JPH1174064A - Wafer heating device - Google Patents

Wafer heating device

Info

Publication number
JPH1174064A
JPH1174064A JP23527597A JP23527597A JPH1174064A JP H1174064 A JPH1174064 A JP H1174064A JP 23527597 A JP23527597 A JP 23527597A JP 23527597 A JP23527597 A JP 23527597A JP H1174064 A JPH1174064 A JP H1174064A
Authority
JP
Japan
Prior art keywords
heating element
resistance heating
wafer
ceramic base
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23527597A
Other languages
Japanese (ja)
Other versions
JP3145664B2 (en
Inventor
Norio Okuda
憲男 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16983696&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1174064(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23527597A priority Critical patent/JP3145664B2/en
Publication of JPH1174064A publication Critical patent/JPH1174064A/en
Application granted granted Critical
Publication of JP3145664B2 publication Critical patent/JP3145664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a large-sized wafer heating device, which is not broken even at the time of being heated rapidly up to a high temperature over 550 deg.C and can be used repeatedly and also has high reliability. SOLUTION: In this wafer heating device, which is composed of a disc-shaped ceramic substrate 2, the upper surface of which is a retaining surface 3 of a wafer W, and a resistance exothermic body 4 buried in its inside, the resistance exothermic body 4 is arranged at the distance of 0.02-0.6 time of the thickness T of the ceramic substrate 2 from a standard face 5, which is an under surface on the opposite side of the retaining surface 3. Also, the existing area (P) of the resistance exothermic body 4 is to form a roughly round shape, and the extreme circumference thereof is located within the distance of 35 mm from the side 6 of the ceramic substrate 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に、半導体装置
の製造工程におけるプラズマCVD、減圧CVD、光C
VD、PVDなどの成膜装置や、プラズマエッチング、
光エッチングなどのエッチング装置に用いられるウエハ
加熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to plasma CVD, low-pressure CVD,
Film deposition equipment such as VD and PVD, plasma etching,
The present invention relates to a wafer heating device used for an etching device such as optical etching.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程で使用され
るプラズマCVD、減圧CVD、光CVD、PVDなど
の成膜装置や、プラズマエッチング、光エッチングなど
のエッチング装置においては、デポジッション用ガスや
エッチング用ガス、あるいはクリーニング用ガスとして
塩素系やフッ素系の腐食性ガスが使用されていた。
2. Description of the Related Art Conventionally, in a film forming apparatus such as a plasma CVD, a low pressure CVD, an optical CVD, and a PVD used in a manufacturing process of a semiconductor device, and an etching apparatus such as a plasma etching and an optical etching, a deposition gas or the like is used. A chlorine-based or fluorine-based corrosive gas has been used as an etching gas or a cleaning gas.

【0003】また、これらのガス雰囲気中で半導体ウエ
ハ(以下、ウエハと略称する。)を保持しつつ加工温度
に加熱するためのウエハ加熱装置として、抵抗発熱体を
内蔵したステンレスヒーターが使用されていた。
Further, a stainless steel heater having a built-in resistance heating element is used as a wafer heating device for heating a semiconductor wafer (hereinafter abbreviated as a wafer) to a processing temperature while holding a semiconductor wafer in these gas atmospheres. Was.

【0004】しかしながら、ステンレスヒーターは、上
記腐食性ガスに曝されると腐食摩耗し、パーティクルが
発生するといった問題点があった。
[0004] However, the stainless steel heater has a problem that when it is exposed to the above corrosive gas, it is corroded and worn, and particles are generated.

【0005】一方、腐食性ガスに対して比較的優れた耐
蝕性を有するグラファイトによりウエハ加熱装置を形成
し、このウエハ加熱装置をチャンバー外に設置された赤
外線ランプによって間接的に加熱することも行われてい
るが、直接加熱のものに比べて熱効率が悪いといった問
題点があった。しかも、成膜装置においては膜がチャン
バーの壁面に堆積し、この膜での熱吸収が発生すること
から、ウエハ加熱装置を加熱できなくなるといった不都
合もあった。
On the other hand, it is also possible to form a wafer heating device using graphite having relatively excellent corrosion resistance to corrosive gas, and to indirectly heat the wafer heating device using an infrared lamp installed outside the chamber. However, there is a problem that the thermal efficiency is lower than that of the direct heating. In addition, in the film forming apparatus, the film is deposited on the wall surface of the chamber, and heat absorption occurs in the film, so that the wafer heating apparatus cannot be heated.

【0006】そこで、このような問題点を解消するウエ
ハ加熱装置として、円盤状をした緻密質のセラミック基
体の内部に、高融点金属からなる抵抗発熱体を埋設した
セラミックヒーターが提案されている(特開平4−10
1381号公報参照)。
Therefore, as a wafer heating apparatus which solves such a problem, a ceramic heater in which a resistance heating element made of a high melting point metal is embedded in a disk-shaped dense ceramic base has been proposed (see, for example, Japanese Patent Application Laid-Open No. H11-157556). JP-A-4-10
No. 1381).

【0007】[0007]

【発明が解決しようとする課題】ところで、近年、半導
体装置の集積度の向上に伴ってウエハの外径が当初6イ
ンチであったものが8インチ、12インチと大きくなっ
ており、ウエハの大型化に伴ってウエハ加熱装置も大型
のものが要求されるようになっていた。
By the way, in recent years, the outer diameter of a wafer has been increased from 8 inches to 12 inches from an original diameter of 6 inches in accordance with an increase in the degree of integration of semiconductor devices. As a result, large wafer heating apparatuses have been required.

