JPH11339939A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JPH11339939A
JPH11339939A JP15038198A JP15038198A JPH11339939A JP H11339939 A JPH11339939 A JP H11339939A JP 15038198 A JP15038198 A JP 15038198A JP 15038198 A JP15038198 A JP 15038198A JP H11339939 A JPH11339939 A JP H11339939A
Authority
JP
Japan
Prior art keywords
heating element
cylindrical support
ceramic
resistance heating
ceramic heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15038198A
Other languages
Japanese (ja)
Other versions
JP3631614B2 (en
Inventor
Hidenori Nakama
英徳 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15495763&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH11339939(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP15038198A priority Critical patent/JP3631614B2/en
Publication of JPH11339939A publication Critical patent/JPH11339939A/en
Application granted granted Critical
Publication of JP3631614B2 publication Critical patent/JP3631614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic heater provided with a cylindrical support in which a temperature distribution of the surface can be uniformalized and a rapid rise of a temperature of 20 deg.C/min or more can be realized. SOLUTION: In a ceramic heater in which an upper surface of a ceramic body in which a resistant heating element 4 having an approximately concentric heating element pattern Q is buried is a surface to place an object W to be heated and a cylindrical support made of ceramics is joined to a lower surface of the ceramic body described above, when a zone of an area Q1 positioned at an inner side than the cylindrical supporting body of the heating element pattern Q described above is defined as S1, resistance of a resistant heating element 4a in the area Q1 is defined as R1, a zone of an area Q2 positioned at an outer side than the cylindrical supporting body of the heating element pattern Q described above is defined as S2 and resistance of a resistant heating element 4b in the area Q2 is defined as R1, R1/S1 is made 3-60% larger than R2/S2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックヒータ
に関し、特に、CVD、PVD、スパッタリングなどの
成膜装置用として使用されるセラミックヒータ、その中
でも半導体製造装置用セラミックヒータとして好適なも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic heater, and more particularly, to a ceramic heater used for a film forming apparatus such as CVD, PVD, sputtering, etc., and particularly suitable as a ceramic heater for a semiconductor manufacturing apparatus.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程において、
半導体ウエハ(以下、ウエハと称す。)に薄膜を形成す
るCVD、PVD、スパッタリングなどの成膜装置には
ウエハを各種処理温度に加熱するための熱源としてステ
ンレスヒータが使用されていた。
2. Description of the Related Art Conventionally, in the manufacturing process of a semiconductor device,
In a film forming apparatus for forming a thin film on a semiconductor wafer (hereinafter, referred to as a wafer) such as CVD, PVD, and sputtering, a stainless steel heater has been used as a heat source for heating the wafer to various processing temperatures.

【0003】しかしながら、成膜装置では、デポジショ
ン用ガスやクリーニング用ガスとして塩素系やフッ素等
の腐食性の強いハロゲン系ガスが使用されるため、これ
らのハロゲン系ガスに曝されるとパーティクルが発生し
たり、熱効率が悪くなるため、成膜する膜質や膜厚みに
悪影響を与えるといった問題点があった。
However, since a highly corrosive halogen-based gas such as chlorine-based or fluorine-based gas is used as a deposition gas or a cleaning gas in a film forming apparatus, particles are exposed to these halogen-based gases. However, there is a problem that the quality and the thickness of the film to be formed are adversely affected because of the occurrence of the heat and the poor thermal efficiency.

【0004】こうした問題点を解決するために、耐食性
に優れた緻密なセラミック体中に抵抗発熱体を埋設して
なるセラミックヒータが提案されている。
[0004] In order to solve these problems, there has been proposed a ceramic heater in which a resistance heating element is embedded in a dense ceramic body having excellent corrosion resistance.

【0005】図5(a)(b)にセラミックヒータ11
の一般的な構造を示すように、11はセラミックヒータ
で、円盤状をした緻密なセラミック体12からなり、そ
の内部には例えば図6に示すような渦巻き状をした発熱
パターンPを有する抵抗発熱体14が埋設され、該抵抗
発熱体14はタングステンやモリブデンなどの単一の材
料からなり、同一線幅、同一線厚みに構成されていた。
また、上記セラミック体12の上面はウエハ等の被加熱
物Wを載置しつつ所定の温度に加熱するための載置面1
3とし、上記セラミック体12の下面中央にはセラミッ
クヒータ11を反応処理室(不図示)内に設置するため
のセラミックスからなる筒状支持体16が接合してあ
り、該筒状支持体16により反応処理室の内外を気密に
シールするとともに、上記筒状支持体16の内側より前
記抵抗発熱体14に通電するための給電端子15を反応
処理室外へ取り出するようになっていた(特公平6−2
8258号公報参照)。
FIGS. 5A and 5B show a ceramic heater 11.
As shown in FIG. 6, reference numeral 11 denotes a ceramic heater, which is composed of a disc-shaped dense ceramic body 12 and has a resistance heating element having a spiral heating pattern P as shown in FIG. The body 14 is embedded, and the resistance heating element 14 is made of a single material such as tungsten or molybdenum, and has the same line width and the same line thickness.
The upper surface of the ceramic body 12 is a mounting surface 1 for heating an object W to be heated such as a wafer to a predetermined temperature.
A cylindrical support 16 made of ceramics for mounting the ceramic heater 11 in a reaction processing chamber (not shown) is joined to the center of the lower surface of the ceramic body 12. The inside and outside of the reaction processing chamber are hermetically sealed, and a power supply terminal 15 for supplying electricity to the resistance heating element 14 is taken out of the reaction processing chamber from the inside of the cylindrical support 16 (Japanese Patent Publication No. Hei 6 (1994)). -2
No. 8258).

【0006】[0006]

【発明が解決しようとする課題】ところで、成膜工程で
はこれまでウエハに成膜する膜材質としてW膜が用いら
れていたが、近年、膜材質の多様化によりTi膜、Si
2 膜、WSix膜が使用されるようになり、これに伴
ってこれまで処理温度が400℃程度であったものが5
00℃〜900℃の処理温度で成膜することが要求され
ている。また、生産性を高めるためには処理時間、特に
セラミックヒータ11を所定の処理温度に加熱するまで
の昇温時間を極力短くする必要があり、これまで5〜1
0℃/minの昇温速度であったものを20℃/min
以上の急速昇温が要求されていた。ところが、上記セラ
ミックヒータ11を発熱させると、筒状支持体16を介
して反応処理室へ熱が逃げる熱引けが起こるため、筒状
支持体16が位置するセラミックヒータ11の中央にお
ける熱容量が周縁より小さくなり、載置面13の均熱性
が阻害されるといった課題があった。その為、成膜毎に
膜質や膜厚みが異なり、一定品質の薄膜を安定して成膜
することができなかった。
In the film forming process, a W film has been used as a film material to be formed on a wafer.
O 2 film and WSix film have been used, and the processing temperature of about 400 ° C.
It is required to form a film at a processing temperature of 00 ° C to 900 ° C. Further, in order to increase the productivity, it is necessary to shorten the processing time, especially the time required to heat the ceramic heater 11 to a predetermined processing temperature, as short as possible.
What was at a heating rate of 0 ° C./min was changed to 20 ° C./min.
The above rapid temperature rise was required. However, when the ceramic heater 11 is heated, heat is released from the ceramic heater 11 through the cylindrical support 16 to the reaction processing chamber, so that the heat capacity at the center of the ceramic heater 11 where the cylindrical support 16 is located is larger than the peripheral edge. There has been a problem that the size of the mounting surface 13 becomes small and the uniformity of the mounting surface 13 is impaired. For this reason, the film quality and film thickness are different for each film formation, and a thin film of constant quality cannot be stably formed.

