Method.
【請求項5】 前記離脱防止部材はリングであることを
特徴とする請求項4に記載のダイヤモンド膜の製造方
法。
5. The method according to claim 4, wherein the detachment preventing member is a ring.
【請求項6】 ダイヤモンド膜が蒸着される基板と、前
記基板を保持する基板ホルダ−及びこれらを受容し且つ
プラズマ発生装置と連結された真空容器とを含む気相合
成法によるダイヤモンド膜の製造装置において、前記製
造装置は、前記基板と基板ホルダ−との間に設けられた
粉末層を更に含むことを特徴とするダイヤモンド膜の製
造装置。
6. An apparatus for producing a diamond film by a gas phase synthesis method, comprising: a substrate on which a diamond film is deposited; a substrate holder for holding the substrate; and a vacuum vessel for receiving the substrate and connected to a plasma generator. 3. The apparatus for producing a diamond film according to claim 1, wherein the apparatus further comprises a powder layer provided between the substrate and the substrate holder.
JP2001293136A 2001-01-17 2001-09-26 Method for manufacturing diamond membrane, and device for the same Pending JP2002226289A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2001-2721 2001-01-17
KR10-2001-0002721A KR100375335B1 (en) 2001-01-17 2001-01-17 A Method for Depositing Diamond Films Without Fracture by a Control of Substrate Temperatures Using Powders

Publications (1)

Publication Number Publication Date
JP2002226289A true JP2002226289A (en) 2002-08-14

Family

ID=19704765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293136A Pending JP2002226289A (en) 2001-01-17 2001-09-26 Method for manufacturing diamond membrane, and device for the same

Country Status (2)

Country Link
JP (1) JP2002226289A (en)
KR (1) KR100375335B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785633B2 (en) 2004-03-31 2010-08-31 Calpis Co., Ltd Agent for preventing or suppressing hepatopathy and functional food for preventing or suppressing hepatopathy
CN109537048A (en) * 2018-11-27 2019-03-29 西安碳星半导体科技有限公司 CVD single-crystal diamond eliminates edge polycrystalline method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893408B1 (en) * 2007-08-22 2009-04-17 주식회사 테라세미콘 Substrate Holder
KR101591025B1 (en) * 2009-12-29 2016-02-03 재단법인 포항산업과학연구원 Manufacturing method of copper films
GB201021870D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021853D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
GB201021860D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for diamond synthesis
KR101481928B1 (en) 2010-12-23 2015-01-21 엘리멘트 식스 리미티드 Controlling doping of synthetic diamond material
GB201021855D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave power delivery system for plasma reactors
GB201021913D0 (en) 2010-12-23 2011-02-02 Element Six Ltd Microwave plasma reactors and substrates for synthetic diamond manufacture
GB201021865D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785633B2 (en) 2004-03-31 2010-08-31 Calpis Co., Ltd Agent for preventing or suppressing hepatopathy and functional food for preventing or suppressing hepatopathy
CN109537048A (en) * 2018-11-27 2019-03-29 西安碳星半导体科技有限公司 CVD single-crystal diamond eliminates edge polycrystalline method

Also Published As

Publication number Publication date
KR100375335B1 (en) 2003-03-06
KR20020061768A (en) 2002-07-25

Similar Documents

Publication Publication Date Title
JP5125095B2 (en) Manufacturing method of substrate with SiC epitaxial film and manufacturing apparatus of substrate with SiC epitaxial film
TW494147B (en) Method of making GaN single crystal and apparatus for making GaN single crystal
JP2532401Y2 (en) Bias ECR plasma CVD equipment
US4421592A (en) Plasma enhanced deposition of semiconductors
JP2002226289A (en) Method for manufacturing diamond membrane, and device for the same
CN106811737B (en) A kind of base station component being used to prepare diamond
JPH03150298A (en) Bridge connecting core wire in polycrystalline silicon producing device
JPH04210476A (en) Formation of silicon carbide film
JPS6129920B2 (en)
JP2002252176A (en) Cvd device and thin-film manufacturing method
TW434694B (en) Method for decreasing stress of blanket tungsten film formed by chemical vapor deposition
JP3666952B2 (en) CVD equipment
JP3170248B2 (en) Semiconductor substrate holding device
JP2003086516A (en) Susceptor, cvd unit, film-forming method and semiconductor device
JP2000164588A (en) Substrate-heating method and device
US4609424A (en) Plasma enhanced deposition of semiconductors
JP3230162B2 (en) Vapor phase growth equipment
JP2009301796A (en) Ceramic heater and its manufacturing method
JP3822059B2 (en) Method of warping deformation of silicon substrate
JP2001003172A (en) Semiconductor epitaxial growth method
JP2015119005A (en) Film forming device
KR930000610B1 (en) Vapor epitaxial growth apparatus
JP2963310B2 (en) Chemical vapor deposition equipment
JPH0474788A (en) Production of compound semiconductor single crystal
JP2005012187A (en) Stencil mask for ion implantation, and formation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607