【0008】また、ウエハの加熱温度も年々上昇し、従
来400℃程度であったものが、550℃、さらには8
50℃以上の高温で処理されるようになり、さらには生
産効率を高めるために急速昇温が可能なウエハ加熱装置
が求められるようになっていた。
[0008] Further, the heating temperature of the wafer has been increasing year by year.
Processing has been performed at a high temperature of 50 ° C. or higher, and a wafer heating apparatus capable of rapidly increasing the temperature has been required in order to increase production efficiency.

【0009】しかしながら、8インチ以上の大きさを有
するセラミックヒーターを550℃以上の温度に発熱さ
せると、昇温時にセラミックヒーター内に発生する熱応
力が大きくなり、割れ易いという課題があった。
However, when a ceramic heater having a size of 8 inches or more is heated to a temperature of 550 ° C. or more, the thermal stress generated in the ceramic heater at the time of raising the temperature is increased, and there is a problem that the ceramic heater is easily broken.

【0010】[0010]

【発明の目的】本発明の目的は、550℃以上の高温に
急速に昇温しても破損することがなく、繰り返し使用可
能な信頼性の高い大型のウエハ加熱装置を提供すること
になる。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a reliable and large-sized wafer heating apparatus which can be repeatedly used without being damaged even if the temperature is rapidly increased to 550 ° C. or higher.

【0011】[0011]

【課題を解決するための手段】本件発明者は、抵抗発熱
体を埋設したセラミックヒーターからなるウエハ加熱装
置における破損の原因について鋭意研究を重ねたとこ
ろ、セラミック基体内における抵抗発熱体の存在領域と
抵抗発熱体の埋設位置が関係していることを突き止め
た。
The inventor of the present invention has conducted intensive studies on the causes of breakage in a wafer heating apparatus comprising a ceramic heater having a resistance heating element embedded therein. It has been found that the location of the buried resistance heating element is related.

【0012】即ち、本発明は、円盤状をしたセラミック
基体の上面をウエハの保持面とし、その内部に抵抗発熱
体を埋設してなるウエハ加熱装置において、上記保持面
とは反対側の下面を基準面とし、該基準面から上記セラ
ミック基体の厚みの0.02〜0.6倍の距離に前記抵
抗発熱体を配置するとともに、この抵抗発熱体の存在領
域が略円形であって、その最外周が上記セラミック基体
の側面から35mm以内の距離に位置するようにしたこ
とを特徴とするものである。
That is, according to the present invention, in a wafer heating apparatus in which the upper surface of a disk-shaped ceramic base is used as a wafer holding surface and a resistance heating element is embedded therein, the lower surface opposite to the holding surface is provided. The resistance heating element is disposed at a distance of 0.02 to 0.6 times the thickness of the ceramic base from the reference plane, and the area where the resistance heating element is present is substantially circular. The outer periphery is located at a distance of not more than 35 mm from the side surface of the ceramic base.

【0013】なお、本発明のウエハ加熱装置は、抵抗発
熱体がどのようなヒーターパターンを有するものであっ
ても構わないが、略円盤状をしたウエハを均一に加熱す
るために、抵抗発熱体が存在する領域の形状を略円形と
することが望ましい。また、抵抗発熱体の最外周からセ
ラミック基体の側面までの距離とは、ヒーターパターン
のうち最も外側に位置する抵抗発熱体からセラミック基
体の側面までの距離のことである。
The wafer heating apparatus according to the present invention may have any resistance heating element having any heater pattern. However, in order to uniformly heat a substantially disk-shaped wafer, the resistance heating element may be used. It is desirable that the shape of the region in which is present is substantially circular. In addition, the distance from the outermost periphery of the resistance heating element to the side surface of the ceramic substrate refers to the distance from the outermost resistance heating element in the heater pattern to the side surface of the ceramic substrate.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
Embodiments of the present invention will be described below.

【0015】図1はサセプタと呼ばれる本発明のウエハ
加熱装置1を示す斜視図、図2は図1のX−X線断面
図、図3は抵抗発熱体4のヒーターパターンを示す模式
図である。
FIG. 1 is a perspective view showing a wafer heating apparatus 1 of the present invention called a susceptor, FIG. 2 is a sectional view taken along line XX of FIG. 1, and FIG. 3 is a schematic view showing a heater pattern of a resistance heating element 4. .

【0016】このウエハ加熱装置1は、円盤状をした緻
密質のセラミック基体2からなり、上面をウエハWの保
持面3とするとともに、その内部に抵抗発熱体4を埋設
してある。セラミック基体2の厚みTは通常5〜25m
m程度で、上記保持面3と反対側の下面を基準面5と
し、この基準面5から上記セラミック基体2の厚みTの
0.02〜0.6倍の距離に前記抵抗発熱体4を配置し
てある。
The wafer heating apparatus 1 is composed of a disk-shaped dense ceramic base 2, has an upper surface serving as a holding surface 3 of the wafer W, and has a resistance heating element 4 embedded therein. The thickness T of the ceramic base 2 is usually 5 to 25 m.
m, the lower surface opposite to the holding surface 3 is defined as a reference surface 5, and the resistance heating element 4 is arranged at a distance from the reference surface 5 that is 0.02 to 0.6 times the thickness T of the ceramic base 2. I have.