【0007】しかも、この熱引けが大きくなるとセラミ
ックヒータ11に大きな熱応力が発生し、セラミックヒ
ータ11にクラックが発生して割れてしまうといった問
題点もあった。特に、この問題点はセラミックヒータ1
1の大型化、昇温速度の向上によりますます顕著な問題
となっていた。
Moreover, when the heat shrinkage becomes large, a large thermal stress is generated in the ceramic heater 11, and there is a problem that the ceramic heater 11 is cracked and broken. In particular, the problem is that the ceramic heater 1
However, the increase in the size and the increase in the temperature raising rate have caused an increasingly prominent problem.

【0008】[0008]

【課題を解決するための手段】そこで、本発明は上記課
題に鑑み、略同心円状又は略渦巻き状をした発熱パター
ンを有する抵抗発熱体を埋設してなるセラミック体の上
面を被加熱物の載置面とし、上記セラミック体の下面に
セラミックスからな筒状支持体を接合してなるセラミッ
クヒータにおいて、上記発熱パターンのうち筒状支持体
より内側に位置する領域の面積をS1、該筒状支持体よ
り内側に位置する領域における抵抗発熱体の抵抗値をR
1とし、上記発熱パターンのうち筒状支持体より外側に
位置する領域の面積をS2、該筒状支持体より外側に位
置する領域における抵抗発熱体の抵抗値をR2とした
時、R1/S1をR2/S2に対して3〜60%の範囲
で大きくしたことを特徴とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a ceramic body having a resistance heating element having a substantially concentric or substantially spiral heating pattern embedded therein. In a ceramic heater in which a cylindrical support made of ceramics is joined to a lower surface of the ceramic body as a mounting surface, the area of a region of the heat generation pattern located inside the cylindrical support is defined as S1, The resistance value of the resistance heating element in the region located inside the body is R
When the area of a region located outside the cylindrical support in the heat generation pattern is S2 and the resistance value of the resistance heating element in the region located outside the cylindrical support is R2, R1 / S1 Is increased in the range of 3 to 60% of R2 / S2.

【0009】[0009]

【作用】本発明によれば、筒状支持体より内側に位置す
る領域における抵抗発熱体の単位面積当たりの抵抗値
(R1/S1)を、筒状支持体より外側に位置する領域
における抵抗発熱体の単位面積当たりの抵抗値(R2/
S2)より大きくしてあることから、筒状支持体を介し
て熱引きされる温度を補い載置面の温度分布を均一化す
ることができる。また、その抵抗値(R1/S1)は抵
抗値(R2/S2)に対して3〜60%としてあること
から、20℃/min以上の速度で急速に昇温しても割
れないセラミックヒータを実現することができる。
According to the present invention, the resistance per unit area (R1 / S1) of the resistance heating element in the area located inside the cylindrical support is reduced by the resistance heating in the area located outside the cylindrical support. Resistance per unit area of body (R2 /
S2) Since the temperature is set to be larger than that, it is possible to compensate for the temperature drawn by the heat through the cylindrical support and make the temperature distribution on the mounting surface uniform. In addition, since the resistance value (R1 / S1) is set to 3 to 60% of the resistance value (R2 / S2), a ceramic heater which does not crack even if the temperature is rapidly increased at a rate of 20 ° C./min or more is used. Can be realized.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
Embodiments of the present invention will be described below.

【0011】図1(a)は本発明のセラミックヒータを
示す斜視図、(b)は(a)のX−X線断面図であり、
抵抗発熱体4を埋設してなる円盤状をしたセラミック体
2からなり、該セラミック体2の上面を被加熱物Wの載
置面3としてある。また、上記セラミック体2の下面中
央にはセラミックヒータ1を反応処理室(不図示)内に
設置するためのセラミックスからなる筒状支持体6を接
合してあり、該筒状支持体6によって反応処理室の内外
を気密にシールするとともに、上記筒状支持体6の内側
より前記抵抗発熱体4へ通電するための給電端子5を反
応処理室外へ取り出するようになっている。
FIG. 1A is a perspective view showing a ceramic heater of the present invention, and FIG. 1B is a sectional view taken along line XX of FIG.
The disk-shaped ceramic body 2 in which the resistance heating element 4 is embedded is used. The upper surface of the ceramic body 2 serves as the mounting surface 3 of the object to be heated W. At the center of the lower surface of the ceramic body 2, a cylindrical support 6 made of ceramics for mounting the ceramic heater 1 in a reaction processing chamber (not shown) is joined. The inside and outside of the processing chamber are hermetically sealed, and a power supply terminal 5 for supplying electricity to the resistance heating element 4 is taken out from the inside of the tubular support 6 to the outside of the reaction processing chamber.

【0012】また、上記セラミック体2中に埋設する抵
抗発熱体4の発熱パターンは、例えば、図2に示すよう
な略同心円状としてあり、上記発熱パターンQが占める
面積をSとした時、面積Sは載置面3全体の80%以上
となるようにしてある。なお、発熱パターンQのパター
ン形状としては図2に示したものだけに限定されるもの
ではなく、図6に示す渦巻き状をしたものなど載置面3
を均一に加熱できるパーン形状であれば良い。
The heating pattern of the resistance heating element 4 embedded in the ceramic body 2 is, for example, substantially concentric as shown in FIG. S is set to be 80% or more of the entire mounting surface 3. The pattern shape of the heat generation pattern Q is not limited to that shown in FIG. 2, but may be a spiral shape shown in FIG.
Any shape may be used as long as it can be heated uniformly.

【0013】そして、本発明は、上記発熱パターンQの
うち筒状支持体6の最外周より内側に位置する領域Q1
の面積をS1、上記筒状支持体6の最外周より内側に位
置する領域Q1における抵抗発熱体4aの抵抗値をR1
とするとともに、上記発熱パターンQのうち筒状支持体
6の最外周より外側に位置する領域Q2の面積をS2、
上記筒状支持体6の最外周より外側に位置する領域Q2
における抵抗発熱体4bの抵抗値をR2とした時、上記
筒状支持体6の内側に位置する領域Q1における抵抗発
熱体4aの単位面積当たりの抵抗値(R1/S1)を、
上記筒状支持体6の外側に位置する領域Q2における抵
抗発熱体4bの単位面積当たりの抵抗値(R2/S2)
より大きくしたことを特徴とする。
According to the present invention, the heat generating pattern Q includes a region Q1 located inside the outermost periphery of the cylindrical support 6.
And the resistance value of the resistance heating element 4a in a region Q1 located inside the outermost periphery of the cylindrical support 6 is R1.
And the area of a region Q2 located outside the outermost periphery of the tubular support 6 in the heat generation pattern Q is S2,
A region Q2 located outside the outermost periphery of the cylindrical support 6
When the resistance value of the resistance heating element 4b is R2, the resistance value (R1 / S1) per unit area of the resistance heating element 4a in the region Q1 located inside the cylindrical support 6 is
Resistance per unit area (R2 / S2) of resistance heating element 4b in region Q2 located outside cylindrical support 6
It is characterized by being made larger.

【0014】即ち、上記セラミックヒータ1を発熱させ
ると、筒状支持体6を介して反応処理室側へ熱が奪われ
て熱引けが発生し、載置面3の均熱化が阻害されるとと
もに、特に昇温時において、筒状支持体6が接合されて
いるセラミックヒータ1の中央と、筒状支持体6が接合
されていないセラミックヒータ1の周縁との境界に大き
な熱応力が発生し、セラミックヒータ1が割れてしまう
といった恐れがあるが、本発明では、発熱パターンQの
筒状支持体6より内側に位置する領域Q1における抵抗
発熱体4aの単位面積当たりの抵抗値(R1/S1)
を、筒状支持体6より外側に位置する領域Q2における
抵抗発熱体4bの単位面積当たりの抵抗値(R2/S
2)より大きくし、筒状支持体6が接合されているセラ
ミックヒータ1の中央の発熱量を周縁より大きくしてあ
ることから、熱引けに伴う温度損失を補い、載置面6の
温度分布を均一化することができるとともに、昇温時に
おいてセラミックヒータ1の中央の発熱量を周縁より大
きくできるため、セラミックヒータ1に発生する熱応力
を緩和し、急速昇温によるセラミックヒータ1の破損を
防ぐことができる。
That is, when the ceramic heater 1 generates heat, heat is taken out to the reaction processing chamber side through the cylindrical support 6 to cause heat shrinkage, thereby hindering the soaking of the mounting surface 3. At the same time, particularly at the time of temperature rise, large thermal stress is generated at the boundary between the center of the ceramic heater 1 to which the tubular support 6 is joined and the peripheral edge of the ceramic heater 1 to which the tubular support 6 is not joined. According to the present invention, the resistance value per unit area (R1 / S1) of the resistance heating element 4a in the region Q1 of the heating pattern Q located inside the cylindrical support 6 may be broken. )
With the resistance value (R2 / S) per unit area of the resistance heating element 4b in the region Q2 located outside the cylindrical support 6.
2) Since the heating value is made larger and the calorific value at the center of the ceramic heater 1 to which the tubular support 6 is joined is made larger than the peripheral edge, the temperature loss due to heat shrinkage is compensated and the temperature distribution of the mounting surface 6 Can be made uniform and the amount of heat generated at the center of the ceramic heater 1 at the time of temperature rise can be made larger than that at the periphery, so that thermal stress generated in the ceramic heater 1 is reduced, and damage to the ceramic heater 1 due to rapid temperature rise is prevented. Can be prevented.

【0015】ただし、上記抵抗値(R1/S1)は抵抗
値(R2/S2)に対して3〜60%の範囲で大きくす
ることが重要であり、好ましくは5〜20%の範囲で大
きくすることが良い。
However, it is important to increase the resistance value (R1 / S1) in the range of 3 to 60% with respect to the resistance value (R2 / S2), preferably in the range of 5 to 20%. Good.

【0016】これは抵抗値(R1/S1)が抵抗値(R
2/S2)に対して3%未満であると、筒状支持体6か
らの熱引けに伴う温度損失を補えず、載置面3の中央に
おける温度が周縁より低くなり、均一な温度分布を得る
ことができなくなるとともに、昇温時にセラミックヒー
タ1に大きな熱応力が発生し、割れてしまう恐れがある
からであり、逆に、抵抗値(R1/S1)が抵抗値(R
2/S2)に対して60%より大きくなると、筒状支持
体6からの温度損失より抵抗発熱体4aによる発熱量が
大きくなり過ぎるために、載置面3の中央における温度
が周縁より高くなり、均一な温度分布を得ることができ
なくなるとともに、昇温時に発生する熱応力が非常に大
きくなりセラミックヒータ1が割れてしまうからであ
る。
This is because the resistance value (R1 / S1) is equal to the resistance value (R
If it is less than 3% with respect to 2 / S2), the temperature loss due to heat dissipation from the cylindrical support 6 cannot be compensated for, the temperature at the center of the mounting surface 3 becomes lower than the peripheral edge, and a uniform temperature distribution is obtained. This is because the ceramic heater 1 cannot be obtained and a large thermal stress is generated in the ceramic heater 1 at the time of raising the temperature, and the ceramic heater 1 may be broken. On the contrary, the resistance value (R1 / S1) is changed to the resistance value (R1).
If 2 / S2) is more than 60%, the amount of heat generated by the resistance heating element 4a becomes too large due to the temperature loss from the cylindrical support 6, so that the temperature at the center of the mounting surface 3 becomes higher than the peripheral edge. This is because a uniform temperature distribution cannot be obtained, and the thermal stress generated at the time of temperature rise becomes extremely large, so that the ceramic heater 1 is broken.

【0017】なお、筒状支持体6が接合されたセラミッ
クヒータ1から抵抗値(R1/S1)と抵抗値(R2/
S2)を求める方法としては、例えば、図2に示す発熱
パターンQを有するセラミックヒータ1の場合、まず、
筒状支持体6を切除し、X線を当ててセラミック体2中
に埋設されている発熱パターンQの形状を解析し、筒状
支持体6より内側に位置する領域Q1の面積をS1、上
記筒状支持体6外側に位置する領域Q2の面積をS2と
して算出する。
The resistance value (R1 / S1) and the resistance value (R2 / S1) are output from the ceramic heater 1 to which the cylindrical support 6 is joined.
As a method for obtaining S2), for example, in the case of the ceramic heater 1 having the heat generation pattern Q shown in FIG.
The tubular support 6 is cut off, and the shape of the heat generation pattern Q embedded in the ceramic body 2 is analyzed by applying X-rays. The area of a region Q1 located inside the tubular support 6 is defined as S1, The area of the region Q2 located outside the cylindrical support 6 is calculated as S2.

【0018】一方、筒状支持体6より内側に位置する領
域Q1における抵抗発熱体4aの抵抗値R1と筒状支持
体6より外側に位置する領域Q2における抵抗発熱体4
bの抵抗値R2は、セラミック体2を筒状支持体6の最
外周が位置していた部分で円板状のセラミック体とリン
グ状のセラミック体に2分割し、円板状のセラミック体
に埋設されている抵抗値をR1、リング状のセラミック
体に埋設されている抵抗値をR2としてそれぞれ測定
し、これらの値から抵抗値(R1/S1)と抵抗値(R
2/S2)を算出すれば良い。
On the other hand, the resistance value R1 of the resistance heating element 4a in the region Q1 located inside the cylindrical support 6 and the resistance heating element 4 in the region Q2 located outside the cylindrical support 6
The resistance value R2 of b is such that the ceramic body 2 is divided into a disk-shaped ceramic body and a ring-shaped ceramic body at the portion where the outermost periphery of the cylindrical support 6 is located, and The resistance value buried in the ring-shaped ceramic body was measured as R1 and the resistance value buried in the ring-shaped ceramic body was measured as R2. From these values, the resistance value (R1 / S1) and the resistance value (R
2 / S2) may be calculated.

【0019】ところで、抵抗発熱体4a,4bの単位面
積当たりの抵抗値(R1/S1),(R2/S2)を変
化させるには以下の方法がある。
Incidentally, there are the following methods for changing the resistance values (R1 / S1) and (R2 / S2) per unit area of the resistance heating elements 4a and 4b.

【0020】〔抵抗発熱体4をスクリーン印刷にて形成
する場合〕 抵抗発熱体4a,4bの厚みを一定とし、抵抗発熱
体4aと抵抗発熱体4bの線幅を異ならせる方法。即
ち、抵抗発熱体4aの線幅を抵抗発熱体4bの線幅より
細くする。
[When the Resistance Heating Element 4 is Formed by Screen Printing] A method in which the thicknesses of the resistance heating elements 4a and 4b are fixed and the line widths of the resistance heating elements 4a and 4b are different. That is, the line width of the resistance heating element 4a is made smaller than the line width of the resistance heating element 4b.