【0017】この抵抗発熱体4のヒーターパターンは、
図3に示すように中央から外周へ向かう渦巻き状とし、
抵抗発熱体4の存在領域Pが略円形となるように構成し
てあり、略円盤状をしたウエハを均一に加熱することが
できる。
The heater pattern of the resistance heating element 4 is as follows.
As shown in FIG. 3, the spiral shape from the center to the outer periphery,
The region P where the resistance heating element 4 is present is configured to be substantially circular, so that a substantially disk-shaped wafer can be uniformly heated.

【0018】なお、ヒーターパターンの中央に位置する
抵抗発熱体4の一方端は、基準面5の中央付近にロウ付
け固定した外部端子7と接続するとともに、ヒーターパ
ターンの周縁に位置する抵抗発熱体4の他方端は、上記
抵抗発熱体4より下層に設けた導体8を介して基準面5
の中央付近にロウ付け固定したもう一方の外部端子7と
接続してあり、両外部端子7に電圧を印加することで抵
抗発熱体4を発熱させ、保持面4に載置したウエハWを
加熱するようになっている。
One end of the resistance heating element 4 located at the center of the heater pattern is connected to an external terminal 7 brazed and fixed near the center of the reference surface 5, and the resistance heating element 4 located at the periphery of the heater pattern. 4 is connected to a reference plane 5 via a conductor 8 provided below the resistance heating element 4.
Is connected to the other external terminal 7 brazed and fixed in the vicinity of the center of the substrate. By applying a voltage to both external terminals 7, the resistance heating element 4 is heated, and the wafer W mounted on the holding surface 4 is heated. It is supposed to.

【0019】また、9はウエハ加熱装置1をチャンバー
内に設置するとともに、上記外部端子7がチャンバー内
の腐食性ガスに曝されるのを防ぐための円筒状支持体で
ある。
Reference numeral 9 denotes a cylindrical support for installing the wafer heating apparatus 1 in the chamber and for preventing the external terminals 7 from being exposed to corrosive gas in the chamber.

【0020】ところで、抵抗発熱体4の埋設位置を、セ
ラミック基体2の基準面5からセラミック基体2の厚み
Tの0.02〜0.6倍の距離とするのは、セラミック
基体2の厚みTの0.6倍より上では、抵抗発熱体4が
ウエハWの保持面3に近づきすぎるため、抵抗発熱体4
が位置する保持面3上と、抵抗発熱体4のない保持面3
上との温度差が大きくなりすぎるとともに、抵抗発熱体
4の持つ抵抗バラツキに伴う温度バラツキによって、保
持面3の温度バラツキが±1%を越え、均熱化が阻害さ
れるからであり、逆に、セラミック基体2の厚みTの
0.02倍より下では、急速昇温時に抵抗発熱体4とセ
ラミック基体2の保持面3との間に大きな熱応力が加わ
り、図4(a)に示すような基準面5を起点とするセラ
ミック基体2の割れ易くなるからである。
The reason why the embedded position of the resistance heating element 4 is set to a distance of 0.02 to 0.6 times the thickness T of the ceramic base 2 from the reference surface 5 of the ceramic base 2 is that the thickness T of the ceramic base 2 is set. Above 0.6, the resistance heating element 4 is too close to the holding surface 3 of the wafer W.
And the holding surface 3 without the resistance heating element 4
This is because the temperature difference from the upper portion becomes too large, and the temperature variation accompanying the resistance variation of the resistance heating element 4 causes the temperature variation of the holding surface 3 to exceed ± 1%, thereby hindering the soaking. Meanwhile, when the thickness is less than 0.02 times the thickness T of the ceramic base 2, a large thermal stress is applied between the resistance heating element 4 and the holding surface 3 of the ceramic base 2 at the time of rapid temperature rise, as shown in FIG. This is because the ceramic base 2 starting from the reference plane 5 is easily cracked.

【0021】また、急速昇温を実現するためには、セラ
ミック基体2の側面6から抵抗発熱体4の最外周までの
距離Lを35mm以内とすることが重要である。
In order to achieve rapid temperature rise, it is important that the distance L from the side surface 6 of the ceramic base 2 to the outermost periphery of the resistance heating element 4 be within 35 mm.

【0022】これは、セラミック基体2の側面6から抵
抗発熱体4の最外周までの距離Lが35mmより大きく
なると、セラミック基体2の側面6と抵抗発熱体4との
間に大きな熱応力が加わり、図4(b)に示すような側
面6を起点とするセラミック基体2の割れが発生するか
らである。しかも、セラミック基体2の外径がウエハW
と同等、あるいはウエハWより若干小さい場合、抵抗発
熱体4の存在領域PがウエハWより小さくなりすぎるた
め、ウエハWの周縁部における均熱性が低下し、この周
縁部よりチップを取り出すことができないといった不都
合があるからである。ただし、セラミック基体2の側面
6から抵抗発熱体4の最外周までの距離Lを0.5mm
より小さくすることは製造上難しい。
When the distance L from the side surface 6 of the ceramic substrate 2 to the outermost periphery of the resistance heating element 4 is larger than 35 mm, a large thermal stress is applied between the side surface 6 of the ceramic substrate 2 and the resistance heating element 4. This is because a crack in the ceramic base 2 starting from the side surface 6 as shown in FIG. Moreover, the outer diameter of the ceramic base 2 is
If it is equal to or slightly smaller than the wafer W, the existence area P of the resistance heating element 4 is too small compared to the wafer W, so that the uniformity at the peripheral portion of the wafer W is reduced, and chips cannot be taken out from the peripheral portion. This is because there is such a disadvantage. However, the distance L from the side surface 6 of the ceramic base 2 to the outermost periphery of the resistance heating element 4 is 0.5 mm.
Making it smaller is difficult in manufacturing.

【0023】従って、セラミック基体2の側面6から抵
抗発熱体4の最外周までの距離Lは0.5〜35mmと
することが良い。
Therefore, the distance L from the side surface 6 of the ceramic base 2 to the outermost periphery of the resistance heating element 4 is preferably 0.5 to 35 mm.

【0024】なお、本実施形態では、抵抗発熱体4のヒ
ーターパターンとして、渦巻き状をした例を示したが、
本発明のヒーターパターンはこの渦巻き状をしたものだ
けに限定されるものではなく、例えば、図5(a)
(b)に示すようなさまざまなヒーターパターンを採用
することができ、抵抗発熱体4の存在領域Pの形状が略
円形をしたものであれば良い。
In the present embodiment, the example in which the heater pattern of the resistance heating element 4 is spiral has been described.
The heater pattern of the present invention is not limited to the spiral pattern, and is not limited to, for example, FIG.
Various heater patterns as shown in (b) can be adopted, as long as the shape of the region P where the resistance heating element 4 exists is substantially circular.

【0025】一方、ウエハ加熱装置1を構成するセラミ
ック基体2の材質としては、耐摩耗性、耐熱性に優れる
アルミナ、窒化珪素、サイアロン、窒化アルミニウムを
用いることができ、この中でも特に窒化アルミニウムは
50W/mk以上、さらには100W/mk以上の高い
熱伝導率を有するとともに、フッ素系や塩素系等の腐食
性ガスに対する耐蝕性や耐プレズマ性にも優れることか
ら、セラミック基体2の材質として好適である。
On the other hand, as a material of the ceramic substrate 2 constituting the wafer heating apparatus 1, alumina, silicon nitride, sialon, and aluminum nitride which are excellent in wear resistance and heat resistance can be used. / Mk or more, more preferably 100 W / mk or more, and is also excellent in corrosion resistance and plasma resistance to corrosive gases such as fluorine and chlorine, so that it is suitable as a material of the ceramic base 2. is there.

【0026】また、セラミック基体2に埋設する抵抗発
熱体4は、線材や薄いシート膜状の形態をしたものを用
いることができるが、昇温時間をより短くできる点で薄
いシート膜の方が好ましい。さらに、抵抗発熱体4を構
成する材質としては、タングステン、モリブデン、レニ
ュウム、白金等の高融点金属やこれらの合金、あるいは
周期律表第4a族、第5a族、第6a族の炭化物や窒化
物を用いることができ、セラミック基体2との熱膨張差
の小さいものを適宜選択して使用すれば良い。
The resistance heating element 4 embedded in the ceramic substrate 2 may be a wire or a thin sheet film. However, a thin sheet film is preferable in that the temperature rise time can be shortened. preferable. Further, as a material constituting the resistance heating element 4, a high melting point metal such as tungsten, molybdenum, rhenium, platinum, or an alloy thereof, or a carbide or nitride of the 4a, 5a, or 6a group of the periodic table is used. And a material having a small difference in thermal expansion from the ceramic substrate 2 may be appropriately selected and used.

【0027】このようなウエハ加熱装置1を製造する方
法としては、抵抗発熱体4が薄いシート膜状である時に
は、まず、セラミック基体2をなすセラミック粉末に、
バインダーや溶媒等を加えて泥漿を作製し、ドクターブ
レード法などのテープ成形法により複数枚のグリーンシ
ートを形成したあと、予め数枚のグリーンシートを積層
し、その上面に抵抗発熱体4をなすペーストをスクリー
ン印刷機にて抵抗発熱体4の存在領域Pが略円形をした
図3に示す中央から外周へ向かう渦巻き状のヒーターパ
ターンに形成する。
As a method of manufacturing such a wafer heating apparatus 1, when the resistance heating element 4 is in the form of a thin sheet film, first, the ceramic powder forming the ceramic base 2 is first added to the ceramic powder.
A slurry is prepared by adding a binder, a solvent, and the like, and after forming a plurality of green sheets by a tape forming method such as a doctor blade method, several green sheets are laminated in advance, and a resistance heating element 4 is formed on the upper surface thereof. The paste is formed into a spiral heater pattern from the center to the outer periphery as shown in FIG.

【0028】そして、残りのグリーンシートを積層して
グリーンシート積層体を製作したあと、円盤状に切削す
る。なお、この積層工程において、焼成後のグリーンシ
ートの収縮を考慮して抵抗発熱体4の埋設位置が基準面
5からセラミック基体2の厚みTの0.02〜0.6倍
の距離に位置するとともに、セラミック基体2の側面6
から抵抗発熱体4の最外周までの距離Lが35mm以下
となるように設計することが必要である。
Then, after the remaining green sheets are laminated to produce a green sheet laminate, the green sheets are cut into a disk shape. In this laminating step, the buried position of the resistance heating element 4 is located at a distance of 0.02 to 0.6 times the thickness T of the ceramic base 2 from the reference plane 5 in consideration of shrinkage of the green sheet after firing. With the side surface 6 of the ceramic base 2
It is necessary to design so that the distance L from to the outermost periphery of the resistance heating element 4 is 35 mm or less.