【0021】 抵抗発熱体4a,4bの線幅を一定と
し、抵抗発熱体4aと抵抗発熱体4bの厚みを異ならせ
る方法。即ち、スクリーン印刷にて抵抗発熱体4と抵抗
発熱体4bを印刷したあと、抵抗発熱体4bに相当する
部分に再度スクリーン印刷にて抵抗発熱体を重ねる。
A method in which the line widths of the resistance heating elements 4a and 4b are fixed and the thicknesses of the resistance heating elements 4a and 4b are different. That is, after the resistance heating element 4 and the resistance heating element 4b are printed by screen printing, the resistance heating element is again superimposed on the portion corresponding to the resistance heating element 4b by screen printing.

【0022】 抵抗発熱体4a,4bの厚み、線幅と
も一定とし、抵抗発熱体4aと抵抗発熱体4bの組成を
異ならせる方法。例えば、抵抗発熱体を主にタングステ
ンよって形成する場合、抵抗発熱体4bに含有させる炭
化タングステンの添加量を抵抗発熱体4aに含有させる
炭化タングステンの添加量より多くすることにより、抵
抗発熱体4aの単位面積当たりの抵抗値(R1/S1)
を抵抗発熱体4bの単位面積当たりの抵抗値(R2/S
2)より大きくできる。
A method in which the thicknesses and line widths of the resistance heating elements 4a and 4b are constant, and the compositions of the resistance heating elements 4a and 4b are different. For example, when the resistance heating element is mainly made of tungsten, the amount of tungsten carbide to be contained in the resistance heating element 4b is made larger than the amount of tungsten carbide to be contained in the resistance heating element 4a. Resistance value per unit area (R1 / S1)
Is the resistance value per unit area of the resistance heating element 4b (R2 / S
2) It can be larger.

【0023】〔抵抗発熱体4に線材を用いる場合〕 抵抗発熱体4a,4bの線径を一定とし、抵抗発熱
体4aと抵抗発熱体4bの巻き数を変更する方法。即
ち、抵抗発熱体4aの巻き数を抵抗発熱体4bより多く
する。
[When a Wire is Used for the Resistance Heating Element 4] A method in which the wire diameters of the resistance heating elements 4a and 4b are fixed and the number of turns of the resistance heating element 4a and the resistance heating element 4b is changed. That is, the number of turns of the resistance heating element 4a is made larger than that of the resistance heating element 4b.

【0024】また、上記方法による抵抗発熱体4を埋設
するセラミックヒータ1の製造方法としては次の2つの
方法がある。
There are the following two methods for manufacturing the ceramic heater 1 in which the resistance heating element 4 is embedded by the above method.

【0025】まず、第一の方法は、高融点金属や導電性
セラミックスを含む導体インクを作製し、これをセラミ
ック体2を構成するセラミックグリーンシート上に例え
ば図2に示す発熱パターンQを〜の方法を用いてス
クリーン印刷したあと、上記発熱パターンQを覆うよう
に上記セラミックグリーンシート上に他のセラミックグ
リーンシートを積み重ねてグリーンシート積層体を製作
する。そして、このグリーンシート積層体に切削加工を
施して所定形状に形成したものを各種セラミック原料を
焼結させることができる温度にて焼成することにより、
抵抗発熱体4を埋設してなるセラミック体2を形成す
る。
First, a first method is to prepare a conductive ink containing a high melting point metal or a conductive ceramic, and to form a heat generating pattern Q shown in FIG. After screen printing using the method, another ceramic green sheet is stacked on the ceramic green sheet so as to cover the heating pattern Q, thereby producing a green sheet laminate. Then, by firing this green sheet laminate at a temperature at which various ceramic materials can be sintered by subjecting the green sheet laminate to a cutting process to form a predetermined shape,
The ceramic body 2 in which the resistance heating element 4 is embedded is formed.

【0026】第二の方法は、抵抗発熱体4として高融点
金属からなる線材を用い、該線材をの方法にて螺旋状
に巻線したものを例えば図2に示す発熱パターンQに配
置してセラミック原料中に埋置し、ホットプレス法にて
焼結一体化したあと、研削加工を施して所定形状に形成
することにより、抵抗発熱体4を埋設してなるセラミッ
ク体2を形成する。
In the second method, a wire made of a high melting point metal is used as the resistance heating element 4 and the wire is spirally wound by the above method and arranged in a heating pattern Q shown in FIG. 2, for example. The ceramic body 2 in which the resistance heating element 4 is embedded is formed by embedding in a ceramic raw material, sintering and integrating by a hot press method, and then performing grinding to form a predetermined shape.

【0027】これらの方法により得られたセラミック体
2は、一方の主面に研磨加工を施して載置面3を形成す
るとともに、他方の主面に抵抗発熱体4に連通する凹部
を穿設し、該凹部に給電端子5をロウ付け等の方法にて
接合することによりセラミックヒータ1を形成する。
In the ceramic body 2 obtained by these methods, a mounting surface 3 is formed by polishing one main surface, and a concave portion communicating with the resistance heating element 4 is formed in the other main surface. Then, the ceramic heater 1 is formed by joining the power supply terminal 5 to the concave portion by a method such as brazing.

【0028】一方、筒状支持体6は、セラミック原料を
射出成形法、押し出し成形法、静水圧プレス成形法など
通常のセラミック成形法にて所定の筒状に形成したあ
と、上記セラミック原料を焼結させることができる温度
にて焼成して形成する。
On the other hand, the cylindrical support 6 is formed by forming a ceramic material into a predetermined cylindrical shape by a usual ceramic molding method such as an injection molding method, an extrusion molding method, an isostatic press molding method, and then firing the ceramic material. It is formed by firing at a temperature at which it can be bonded.

【0029】そして、上記セラミック体2の給電端子5
を内包するように上記セラミック体2の下面中央に筒状
支持体6をガラス接合や拡散接合にて接合するか、ある
いは上記セラミック体2と筒状支持体6とが同種のセラ
ミックスからなる場合、上記セラミック原料の泥漿をセ
ラミック体2と筒状支持体6の接合面間に介在させ、焼
結一体化することによりセラミックヒータ1を得ること
ができる。
The power supply terminal 5 of the ceramic body 2
When the cylindrical support 6 is bonded to the center of the lower surface of the ceramic body 2 by glass bonding or diffusion bonding so as to include the ceramic body 2, or when the ceramic body 2 and the cylindrical support 6 are made of the same type of ceramic, The ceramic heater 1 can be obtained by interposing the slurry of the ceramic raw material between the joining surfaces of the ceramic body 2 and the cylindrical support 6 and sintering and integrating them.

【0030】ただし、上記発熱パターンQにおいて、筒
状支持体6より内側に位置する領域Q1における抵抗発
熱体4aの単位面積当たりの抵抗値(R1/S1)と筒
状支持体6より外側に位置する領域Q2における抵抗発
熱体4bの単位面積当たりの抵抗値(R2/S2)を前
記範囲で設定したとしてもセラミック体2の熱伝導率が
40W/mk未満であると、抵抗発熱体4の発熱を効率
良くセラミック体2全体に伝えることができないため
に、セラミック材料による均熱化作用が無くなり、特に
大型のセラミックヒータ1では載置面3の均熱化が達成
できない。しかも、セラミック体2の厚みが厚くなる
と、セラミック体2の厚み方向に温度分布が生じ、熱応
力が発生して抵抗発熱体4を埋設した界面からクラック
が発生することもある。
However, in the heating pattern Q, the resistance per unit area (R1 / S1) of the resistance heating element 4a in the area Q1 located inside the cylindrical support 6 and the resistance value outside the cylindrical support 6 Even if the resistance value (R2 / S2) per unit area of the resistance heating element 4b in the region Q2 is set in the above range, if the thermal conductivity of the ceramic body 2 is less than 40 W / mk, the heat generation of the resistance heating element 4 will occur. Cannot be transmitted to the entire ceramic body 2 efficiently, so that the ceramic material does not have a soaking action. In particular, in the case of the large ceramic heater 1, the mounting surface 3 cannot be soaked. In addition, when the thickness of the ceramic body 2 is increased, a temperature distribution is generated in the thickness direction of the ceramic body 2, and thermal stress is generated, and a crack may be generated from an interface in which the resistance heating element 4 is embedded.