【0029】しかるのち、セラミック粉末を焼結させる
ことができる温度にて上記グリーンシート積層体を焼成
することにより、薄いシート膜状の抵抗発熱体4を埋設
してなるセラミック基体2を形成したあと、セラミック
基体2の上面に研摩加工を施してウエハWの保持面3を
形成するとともに、下面に研摩加工を施して基準面5を
形成し、この基準面5の中央付近に上記抵抗発熱体4を
貫通する2つの下穴をそれぞれ穿設したあと、この下穴
に外部端子7をロウ付けすることにより、抵抗発熱体4
と外部端子7を電気的に接続すれば良い。
Thereafter, the green sheet laminate is fired at a temperature at which the ceramic powder can be sintered to form the ceramic base 2 having the thin sheet film-shaped resistance heating element 4 embedded therein. The upper surface of the ceramic base 2 is polished to form the holding surface 3 of the wafer W, and the lower surface is polished to form the reference surface 5. Near the center of the reference surface 5, the resistance heating element 4 is formed. After drilling two pilot holes, each of which penetrates the resistance heating element 4 by brazing the external terminal 7 to the pilot hole.
And the external terminal 7 may be electrically connected.

【0030】また、抵抗発熱体4が線材である時には、
まず、セラミック基体2をなすセラミック粉末に、バイ
ンダーや溶媒等を加えて混練乾燥したあと造粒して顆粒
を製作し、この顆粒を円盤状をした金型内に充填して、
上パンチにより溝を形成したあと、この溝に抵抗発熱体
4をなす線材を抵抗発熱体4の存在領域Pが略円形をし
た図3に示す中央から外周へ向かう渦巻き状のヒーター
パターンに設置し、さらに顆粒を充填してホットプレス
成形することにより、線材の抵抗発熱体4を埋設したセ
ラミック基体2を形成する。
When the resistance heating element 4 is a wire,
First, a binder, a solvent, and the like are added to a ceramic powder forming the ceramic substrate 2, kneaded and dried, and then granulated to produce granules. The granules are filled in a disk-shaped mold,
After a groove is formed by the upper punch, a wire forming the resistance heating element 4 is set in this groove in a spiral heater pattern extending from the center to the outer periphery shown in FIG. Then, the granules are filled and hot-pressed to form the ceramic base 2 in which the resistance heating element 4 of the wire is embedded.

【0031】しかるのち、セラミック基体2の上面に研
摩加工を施してウエハWの保持面3を形成するととも
に、下面に研摩加工を施して基準面5を形成し、この基
準面5の中央付近に上記抵抗発熱体4を貫通する2つの
下穴をそれぞれ穿設したあと、この下穴に外部端子7を
ロウ付けすることにより、抵抗発熱体4と外部端子7を
電気的に接続すれば良い。
Thereafter, the upper surface of the ceramic base 2 is polished to form the holding surface 3 of the wafer W, and the lower surface is polished to form the reference surface 5. After drilling two pilot holes that penetrate the resistance heating element 4, the external terminals 7 may be brazed to the pilot holes to electrically connect the resistance heating element 4 and the external terminals 7.

【0032】なお、図1ではセラミック基体2の内部に
抵抗発熱体4のみを備えたウエハ加熱装置1について示
したが、本発明は、図6に示すようなウエハWの保持面
3と抵抗発熱体4との間に静電吸着用やプラズマ発生用
としての膜状電極10を埋設したものであっても良いこ
とは言うまでもない。
Although FIG. 1 shows the wafer heating apparatus 1 having only the resistance heating element 4 inside the ceramic base 2, the present invention is not limited to the wafer heating apparatus shown in FIG. Needless to say, a film-shaped electrode 10 for electrostatic adsorption or plasma generation may be buried between the body 4.

【0033】(実施例1)ここで、抵抗発熱体4の埋設
位置を異ならせた図1のウエハ加熱装置1を用意し、保
持面3の温度バラツキと熱サイクルを加えた時のセラミ
ック基体2の割れ発生率について実験を行った。
Example 1 Here, the wafer heating apparatus 1 of FIG. 1 in which the buried positions of the resistance heating elements 4 were different was prepared, and the temperature variation of the holding surface 3 and the ceramic substrate 2 when the thermal cycle was applied. An experiment was conducted on the crack generation rate of the steel.

【0034】本実験では、外径300mm、厚みT17
mmの円盤状をしたセラミック基体2を、純度99.9
%の窒化アルミニウム質焼結体により形成し、その内部
にシート膜状のタングステンからなる抵抗発熱体4を埋
設したものを使用した。また、抵抗発熱体4のヒーター
パターンは存在領域Pが略円形をした図3に示す渦巻き
状とし、セラミック基体2の側面6から抵抗発熱体4の
最外周までの距離Lを10mmとした。
In this experiment, the outer diameter was 300 mm and the thickness was T17.
mm disc-shaped ceramic substrate 2 was purified to 99.9 purity.
% Of an aluminum nitride-based sintered body, in which a resistance heating element 4 made of sheet-film-shaped tungsten is embedded. Further, the heater pattern of the resistance heating element 4 was a spiral pattern shown in FIG. 3 in which the existence area P was substantially circular, and the distance L from the side surface 6 of the ceramic base 2 to the outermost periphery of the resistance heating element 4 was 10 mm.

【0035】そして、抵抗発熱体4の埋設位置を異なら
せたウエハ加熱装置1に電圧を印加して飽和温度が85
0℃となるように発熱させ、保持面3上の温度分布を商
品名:サーモビュアーで測定し、最大温度と最小温度の
差が平均温度に対して何%であるかを測定した。
Then, a voltage is applied to the wafer heating apparatus 1 in which the resistance heating elements 4 are buried at different positions, so that the saturation temperature becomes 85.
Heat was generated so that the temperature became 0 ° C., and the temperature distribution on the holding surface 3 was measured with a product name: Thermoviewer, and the percentage of the difference between the maximum temperature and the minimum temperature with respect to the average temperature was measured.