【0031】しかも、成膜装置ではデポジション用ガス
やクリーニング用ガスとして塩素系やフッ素等の腐食性
の強いハロゲン系ガスが使用されているため、これらの
ハロゲン系ガスに対して耐食性の高いことが必要とな
る。
In addition, since a highly corrosive halogen-based gas such as chlorine-based gas or fluorine-based gas is used as a deposition gas or a cleaning gas in the film forming apparatus, it must have high corrosion resistance to these halogen-based gases. Is required.

【0032】その為、セラミック体2を構成するセラミ
ックスとしては熱伝導率が40W/mk以上でかつハロ
ゲン系ガスに対する優れた耐食性を有するセラミックス
により形成することが重要であり、可能な限り熱伝導率
の高いものが望ましい。
Therefore, it is important that the ceramic constituting the ceramic body 2 is formed of a ceramic having a thermal conductivity of 40 W / mk or more and having excellent corrosion resistance to a halogen-based gas. Is desirable.

【0033】具体的には、アルミナ、窒化アルミニウ
ム、窒化硼素を主成分とするセラミックスを用いること
ができ、これらの中でも窒化アルミニウムを主成分とす
るセラミックスが好ましい。
Specifically, ceramics mainly composed of alumina, aluminum nitride and boron nitride can be used, and among these, ceramics mainly composed of aluminum nitride are preferable.

【0034】また、上記セラミック体2に接合する筒状
支持体6の熱伝達率は、セラミック体2の熱伝達率と同
等あるいはそれ以上とすることが望ましい。これは、筒
状支持体6の熱伝達率がセラミック体2よりも極端に低
いと、セラミックヒータ1を発熱させたときの熱伝搬が
非常に少なく、セラミック体2と筒状支持体6との接合
界面に熱応力が集中して筒状支持体6が接合界面より剥
離してしまうからである。なお、筒状支持体6を構成す
るセラミックスとしては、セラミック体2と同様のアル
ミナ、窒化アルミニウム、窒化硼素を主成分とするセラ
ミックスを用いることができ、特に、接合強度を高める
観点からセラミック体2と同種のセラミックス、さらに
はセラミック体2と同一のセラミックスにより形成する
ことが良い。なお、同種のセラミックスとは、主成分が
同じであることを言い、同一のセラミックスとは主成分
は勿論のこと組成や特性が同じセラミックスのことを言
う。
The heat transfer coefficient of the cylindrical support 6 bonded to the ceramic body 2 is desirably equal to or higher than the heat transfer coefficient of the ceramic body 2. This is because when the heat transfer coefficient of the cylindrical support 6 is extremely lower than that of the ceramic body 2, the heat propagation when the ceramic heater 1 generates heat is very small, and the heat transfer between the ceramic body 2 and the cylindrical support 6 is small. This is because thermal stress is concentrated on the bonding interface and the cylindrical support 6 is separated from the bonding interface. In addition, as the ceramics constituting the cylindrical support 6, the same ceramics as the ceramic body 2 containing alumina, aluminum nitride, and boron nitride as main components can be used. It is preferable to use ceramics of the same type as above, and furthermore, the same ceramics as the ceramic body 2. The same type of ceramics means that the main components are the same, and the same ceramics refers to ceramics having the same composition and characteristics as well as the main components.

【0035】さらに、上記セラミック体2中に埋設する
抵抗発熱体4としては、タングステン、モリブデン、白
金、レニウム等の高融点金属やこれらの合金、あるいは
周期律表第4a,5a,6a族元素の炭化物や窒化物を
用いることができ、セラミック体2を構成するセラミッ
クスとの熱膨張差が近似したものを適宜選択して用いれ
ば良い。
Further, the resistance heating element 4 embedded in the ceramic body 2 may be a high melting point metal such as tungsten, molybdenum, platinum, rhenium, or an alloy thereof, or an element of a group 4a, 5a, 6a of the periodic table. Carbides and nitrides can be used, and those having a similar thermal expansion difference to the ceramics constituting the ceramic body 2 may be appropriately selected and used.

【0036】かくして、本発明のセラミックヒータ1を
用いれば、処理温度での温度バラツキが10%以内とな
るような均一な温度分布を得ることができるとともに、
従来では成し得なかった20℃/min以上の急速な昇
温においても割れることがない。
Thus, by using the ceramic heater 1 of the present invention, it is possible to obtain a uniform temperature distribution such that the temperature variation at the processing temperature is within 10%, and
It does not crack even at a rapid temperature increase of 20 ° C./min or more, which could not be achieved conventionally.

【0037】(実施例)純度99.9%のAlN粉末に
対してバインダー、溶剤、可塑剤等を加え、回転ミルに
て24時間程度混合することにより泥漿を製作したあ
と、ドクターブレード法にてAlNのグリーンシートを
複数枚形成する。
Example A slurry was prepared by adding a binder, a solvent, a plasticizer, and the like to AlN powder having a purity of 99.9%, and mixing the resulting mixture for about 24 hours with a rotary mill, followed by a doctor blade method. A plurality of AlN green sheets are formed.

【0038】一方、抵抗発熱体4として、タングステン
粉末に溶剤、可塑剤、分散材等を加えて回転ミルにて混
合粉砕したあと、バインダーを加えてさらに混合し、真
空脱脂することにより導体インクを製作する。
On the other hand, as the resistance heating element 4, a solvent, a plasticizer, a dispersant, and the like are added to tungsten powder, mixed and pulverized in a rotary mill, a binder is added, and the mixture is further mixed, and the conductive ink is removed by vacuum degreasing. To manufacture.

【0039】そして、前記AlNのグリーンシートを数
枚積み重ねた上に、上記導体インクをスクリーン印刷に
て図2に示すような略同心円状をなし、抵抗発熱体4の
厚みはほぼ一定とした状態で中央に位置する抵抗発熱体
4aの線幅を周縁に位置する抵抗発熱体4bの線幅より
狭くした発熱パターンQを敷設し、該発熱パターンQを
覆うように残りのAlNのグリーンシートを積み重ね、
熱圧着によりグリーンシート積層体を形成した。そし
て、このグリーンシート積層体に切削加工を施して円盤
状に形成したあと、数百℃の窒素雰囲気にて脱脂し、次
いで窒素雰囲気中にて2000〜2010℃の温度にて
焼成することにより、外径が約300mm、厚みが約1
5mmの円盤状をした窒化アルミニウム製のセラミック
体2を製作した。なお、上記セラミック体2を構成する
窒化アルミニウムの組成についてICPにて測定したと
ころ、窒化アルミニウムの含有量が99.8重量%の高
純度窒化アルミニウムセラミックスからなるものであっ
た。
Then, several conductive sheets of AlN are stacked on top of each other, and the conductive ink is screen-printed to form substantially concentric circles as shown in FIG. 2, and the resistance heating element 4 has a substantially constant thickness. The heating pattern Q in which the line width of the resistance heating element 4a located at the center is smaller than the line width of the resistance heating element 4b located at the periphery is laid, and the remaining AlN green sheets are stacked so as to cover the heating pattern Q. ,
A green sheet laminate was formed by thermocompression bonding. Then, after cutting the green sheet laminate to form a disk shape, degreased in a nitrogen atmosphere of several hundred degrees Celsius, and then fired at a temperature of 2000 to 2010 ° C. in a nitrogen atmosphere, Outer diameter about 300mm, thickness about 1
A 5 mm disk-shaped ceramic body 2 made of aluminum nitride was manufactured. When the composition of the aluminum nitride constituting the ceramic body 2 was measured by ICP, it was found that the content of the aluminum nitride was 99.8% by weight and was composed of a high-purity aluminum nitride ceramic.