【0036】次に、抵抗発熱体4の埋設位置を異ならせ
たウエハ加熱装置1を各30個づつ用意し、50℃/分
の速度で850℃まで昇温したあと、この飽和温度で2
時間保持し、そのあと150℃まで冷却する熱サイクル
試験を500サイクル行ったあとの割れ発生率を測定し
た。
Next, 30 wafer heating devices 1 each having a different position for burying the resistance heating element 4 were prepared, and the temperature was raised to 850 ° C. at a rate of 50 ° C./min.
After holding for a time, and then performing a thermal cycle test of cooling to 150 ° C. for 500 cycles, the crack generation rate was measured.

【0037】それぞれの結果は表1に示す通りである。The results are as shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】この結果、抵抗発熱体4の埋設位置がセラ
ミック基体2の基準面5からセラミック基体2の厚みT
の0.6倍より小さい位置では、保持面3における温度
バラツキを1.0%以下に抑えることができる。
As a result, the position at which the resistance heating element 4 is embedded is from the reference plane 5 of the ceramic base 2 to the thickness T of the ceramic base 2.
At a position smaller than 0.6 times of the above, the temperature variation on the holding surface 3 can be suppressed to 1.0% or less.

【0040】ただし、抵抗発熱体4の埋設位置がセラミ
ック基体2の基準面5からセラミック基体2の厚みTの
0.02倍より小さくなりすぎると、セラミック基体2
の割れが発生した。
However, if the embedded position of the resistance heating element 4 is smaller than 0.02 times the thickness T of the ceramic base 2 from the reference plane 5 of the ceramic base 2, the ceramic base 2
Cracks occurred.

【0041】この結果、抵抗発熱体4の埋設位置は、セ
ラミック基体2の基準面5からセラミック基体2の厚み
Tの0.02〜0.6倍の距離に配置すれば良いことが
判る。
As a result, it can be seen that the buried position of the resistance heating element 4 should be arranged at a distance of 0.02 to 0.6 times the thickness T of the ceramic base 2 from the reference plane 5 of the ceramic base 2.

【0042】(実施例2)次に、抵抗発熱体4の埋設位
置を、セラミック基体2の基準面5からセラミック基体
2の厚みTの0.1倍の距離に設定し、セラミック基体
2の側面6から抵抗発熱体4の最外周までの距離Lをそ
れぞれ変化させたウエハ加熱装置1を各30個づつ用意
し、実施例1と同様に50℃/分の速度で850℃まで
昇温したあと、この飽和温度で2時間保持し、そのあと
150℃まで冷却する熱サイクル試験を500サイクル
行ったあとの割れ発生率を測定した。
(Embodiment 2) Next, the embedding position of the resistance heating element 4 is set to a distance of 0.1 times the thickness T of the ceramic base 2 from the reference plane 5 of the ceramic base 2, and the side surface of the ceramic base 2 is set. 30 wafer heating apparatuses 1 each having a different distance L from 6 to the outermost periphery of the resistance heating element 4 were prepared, and the temperature was raised to 850 ° C. at a rate of 50 ° C./min, as in Example 1. The temperature was maintained at this saturation temperature for 2 hours, and then the rate of occurrence of cracks was measured after 500 cycles of a thermal cycle test in which cooling was performed to 150 ° C.

【0043】それぞれの結果は表2に示す通りである。The results are as shown in Table 2.

【0044】[0044]

【表2】 [Table 2]

【0045】この結果、セラミック基体2の側面6から
抵抗発熱体4の最外周までの距離Lを35mm以内とす
ればセラミック基体2に割れを生じることがなかった。
As a result, when the distance L from the side surface 6 of the ceramic base 2 to the outermost periphery of the resistance heating element 4 was within 35 mm, the ceramic base 2 did not crack.

【0046】[0046]

【発明の効果】以上のように、本発明によれば、円盤状
をしたセラミック基体の上面をウエハの保持面とし、そ
の内部に抵抗発熱体を埋設してなるウエハ加熱装置にお
いて、上記保持面とは反対側の下面を基準面とし、該基
準面から上記セラミック基体の厚みの0.02〜0.6
倍の距離に前記抵抗発熱体を配置するとともに、上記抵
抗発熱体の存在領域が略円形であって、その最外周が上
記セラミック基体の側面から35mm以内の距離に位置
するようにしたことから、急速昇温を繰り返したとして
も熱応力により破損することがなく、また、ウエハWの
保持面における均熱性を高めることができる。
As described above, according to the present invention, in the wafer heating apparatus in which the upper surface of the disc-shaped ceramic base is used as a wafer holding surface and a resistance heating element is embedded therein. The lower surface on the opposite side is used as a reference surface, and the thickness of the ceramic substrate is 0.02 to 0.6
Along with disposing the resistance heating element at twice the distance, the existence area of the resistance heating element is substantially circular, and the outermost periphery is located at a distance within 35 mm from the side surface of the ceramic base. Even if the rapid temperature increase is repeated, the wafer is not damaged by thermal stress, and the uniformity of the holding surface of the wafer W can be improved.

【0047】その為、本発明のウエハ加熱装置を用いれ
ば、成膜速度やエッチング速度を高め、半導体装置の生
産効率を向上させることができるとともに、常に品質の
高い半導体装置を提供することができる。
Therefore, by using the wafer heating apparatus of the present invention, the film formation rate and the etching rate can be increased, the production efficiency of the semiconductor device can be improved, and a high-quality semiconductor device can always be provided. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】サセプタと呼ばれる本発明のウエハ加熱装置を
示す斜視図である。
FIG. 1 is a perspective view showing a wafer heating apparatus of the present invention called a susceptor.

【図2】図1のX−X線断面図である。FIG. 2 is a sectional view taken along line XX of FIG.

【図3】抵抗発熱体のヒーターパターンを示す模式図で
ある。
FIG. 3 is a schematic view showing a heater pattern of a resistance heating element.

【図4】(a)(b)はセラミック基体の割れ発生状況
を示す模式図である。
FIGS. 4A and 4B are schematic diagrams showing the state of occurrence of cracks in a ceramic substrate.

【図5】(a)(b)は抵抗発熱体の他のヒーターパタ
ーンを示す模式図である。
FIGS. 5A and 5B are schematic diagrams showing another heater pattern of the resistance heating element. FIGS.

【図6】本発明の他のウエハ加熱装置を示す縦断面図で
ある。
FIG. 6 is a longitudinal sectional view showing another wafer heating apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1・・・ウエハ加熱装置、 2・・・セラミック基体、
3・・・保持面、4・・・抵抗発熱体、 5・・・基準
面、 6・・・側面、7・・・外部端子、8・・・導
体、9・・・円筒状支持体、10・・・膜状電極、W・
・・半導体ウエハ
1 ... wafer heating device 2 ... ceramic substrate
3 ... holding surface, 4 ... resistance heating element, 5 ... reference surface, 6 ... side surface, 7 ... external terminal, 8 ... conductor, 9 ... cylindrical support, 10 ... membrane electrode, W
..Semiconductor wafers

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】円盤状をしたセラミック基体の上面をウエ
ハの保持面とし、その内部に抵抗発熱体を埋設してなる
ウエハ加熱装置において、上記保持面とは反対側の下面
を基準面とし、該基準面から上記セラミック基体の厚み
の0.02〜0.6倍の距離に前記抵抗発熱体を配置す
るとともに、この抵抗発熱体の存在領域が略円形であっ
て、その最外周が上記セラミック基体の側面から35m
m以内にあることを特徴とするウエハ加熱装置。
An upper surface of a disc-shaped ceramic base is used as a wafer holding surface, and a resistance heating element is buried therein. In the wafer heating apparatus, a lower surface opposite to the holding surface is used as a reference surface, The resistance heating element is arranged at a distance of 0.02 to 0.6 times the thickness of the ceramic base from the reference plane, and the area where the resistance heating element is present is substantially circular, and the outermost periphery thereof is the ceramic. 35m from side of base
m, which is within m.
JP23527597A 1997-08-29 1997-08-29 Wafer heating device Expired - Lifetime JP3145664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23527597A JP3145664B2 (en) 1997-08-29 1997-08-29 Wafer heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23527597A JP3145664B2 (en) 1997-08-29 1997-08-29 Wafer heating device

Publications (2)

Publication Number Publication Date
JPH1174064A true JPH1174064A (en) 1999-03-16
JP3145664B2 JP3145664B2 (en) 2001-03-12

Family

ID=16983696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23527597A Expired - Lifetime JP3145664B2 (en) 1997-08-29 1997-08-29 Wafer heating device

Country Status (1)

Country Link
JP (1) JP3145664B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013679A1 (en) * 1999-08-10 2001-02-22 Ibiden Co., Ltd. Ceramic heater
JP2001077182A (en) * 1999-06-09 2001-03-23 Ibiden Co Ltd Ceramic substrate for manufacturing and checking semiconductor
WO2001059833A1 (en) * 2000-02-08 2001-08-16 Ibiden Co., Ltd. Ceramic board for semiconductor production and inspection devices
JP2001351763A (en) * 2000-06-02 2001-12-21 Ibiden Co Ltd Ceramic heater for semiconductor manufacturing- inspecting device
JP2002008826A (en) * 2000-06-16 2002-01-11 Ibiden Co Ltd Ceramic heater for semiconductor manufacturing and inspecting device
JP2002313530A (en) * 2001-04-13 2002-10-25 Sumitomo Electric Ind Ltd Holder for material to be treated
US6475606B2 (en) 2000-01-21 2002-11-05 Ibiden Co., Ltd. Ceramic board for apparatuses for semiconductor manufacture and inspection
US6861165B2 (en) 2000-02-24 2005-03-01 Ibiden Co., Ltd. Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck
US6878907B2 (en) 2000-02-25 2005-04-12 Ibiden Co., Ltd. Ceramic substrate and process for producing the same
US6884972B2 (en) 1999-12-09 2005-04-26 Ibiden Co., Ltd. Ceramic plate for a semiconductor producing/inspecting apparatus
US6887316B2 (en) 2000-04-14 2005-05-03 Ibiden Co., Ltd. Ceramic heater
US7084376B2 (en) 1999-08-10 2006-08-01 Ibiden Co., Ltd. Semiconductor production device ceramic plate
JP2007165901A (en) * 2006-12-13 2007-06-28 Kyocera Corp Wafer supporting member
US7306858B2 (en) 2004-08-04 2007-12-11 Sumitomo Electric Industries, Ltd. Aluminum nitride sintered body
US7341969B2 (en) 2004-10-20 2008-03-11 Sumitomo Electric Industries, Ltd. Aluminum nitride sintered body
US7394043B2 (en) 2002-04-24 2008-07-01 Sumitomo Electric Industries, Ltd. Ceramic susceptor
US8106335B2 (en) 2004-07-05 2012-01-31 Tokyo Electron Limited Processing apparatus and heater unit
WO2018159687A1 (en) * 2017-03-02 2018-09-07 日本碍子株式会社 Wafer heating device
WO2024134728A1 (en) * 2022-12-19 2024-06-27 日本碍子株式会社 Semiconductor manufacturing device member
WO2024204547A1 (en) * 2023-03-31 2024-10-03 日本碍子株式会社 Ceramic structure