【0040】また、セラミック体2中に埋設する発熱パ
ターンQのうち、後述にて接合する筒状支持体6より内
側に位置する領域Q1における抵抗発熱体4aの単位面
積当たりの抵抗値(R1/S1)と、上記筒状支持体6
より外側に位置する領域Q2における抵抗発熱体4bの
単位面積当たりの抵抗値(R2/S2)をそれぞれ測定
したところ、0.48Ω/cm2 と0.36Ω/cm2
であり、抵抗値(R1/S1)が抵抗値(R2/S2)
に対して33%高かった。
The resistance value (R1 / R1 / R1) of the resistance heating element 4a in the area Q1 located inside the cylindrical support 6 to be described later among the heating patterns Q embedded in the ceramic body 2. S1) and the cylindrical support 6
The resistance value per unit area (R2 / S2) of the resistance heating element 4b in the region Q2 located on the outer side was measured to be 0.48Ω / cm 2 and 0.36Ω / cm 2.
Where the resistance value (R1 / S1) is the resistance value (R2 / S2)
33% higher.

【0041】次に、得られたセラミック体2の一方の主
面を中心線平均粗さ(Ra)で0.1μmに研磨して載
置面3を形成するとするとともに、上記セラミック体2
の他方の主面に抵抗発熱体4に連通する2つの凹部を穿
設したあと、該凹部にFe−Co−Ni合金からなる給
電端子5を銀銅ロウにてロウ付け固定してセラミックヒ
ータ1を得た。
Next, one of the main surfaces of the obtained ceramic body 2 is polished to a center line average roughness (Ra) of 0.1 μm to form the mounting surface 3, and the ceramic body 2
After two recesses communicating with the resistance heating element 4 are formed in the other main surface of the ceramic heater 1, a power supply terminal 5 made of an Fe—Co—Ni alloy is soldered and fixed to the recess with a silver copper braze. I got

【0042】そして、このセラミックヒータ1の下面
に、外径70mm、厚み10mmの円筒状をした上記セ
ラミック体2と同一の窒化アルミニウムセラミックスか
らなる筒状支持体6を拡散接合した。
A cylindrical support 6 made of the same aluminum nitride ceramics as the cylindrical ceramic body 2 having an outer diameter of 70 mm and a thickness of 10 mm was diffusion-bonded to the lower surface of the ceramic heater 1.

【0043】そこで、このセラミックヒータ1に170
Vの直流電圧を印加して載置面3を設定温度で700℃
に発熱させ、載置面3の温度を放射温度計(商品名:サ
ーモビュアー)にて測定したところ、図3に示すよう
に、載置面3の平均温度が694℃、最も低いところで
も設定温度に対して15℃以内とすることができ、設定
温度700℃に対して2%以内の温度バラツキに抑える
ことができ、優れた均熱性が得られた。
Therefore, the ceramic heater 1
V DC voltage is applied and the mounting surface 3 is set at a set temperature of 700 ° C.
When the temperature of the mounting surface 3 was measured with a radiation thermometer (trade name: Thermoviewer), as shown in FIG. 3, the average temperature of the mounting surface 3 was set at 694 ° C., which was the lowest temperature. The temperature could be kept within 15 ° C., and the temperature variation could be kept within 2% with respect to the set temperature of 700 ° C., and excellent heat uniformity was obtained.

【0044】一方、比較のために、発熱パターンの形状
は図2と同一で、抵抗調整していない抵抗発熱体14を
セラミック体12中に埋設する以外は実施例と同様の方
法にて製作したセラミックヒータ11を試作し、170
Vの直流電圧を印加して載置面13を発熱させたとこ
ろ、図4に示すように、載置面13の平均温度が654
℃、最も低いところでは設定温度に対して114℃も低
くなっており、設定温度700℃に対して16.2%と
温度分布が大きくばらついていた。
On the other hand, for comparison, the shape of the heat generating pattern was the same as that of FIG. 2, and was manufactured in the same manner as in the embodiment except that the resistance heating element 14 whose resistance was not adjusted was embedded in the ceramic body 12. Prototype of ceramic heater 11 and 170
When the mounting surface 13 was heated by applying a DC voltage of V, the average temperature of the mounting surface 13 was 654, as shown in FIG.
The lowest temperature was 114 ° C. lower than the set temperature, and the temperature distribution was greatly varied to 16.2% relative to the set temperature of 700 ° C.

【0045】(実験例1)そこで、実施例におけるセラ
ミックヒータ1において、筒状支持体6より内側に位置
する領域Q1における抵抗発熱体4aの単位面積当たり
の抵抗値(R1/S1)と筒状支持体6より外側に位置
する領域Q2における抵抗発熱体4bの単位面積当たり
の抵抗値(R2/S2)を異ならせた時の載置面3にお
ける温度分布を確認する実験を行った。
(Experimental Example 1) Therefore, in the ceramic heater 1 of the embodiment, the resistance per unit area (R1 / S1) of the resistance heating element 4a in the region Q1 located inside the cylindrical support 6 and the cylindrical shape An experiment was performed to confirm the temperature distribution on the mounting surface 3 when the resistance value per unit area (R2 / S2) of the resistance heating element 4b in the region Q2 located outside the support 6 was changed.

【0046】それぞれの結果は表1に示す通りである。The results are as shown in Table 1.

【0047】この結果、抵抗値(R1/S1)を抵抗値
(R2/S2)に対して3%以上、60%以下とするこ
とにより、載置面3の温度バラツキを10%以内に抑え
られることが判る。特に、抵抗値(R1/S1)を抵抗
値(R2/S2)に対して5%以上、50%以下とすれ
ば、載置面3の温度バラツキを5%以内に抑えることが
でき、優れた均熱性が得られた。
As a result, by setting the resistance value (R1 / S1) to 3% or more and 60% or less with respect to the resistance value (R2 / S2), the temperature variation of the mounting surface 3 can be suppressed within 10%. You can see that. In particular, when the resistance value (R1 / S1) is set to 5% or more and 50% or less with respect to the resistance value (R2 / S2), the temperature variation of the mounting surface 3 can be suppressed to within 5%, which is excellent. A soaking property was obtained.

【0048】[0048]

【表1】 [Table 1]

【0049】(実験例2)次に、実験例1で用いたセラ
ミックヒータ1の昇温速度を異ならせた時のセラミック
ヒータ1の耐久性について調べる実験を行った。
(Experimental Example 2) Next, an experiment was conducted to examine the durability of the ceramic heater 1 when the heating rate of the ceramic heater 1 used in Experimental Example 1 was changed.

【0050】それぞれの結果は表2に示す通りである。The results are shown in Table 2.