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077182A (en) * 1999-06-09 2001-03-23 Ibiden Co Ltd Ceramic substrate for manufacturing and checking semiconductor
US7084376B2 (en) 1999-08-10 2006-08-01 Ibiden Co., Ltd. Semiconductor production device ceramic plate
WO2001013679A1 (en) * 1999-08-10 2001-02-22 Ibiden Co., Ltd. Ceramic heater
US6884972B2 (en) 1999-12-09 2005-04-26 Ibiden Co., Ltd. Ceramic plate for a semiconductor producing/inspecting apparatus
US6475606B2 (en) 2000-01-21 2002-11-05 Ibiden Co., Ltd. Ceramic board for apparatuses for semiconductor manufacture and inspection
US7011874B2 (en) 2000-02-08 2006-03-14 Ibiden Co., Ltd. Ceramic substrate for semiconductor production and inspection devices
WO2001059833A1 (en) * 2000-02-08 2001-08-16 Ibiden Co., Ltd. Ceramic board for semiconductor production and inspection devices
US6861165B2 (en) 2000-02-24 2005-03-01 Ibiden Co., Ltd. Aluminum nitride sintered compact, ceramic substrate, ceramic heater and electrostatic chuck
US6929874B2 (en) 2000-02-24 2005-08-16 Ibiden Co., Ltd. Aluminum nitride sintered body, ceramic substrate, ceramic heater and electrostatic chuck
US6878907B2 (en) 2000-02-25 2005-04-12 Ibiden Co., Ltd. Ceramic substrate and process for producing the same
US6887316B2 (en) 2000-04-14 2005-05-03 Ibiden Co., Ltd. Ceramic heater
JP2001351763A (en) * 2000-06-02 2001-12-21 Ibiden Co Ltd Ceramic heater for semiconductor manufacturing- inspecting device
JP2002008826A (en) * 2000-06-16 2002-01-11 Ibiden Co Ltd Ceramic heater for semiconductor manufacturing and inspecting device
JP2002313530A (en) * 2001-04-13 2002-10-25 Sumitomo Electric Ind Ltd Holder for material to be treated
US7394043B2 (en) 2002-04-24 2008-07-01 Sumitomo Electric Industries, Ltd. Ceramic susceptor
US8106335B2 (en) 2004-07-05 2012-01-31 Tokyo Electron Limited Processing apparatus and heater unit
US7306858B2 (en) 2004-08-04 2007-12-11 Sumitomo Electric Industries, Ltd. Aluminum nitride sintered body
US7341969B2 (en) 2004-10-20 2008-03-11 Sumitomo Electric Industries, Ltd. Aluminum nitride sintered body
JP2007165901A (en) * 2006-12-13 2007-06-28 Kyocera Corp Wafer supporting member
WO2018159687A1 (en) * 2017-03-02 2018-09-07 日本碍子株式会社 Wafer heating device
US11515180B2 (en) 2017-03-02 2022-11-29 Ngk Insulators, Ltd. Wafer-heating device
WO2024134728A1 (en) * 2022-12-19 2024-06-27 日本碍子株式会社 Semiconductor manufacturing device member
WO2024204547A1 (en) * 2023-03-31 2024-10-03 日本碍子株式会社 Ceramic structure
WO2024202025A1 (en) * 2023-03-31 2024-10-03 日本碍子株式会社 Ceramic structure

Also Published As

Publication number Publication date
JP3145664B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
JP3145664B2 (en) Wafer heating device
US6960743B2 (en) Ceramic substrate for semiconductor manufacturing, and method of manufacturing the ceramic substrate
JP3477062B2 (en) Wafer heating device
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
JP5174582B2 (en) Bonding structure
JP5236927B2 (en) Corrosion-resistant laminated ceramic members
JP4531004B2 (en) Heating device
JPH11260534A (en) Heating apparatus and manufacture thereof
JP2005210077A (en) Electrostatic chuck and manufacturing method therefor, and alumina sintered member and manufacturing method therefor
JP2002313899A (en) Substrate holding structure and substrate processor
JPH11339939A (en) Ceramic heater
JP2005109169A (en) Substrate-heating device and manufacturing method thereof
JP6389802B2 (en) Heating apparatus and manufacturing method thereof
JP2007201068A (en) Electrostatic chuck
JP2005057234A (en) Electrostatic chuck
JP4596883B2 (en) Annular heater
JP4566213B2 (en) Heating apparatus and manufacturing method thereof
JP2001007189A (en) Electrostatic chuck and its manufacture
JP3728078B2 (en) Plasma generating material
JP2010016304A (en) Corrosion-resistant laminated ceramics member
JP2005150370A (en) Electrostatic chuck
JP2003045765A (en) Wafer-supporting member
JP4744016B2 (en) Manufacturing method of ceramic heater
JPH11162620A (en) Ceramic heater and its temperature equalizing method
JP2002025912A (en) Susceptor for semiconductor manufacturing device and semiconductor manufacturing device using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 13

EXPY Cancellation because of completion of term