【0051】この結果、抵抗値(R1/S1)を抵抗値
(R2/S2)に対して3%以上、60%以下とするこ
とにより、20℃/minの昇温速度としてもセラミッ
クヒータ1に割れを生じることがなく、特に抵抗値(R
1/S1)を抵抗値(R2/S2)に対して5%以上、
20%以下とすることにより、50℃/minの昇温速
度においてもセラミックヒータ1に割れを生じることが
なく優れていた。
As a result, by setting the resistance value (R1 / S1) to 3% or more and 60% or less with respect to the resistance value (R2 / S2), the ceramic heater 1 can be heated at a rate of 20 ° C./min. No cracking occurs, and especially the resistance value (R
1 / S1) is at least 5% of the resistance value (R2 / S2),
By setting the content to 20% or less, the ceramic heater 1 was excellent without cracking even at a heating rate of 50 ° C./min.

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【発明の効果】以上のように、本発明によれば、略同心
円状又は略渦巻き状をした発熱パターンを有する抵抗発
熱体を埋設してなるセラミック体の上面を被加熱物の載
置面とし、上記セラミック体の下面にセラミックスから
な筒状支持体を接合してなるセラミックヒータにおい
て、上記発熱パターンのうち筒状支持体より内側に位置
する領域の面積をS1、該筒状支持体より内側に位置す
る領域における抵抗発熱体の抵抗値をR1とし、上記発
熱パターンのうち筒状支持体より外側に位置する領域の
面積をS2、該筒状支持体より外側に位置する領域にお
ける抵抗発熱体の抵抗値をR2とした時、R1/S1を
R2/S2に対して3〜60%の範囲で大きくしたこと
から、筒状支持体を介して熱引きされる温度を補い載置
面の温度分布を均一化することができるとともに、20
℃/min以上の速度で急速に昇温しても割れない信頼
性の高いセラミックヒータを提供することができる。
As described above, according to the present invention, the upper surface of a ceramic body in which a resistance heating element having a heating pattern having a substantially concentric or substantially spiral shape is buried is used as a mounting surface of an object to be heated. In a ceramic heater in which a cylindrical support made of ceramics is joined to the lower surface of the ceramic body, the area of a region of the heat generation pattern located inside the cylindrical support is S1, and the area of the region inside the cylindrical support is S1. The resistance value of the resistance heating element in the region located at R1 is R1, the area of the region located outside the cylindrical support in the heating pattern is S2, and the resistance heating element is located at the region located outside the cylindrical support. When R1 / S1 is increased in the range of 3 to 60% of R2 / S2 when the resistance value of R2 is R2, the temperature of the mounting surface is compensated for by compensating for the temperature of heat removal through the cylindrical support. Uniform distribution It is possible to, 20
It is possible to provide a highly reliable ceramic heater that does not crack even when the temperature is rapidly increased at a rate of not less than ° C / min.

【0054】しかも、セラミックヒータを構成するセラ
ミック体や筒状支持体はハロゲン系ガスやプラズマに対
して優れた耐食性、耐プラズマ性を有するセラミックス
からなるため、成膜装置やエッチング装置に用いたとし
ても長期使用が可能であるとともに、腐食や摩耗に伴う
塵の発生が少ないことから、例えば半導体製造装置用と
して用いたとしても半導体ウエハに悪影響を与えること
がない。
In addition, since the ceramic body and the cylindrical support constituting the ceramic heater are made of ceramics having excellent corrosion resistance and plasma resistance to halogen-based gas and plasma, they are used in a film forming apparatus or an etching apparatus. Can be used for a long time, and the generation of dust due to corrosion and abrasion is small, so that the semiconductor wafer is not adversely affected even when used, for example, for semiconductor manufacturing equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明のセラミックヒータを示す一部
を破断した斜視図、(b)は(a)のX−X線断面図で
ある。
FIG. 1A is a partially cutaway perspective view showing a ceramic heater of the present invention, and FIG. 1B is a cross-sectional view taken along line XX of FIG.

【図2】図1のセラミックヒータに埋設してなる発熱パ
ターンを示す図である。
FIG. 2 is a diagram showing a heat generation pattern embedded in the ceramic heater of FIG.

【図3】本発明のセラミックヒータの載置面における温
度分布を示す図である。
FIG. 3 is a diagram showing a temperature distribution on a mounting surface of the ceramic heater of the present invention.

【図4】従来のセラミックヒータの載置面における温度
分布を示す図である。
FIG. 4 is a diagram showing a temperature distribution on a mounting surface of a conventional ceramic heater.

【図5】(a)は従来のセラミックヒータを示す一部を
破断した斜視図、(b)は(a)のY−Y線断面図であ
る。
FIG. 5A is a partially cutaway perspective view showing a conventional ceramic heater, and FIG. 5B is a sectional view taken along line YY of FIG. 5A.

【図6】図5のセラミックヒータに埋設してなる発熱パ
ターンを示す図である。
FIG. 6 is a view showing a heat generation pattern embedded in the ceramic heater of FIG. 5;

【符号の説明】[Explanation of symbols]

1,11 ・・・セラミックヒータ 2,12 ・・・セラミック体 3,13 ・・・載置面 4(4a,4b),14・・・抵抗発熱体 5,15 ・・・給電端子 6,16 ・・・筒状支持体 Q,P ・・・発熱パターン Q1 ・・・筒状支持体より内側に位置する
領域 Q2 ・・・筒状支持体より外側に位置する
領域 S ・・・発熱パターンの全面積 S1 ・・・筒状支持体より内側に位置する
領域の面積 S2 ・・・筒状支持体より外側に位置する
領域の面積 R1 ・・・領域S1における抵抗発熱体の
抵抗値 R2 ・・・領域S2における抵抗発熱体の
抵抗値 W ・・・被加熱物
Reference numerals 1, 11: ceramic heater 2, 12: ceramic body 3, 13: mounting surface 4 (4a, 4b), 14: resistance heating element 5, 15: power supply terminal 6, 16 ··· Cylindrical support Q, P ··· Heat generation pattern Q1 ··· Area located inside the cylindrical support Q2 ··· Area located outside the cylindrical support S · ··· Heat generation pattern Total area S1 Area of area located inside cylindrical support S2 Area of area located outside cylindrical support R1 Resistance value of resistance heating element in area S1 R2 -Resistance value of the resistance heating element in the region S2 W: Heated object

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】略同心円状又は略渦巻き状をした発熱パタ
ーンを有する抵抗発熱体を埋設してなるセラミック体の
上面を被加熱物の載置面とし、上記セラミック体の下面
にセラミックスからなる筒状支持体を接合してなるセラ
ミックヒータにおいて、上記発熱パターンのうち筒状支
持体より内側に位置する領域の面積をS1、該筒状支持
体より内側に位置する領域における抵抗発熱体の抵抗値
をR1とし、上記発熱パターンのうち筒状支持体より外
側に位置する領域の面積をS2、該筒状支持体より外側
に位置する領域における抵抗発熱体の抵抗値をR2とし
た時、R1/S1をR2/S2に対して3〜60%の範
囲で大きくしたことを特徴とするセラミックヒータ。
An upper surface of a ceramic body in which a resistance heating element having a heating pattern having a substantially concentric or spiral shape is embedded is used as a mounting surface for an object to be heated, and a cylinder made of ceramic is formed on a lower surface of the ceramic body. In the ceramic heater formed by joining the cylindrical supports, the area of a region located inside the cylindrical support in the heating pattern is S1, and the resistance value of the resistance heating element in the region located inside the cylindrical support is Let R1 be the area of a region of the heat generation pattern located outside the cylindrical support, and R2 be the resistance value of the resistance heating element in the region located outside the cylindrical support. A ceramic heater characterized in that S1 is increased in the range of 3 to 60% of R2 / S2.
JP15038198A 1998-05-29 1998-05-29 Ceramic heater Expired - Fee Related JP3631614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15038198A JP3631614B2 (en) 1998-05-29 1998-05-29 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15038198A JP3631614B2 (en) 1998-05-29 1998-05-29 Ceramic heater

Publications (2)

Publication Number Publication Date
JPH11339939A true JPH11339939A (en) 1999-12-10
JP3631614B2 JP3631614B2 (en) 2005-03-23

Family

ID=15495763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15038198A Expired - Fee Related JP3631614B2 (en) 1998-05-29 1998-05-29 Ceramic heater

Country Status (1)

Country Link
JP (1) JP3631614B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091166A1 (en) * 2000-05-26 2001-11-29 Ibiden Co., Ltd. Semiconductor manufacturing and inspecting device
JP2002231793A (en) * 2001-01-31 2002-08-16 Kyocera Corp Wafer-supporting member
JP2003282393A (en) * 2002-03-20 2003-10-03 Kyocera Corp Wafer-heating device
JP2003309049A (en) * 2002-04-15 2003-10-31 Sumitomo Electric Ind Ltd Holder for semiconductor manufacturing apparatus
KR100426111B1 (en) * 2000-10-19 2004-04-08 니뽄 가이시 가부시키가이샤 Ceramic heater
KR100431655B1 (en) * 2001-08-28 2004-05-17 삼성전자주식회사 Heater assembly for heating a wafer
JP2004247365A (en) * 2003-02-12 2004-09-02 Sumitomo Electric Ind Ltd Wafer holder for semiconduction production system and semiconductor production system mounting it
JP2004296254A (en) * 2003-03-27 2004-10-21 Sumitomo Electric Ind Ltd Ceramic heater; and semiconductor or liquid crystal manufacturing device composed by mounting it
US6878907B2 (en) 2000-02-25 2005-04-12 Ibiden Co., Ltd. Ceramic substrate and process for producing the same
JP2006019565A (en) * 2004-07-02 2006-01-19 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
US7011874B2 (en) 2000-02-08 2006-03-14 Ibiden Co., Ltd. Ceramic substrate for semiconductor production and inspection devices
JP2006245611A (en) * 2006-05-26 2006-09-14 Sumitomo Electric Ind Ltd Wafer holder for semiconductor manufacturing system and semiconductor manufacturing system equipped with same
JP2007066542A (en) * 2005-08-29 2007-03-15 Kyocera Corp Heater and wafer-heating device, and manufacturing method of heater
US7417206B2 (en) 2004-10-28 2008-08-26 Kyocera Corporation Heater, wafer heating apparatus and method for manufacturing heater
JP2017069563A (en) * 2015-09-30 2017-04-06 東京エレクトロン株式会社 System and method for ESC temperature control
JP2018005999A (en) * 2016-06-27 2018-01-11 日本特殊陶業株式会社 Ceramic heater
WO2018135270A1 (en) * 2017-01-19 2018-07-26 京セラ株式会社 Sample holding tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448768B (en) * 2014-06-19 2019-10-11 北京北方华创微电子装备有限公司 Semiconductor processing equipment

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011874B2 (en) 2000-02-08 2006-03-14 Ibiden Co., Ltd. Ceramic substrate for semiconductor production and inspection devices
US6878907B2 (en) 2000-02-25 2005-04-12 Ibiden Co., Ltd. Ceramic substrate and process for producing the same
US7071551B2 (en) 2000-05-26 2006-07-04 Ibiden Co., Ltd. Device used to produce or examine semiconductors
WO2001091166A1 (en) * 2000-05-26 2001-11-29 Ibiden Co., Ltd. Semiconductor manufacturing and inspecting device
KR100426111B1 (en) * 2000-10-19 2004-04-08 니뽄 가이시 가부시키가이샤 Ceramic heater
JP2002231793A (en) * 2001-01-31 2002-08-16 Kyocera Corp Wafer-supporting member
KR100431655B1 (en) * 2001-08-28 2004-05-17 삼성전자주식회사 Heater assembly for heating a wafer
JP2003282393A (en) * 2002-03-20 2003-10-03 Kyocera Corp Wafer-heating device
JP2003309049A (en) * 2002-04-15 2003-10-31 Sumitomo Electric Ind Ltd Holder for semiconductor manufacturing apparatus
JP2004247365A (en) * 2003-02-12 2004-09-02 Sumitomo Electric Ind Ltd Wafer holder for semiconduction production system and semiconductor production system mounting it
JP2004296254A (en) * 2003-03-27 2004-10-21 Sumitomo Electric Ind Ltd Ceramic heater; and semiconductor or liquid crystal manufacturing device composed by mounting it
JP2006019565A (en) * 2004-07-02 2006-01-19 Dainippon Screen Mfg Co Ltd Heat treatment apparatus
US7417206B2 (en) 2004-10-28 2008-08-26 Kyocera Corporation Heater, wafer heating apparatus and method for manufacturing heater
JP2007066542A (en) * 2005-08-29 2007-03-15 Kyocera Corp Heater and wafer-heating device, and manufacturing method of heater
JP2006245611A (en) * 2006-05-26 2006-09-14 Sumitomo Electric Ind Ltd Wafer holder for semiconductor manufacturing system and semiconductor manufacturing system equipped with same
JP2017069563A (en) * 2015-09-30 2017-04-06 東京エレクトロン株式会社 System and method for ESC temperature control
JP2018005999A (en) * 2016-06-27 2018-01-11 日本特殊陶業株式会社 Ceramic heater
WO2018135270A1 (en) * 2017-01-19 2018-07-26 京セラ株式会社 Sample holding tool
US20190342952A1 (en) * 2017-01-19 2019-11-07 Kyocera Corporation Sample holder
JPWO2018135270A1 (en) * 2017-01-19 2019-11-07 京セラ株式会社 Sample holder

Also Published As

Publication number Publication date
JP3631614B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
JP3631614B2 (en) Ceramic heater
US6716304B2 (en) Wafer holder for semiconductor manufacturing apparatus, and method of manufacturing the wafer holder
JP3477062B2 (en) Wafer heating device
JP4467453B2 (en) Ceramic member and manufacturing method thereof
US6460482B1 (en) Gas shower unit for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
JP4648030B2 (en) Yttria sintered body, ceramic member, and method for producing yttria sintered body
EP1602635B1 (en) Manufacturing method for sintered body with buried metallic member
JP4482472B2 (en) Electrostatic chuck and manufacturing method thereof
JP3145664B2 (en) Wafer heating device
US20050082274A1 (en) Substrate heater and fabrication method for the same
EP0680075B1 (en) Electrode for generating plasma and method for manufacturing the electrode
JP2002025912A (en) Susceptor for semiconductor manufacturing device and semiconductor manufacturing device using the same
JP3152898B2 (en) Aluminum nitride ceramic heater
JP4744016B2 (en) Manufacturing method of ceramic heater
JP2003045765A (en) Wafer-supporting member
JP4529690B2 (en) Wafer holder for semiconductor manufacturing apparatus, manufacturing method thereof, and semiconductor manufacturing apparatus
JPH11162620A (en) Ceramic heater and its temperature equalizing method
JP2005175508A (en) Gas shower body for semiconductor manufacturing device
JP2002025913A (en) Susceptor for semiconductor manufacturing device and semiconductor manufacturing device using the same
JP3652862B2 (en) Electrostatic chuck and plasma generator
JP2004111289A (en) Ceramic heater and manufacturing method of the same
JP2001223066A (en) Ceramics heater
JP2006041267A (en) Wafer support member and semiconductor manufacturing apparatus using it
JP2004087206A (en) Flat ceramic heater
JP2006286646A (en) Ceramic heater

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees