JP2003282393A - Wafer-heating device - Google Patents

Wafer-heating device

Info

Publication number
JP2003282393A
JP2003282393A JP2002078203A JP2002078203A JP2003282393A JP 2003282393 A JP2003282393 A JP 2003282393A JP 2002078203 A JP2002078203 A JP 2002078203A JP 2002078203 A JP2002078203 A JP 2002078203A JP 2003282393 A JP2003282393 A JP 2003282393A
Authority
JP
Japan
Prior art keywords
wafer
heating resistor
heat
temperature
equalizing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002078203A
Other languages
Japanese (ja)
Other versions
JP4325902B2 (en
Inventor
Satoshi Tanaka
智 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002078203A priority Critical patent/JP4325902B2/en
Publication of JP2003282393A publication Critical patent/JP2003282393A/en
Application granted granted Critical
Publication of JP4325902B2 publication Critical patent/JP4325902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a wafer placed on a loading base is prone to warpage and not being heated evenly, depending on the flatness of the surface of the base, when the heater resistor area is increased to improve uniform heating of a heat leveling plate. <P>SOLUTION: When S(%) represents the ratio of the heater resistor area to one main surface area of the heat leveling plate, the wafer-heating device is set to the relation 15≤S≤50. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主にウエハを加熱
するのに用いるウエハ加熱装置に関するものであり、例
えば、半導体ウエハや液晶装置あるいは回路基盤等のウ
エハ上に薄膜を形成したり、前記ウエハ上に塗布された
レジスト液を乾燥焼き付けしてレジスト膜を形成するの
に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer heating apparatus mainly used for heating a wafer. For example, a thin film is formed on a wafer such as a semiconductor wafer, a liquid crystal device, a circuit board, or the like. It is suitable for forming a resist film by drying and baking the resist solution applied on the wafer.

【0002】[0002]

【従来の技術】例えば、半導体製造装置の製造工程にお
ける、半導体薄膜の成膜装置、エッチング処理、レジス
ト膜の焼き付け処理等においては、半導体ウエハ(以
下、ウエハと略す)を加熱するためにウエハ加熱装置が
用いられている。
2. Description of the Related Art For example, in a semiconductor thin film forming apparatus, an etching process, a resist film baking process, etc., in a manufacturing process of a semiconductor manufacturing apparatus, a wafer is heated to heat a semiconductor wafer (hereinafter referred to as a wafer). The device is being used.

【0003】従来の半導体製造装置は、まとめて複数の
ウエハを成膜処理するバッチ式のものが使用されていた
が、ウエハの大きさが200mmから300mmと大型化す
るにつれ、処理精度を高めるために、1枚づつ処理する
枚葉式と呼ばれる手法が近年実施されている。しかしな
がら、枚葉式にすると1回あたりの処理数が減少するた
め、ウエハの処理時間の短縮が必要とされている。この
ため、ウエハ支持部材に対して、ウエハの加熱時間の短
縮や温度精度の向上が要求されていた。
The conventional semiconductor manufacturing apparatus used was a batch type in which a plurality of wafers were collectively processed for film formation. However, as the size of the wafers increased from 200 mm to 300 mm, the processing accuracy was increased. In recent years, a method called a single-wafer processing for processing one sheet at a time has been implemented. However, if the single-wafer type is used, the number of processes per process is reduced, and therefore, it is necessary to shorten the wafer processing time. Therefore, it has been required for the wafer supporting member to shorten the heating time of the wafer and improve the temperature accuracy.

【0004】このうち、半導体ウエハ上へのレジスト膜
の形成にあたっては、図1に示すような、炭化珪素、窒
化アルミニウムやアルミナ等のセラミックスからなる均
熱板2の一方の主面を、ウエハWを載せる載置面とし、
他方の主面には絶縁層4を介して発熱抵抗体5が設置さ
れ、さらに前記発熱抵抗体5に導通端子7が弾性体8に
より固定された構造のウエハ加熱装置1が用いられてい
た(特開2001−189276号公報参照)。そし
て、前記均熱板2は、支持体11にボルト17で固定さ
れ、さらに均熱板2の内部には熱電対10が挿入され、
これにより均熱板2の温度を所定に保つように、導通端
子7から発熱抵抗体5に供給される電力を調整するシス
テムとなっていた。また、導入端子7は、板状構造部3
に絶縁層9を介して固定されていた。
Of these, when forming a resist film on a semiconductor wafer, one main surface of a heat equalizing plate 2 made of ceramics such as silicon carbide, aluminum nitride or alumina as shown in FIG. On the mounting surface,
A wafer heating device 1 having a structure in which a heating resistor 5 is installed on the other main surface via an insulating layer 4 and a conduction terminal 7 is fixed to the heating resistor 5 by an elastic body 8 has been used ( (See Japanese Patent Laid-Open No. 2001-189276). The heat equalizing plate 2 is fixed to the support 11 with bolts 17, and the thermocouple 10 is inserted inside the heat equalizing plate 2.
As a result, the system adjusts the electric power supplied from the conduction terminal 7 to the heating resistor 5 so as to keep the temperature of the heat equalizing plate 2 at a predetermined value. In addition, the introduction terminal 7 has the plate-shaped structure 3
Was fixed via the insulating layer 9.

【0005】そして、ウエハ加熱装置1の載置面3に、
レジスト液が塗布されたウエハWを載せたあと、発熱抵
抗体5を発熱させることにより、均熱板2を介して載置
面3上のウエハWを加熱し、レジスト液を乾燥焼き付け
してウエハW上にレジスト膜を形成するようになってい
た。
Then, on the mounting surface 3 of the wafer heating apparatus 1,
After the wafer W coated with the resist solution is placed, the heating resistor 5 is caused to generate heat to heat the wafer W on the placement surface 3 via the heat equalizing plate 2, and the resist solution is dried and baked to dry the wafer. A resist film was formed on W.

【0006】発熱抵抗体5としては、特開1999−4
0330号特許に示されているように、金、銀、白金、
パラジウム、鉛、タングステン、ニッケル等の金属を用
いて厚み10〜20μmとすることが紹介されている
が、実際に検討されているのは、銀−鉛系の発熱抵抗体
5である。
The heating resistor 5 is disclosed in Japanese Patent Laid-Open No. 1999-4.
As shown in the 0330 patent, gold, silver, platinum,
It has been introduced that the thickness is set to 10 to 20 μm by using a metal such as palladium, lead, tungsten, nickel, etc., but what is actually studied is the silver-lead type heating resistor 5.

【0007】このようなウエハ加熱装置1において、ウ
エハWの表面全体に均質な膜を形成したり、レジスト膜
の加熱反応状態を均質にするためには、ウエハWの温度
分布を均一にすることが重要である。ウエハWの温度分
布を小さくするため、加熱用のヒータを内蔵したウエハ
加熱装置1において、発熱抵抗体5の抵抗分布を調整し
たり、発熱抵抗体5の温度を分割制御したり、熱引きを
発生したりするような構造部を接続する場合、その接続
部の発熱量を増大させる等の提案がされていた。
In such a wafer heating apparatus 1, in order to form a uniform film on the entire surface of the wafer W or to homogenize the heating reaction state of the resist film, the temperature distribution of the wafer W should be uniform. is important. In order to reduce the temperature distribution of the wafer W, in the wafer heating device 1 having a built-in heater for heating, the resistance distribution of the heating resistor 5 is adjusted, the temperature of the heating resistor 5 is divided and controlled, and heat is drawn. It has been proposed to increase the amount of heat generated at the connecting portion when connecting a structural portion that is likely to occur.

【0008】また、半導体の設計ルールは年々微細化の
方向に進んでおり、配線パターンの微細化のために感光
性樹脂をさらに均一な温度分布で加熱できるようなウエ
ハ加熱装置1が求められている。
Further, semiconductor design rules are advancing toward miniaturization year by year, and there is a demand for a wafer heating apparatus 1 capable of heating a photosensitive resin with a more uniform temperature distribution in order to miniaturize a wiring pattern. There is.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来のウエハ
加熱装置では載置面に反りが発生し、載置面上に設置し
たウエハWを所定の温度に加熱することができないとい
う問題があった。
However, the conventional wafer heating device has a problem in that the mounting surface is warped and the wafer W placed on the mounting surface cannot be heated to a predetermined temperature. .

【0010】原因を調査したところ、発熱抵抗体の形成
が反りに影響していることが判った。従来は、均熱板表
面の温度分布を一定にするためには、発熱抵抗体を形成
する面積を均熱板の主面に対して60%程度と大きくす
ることにより、発熱面積を大きくすることが、均熱板表
面の温度分布を小さくするのに有効であると考えていた
が、均熱板の基材である窒化アルミニウム板を焼成した
のち、その一方の主面に発熱抵抗体を形成すると、発熱
抵抗体と均熱板の熱膨張率の差により反りが発生し、好
ましくないことが判った。
When the cause was investigated, it was found that the formation of the heating resistor had an influence on the warp. Conventionally, in order to keep the temperature distribution on the surface of the heat equalizing plate constant, the heat generating area is increased by increasing the area where the heating resistor is formed to about 60% of the main surface of the heat equalizing plate. However, it was thought that it was effective in reducing the temperature distribution on the surface of the soaking plate, but after firing the aluminum nitride plate that is the base material of the soaking plate, a heating resistor was formed on one of its main surfaces. Then, it was found that warpage occurs due to the difference in thermal expansion coefficient between the heating resistor and the heat equalizing plate, which is not preferable.

【0011】[0011]

【課題を解決するための手段】本発明のウエハ加熱装置
は、上記のような課題を解決するために考案したもので
あり、窒化アルミニウム質セラミックスからなる均熱板
の一方の主面をウエハの載置面とし、他方の主面に発熱
抵抗体を有するとともに、該発熱抵抗体と電気的に接続
される給電部を前記他方の主面に具備してなるウエハ加
熱装置において、前記均熱板の一方の主面の面積に対す
る発熱抵抗体の面積比率をS(%)としたとき、15≦
S≦50であることを特徴とする。
The wafer heating apparatus of the present invention was devised in order to solve the above-mentioned problems. One of the main surfaces of a heat equalizing plate made of aluminum nitride ceramics is used as a wafer heating device. A wafer heating apparatus comprising a placing surface, a heating resistor on the other main surface, and a power feeding portion electrically connected to the heating resistor on the other main surface, wherein Assuming that the area ratio of the heating resistor to the area of the one main surface is S (%), 15 ≦
It is characterized in that S ≦ 50.

【0012】また、前記均熱板の外周側に形成される少
なくともひとつの発熱抵抗体の線幅が内周側に形成され
る発熱抵抗体の線幅よりも狭いことを特徴とする。
Further, the line width of at least one heating resistor formed on the outer peripheral side of the heat equalizing plate is narrower than the line width of the heating resistor formed on the inner peripheral side.

【0013】そして、前記発熱抵抗体の線幅w1とそれ
に近接する線間距離g1の比w1:g1が0.2:1〜
0.8:1であり、且つ線幅w1が4mm以下であるこ
とを特徴とする。
The ratio w1: g1 of the line width w1 of the heat generating resistor and the distance g1 between adjacent lines is 0.2: 1 to.
The line width w1 is 0.8: 1 and the line width w1 is 4 mm or less.

【0014】さらに、前記発熱抵抗体が中央部と外周部
に分割され、これらのうち外周部に形成されている発熱
抵抗体が周方向に4つ以上に分割されており、上記外周
部の発熱抵抗体の電力密度が中心部の電力密度に対して
100〜200%であることを特徴とする。
Further, the heat generating resistor is divided into a central portion and an outer peripheral portion, and among these, the heat generating resistor formed on the outer peripheral portion is divided into four or more in the circumferential direction, so that heat generation in the outer peripheral portion is achieved. The power density of the resistor is 100 to 200% of the power density of the central portion.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態について
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0016】図1は本発明に係わるウエハ加熱装置1の
1例を示す断面図であり、窒化アルミニウムを主成分と
するセラミックスからなる均熱板2の一方の主面を、ウ
エハWを載せる載置面3とすると共に、他方の主面に発
熱抵抗体5を形成したものである。
FIG. 1 is a cross-sectional view showing an example of a wafer heating apparatus 1 according to the present invention. A wafer W is placed on one main surface of a heat equalizing plate 2 made of ceramics containing aluminum nitride as a main component. In addition to the placement surface 3, the heating resistor 5 is formed on the other main surface.

【0017】また、発熱抵抗体5には、金や銀、パラジ
ウム、白金等の材質からなる給電部6が形成され、該給
電部6に導通端子7を押圧して接触させることにより、
導通が確保されている。
Further, the heat generating resistor 5 is provided with a power feeding portion 6 made of a material such as gold, silver, palladium, platinum or the like, and the conductive terminal 7 is pressed against and brought into contact with the power feeding portion 6.
Continuity is secured.

【0018】さらに、均熱板2と支持体11の外周にボ
ルト17を貫通させ、均熱板2側より弾性体、座金を介
在させてナットを螺着することにより弾性的に固定して
いる。これにより、均熱板2の温度を変更したり載置面
3にウエハを載せ、均熱板2の温度が変動した場合に支
持体11変形が発生しても、上記弾性体8によってこれ
を吸収し、これにより均熱板2の反りを防止し、ウエハ
加熱におけるウエハW表面に温度分布が発生することを
防止できる。
Further, a bolt 17 is passed through the outer periphery of the heat equalizing plate 2 and the support 11 and is elastically fixed by screwing a nut from the side of the heat equalizing plate 2 with an elastic body and a washer interposed. . As a result, even if the temperature of the heat equalizing plate 2 is changed or a wafer is placed on the mounting surface 3 and the support body 11 is deformed when the temperature of the heat equalizing plate 2 is changed, the elastic body 8 can prevent the deformation. It is possible to prevent the warpage of the heat equalizing plate 2 by this, and to prevent the temperature distribution from being generated on the surface of the wafer W during the heating of the wafer.

【0019】ウエハWは、載置面3上に設置された支持
ピン17により、載置面3から100μm程度持ち上げ
られた状態で保持するようになっており、均熱板2との
接触不良による温度分布の発生を防止し、均熱板2から
の熱輻射により加熱される構造となっていた。
The wafer W is held in a state of being lifted by about 100 μm from the mounting surface 3 by the support pins 17 installed on the mounting surface 3, and due to poor contact with the heat equalizing plate 2. The temperature distribution was prevented from occurring and the structure was heated by the heat radiation from the heat equalizing plate 2.

【0020】また、支持体11は板状構造体と側壁部と
からなり、該板状構造体には発熱抵抗体5に電力を供給
するための導通端子7が絶縁材を介して設置され、空気
噴射口12や熱電対固定部が形成されている。そして、
前記導通端子7は、給電部6にロウ材等の導電性の接合
材により固定される構造となっている。
The support 11 is composed of a plate-shaped structure and a side wall, and a conductive terminal 7 for supplying electric power to the heating resistor 5 is installed on the plate-shaped structure through an insulating material. The air injection port 12 and the thermocouple fixing portion are formed. And
The conduction terminal 7 is structured to be fixed to the power feeding portion 6 by a conductive bonding material such as a brazing material.

【0021】本発明のウエハ加熱装置1は、前記均熱板
2の載置面3の面積に対する発熱抵抗体5の面積比率を
S(%)としたとき、15≦S≦50であることを特徴
とする。ここで、発熱抵抗体5の面積とは、導体成分が
形成されているパターン部分のみを意味し、パターン間
のギャップは含まない。
In the wafer heating apparatus 1 of the present invention, when the area ratio of the heating resistor 5 to the area of the mounting surface 3 of the heat equalizing plate 2 is S (%), 15 ≦ S ≦ 50. Characterize. Here, the area of the heating resistor 5 means only the pattern portion where the conductor component is formed, and does not include the gap between the patterns.

【0022】発熱抵抗体5は、通常、均熱板2と同時焼
成せず均熱板2を焼成後、均熱板2の両主面を表面研削
加工したのち、発熱抵抗体5をプリント、転写等の手法
を用いて形成し、800〜1200℃の温度で焼付処理
して形成する。発熱抵抗体5の厚みは、通常10〜20
μmに調整されている。
The heating resistor 5 is not normally fired at the same time as the soaking plate 2, but after firing the soaking plate 2, both main surfaces of the soaking plate 2 are surface-ground, and then the heating resistor 5 is printed. It is formed by using a technique such as transfer, and is formed by baking at a temperature of 800 to 1200 ° C. The thickness of the heating resistor 5 is usually 10 to 20.
It is adjusted to μm.

【0023】発熱抵抗体5としては、通常ガラスフリッ
トを添加したAgペーストが使用される。このAgペー
ストの見掛けの熱膨張率は、ガラスフリットとAgの体
積比率により決まり、熱膨張率は、15〜16×10-6
/℃程度になる。これに対し、均熱板2の熱膨張率は、
4.5×10-6/℃であり、両者の間には、12×10
-6/℃の熱膨張差がある。
As the heating resistor 5, an Ag paste to which a glass frit is added is usually used. The apparent thermal expansion coefficient of this Ag paste is determined by the volume ratio of the glass frit and Ag, and the thermal expansion coefficient is 15 to 16 × 10 −6.
/ ° C. On the other hand, the coefficient of thermal expansion of the soaking plate 2 is
4.5 × 10 −6 / ° C., and 12 × 10 between the two.
There is a difference in thermal expansion of -6 / ° C.

【0024】この熱膨張率差により、均熱板2には熱応
力が生じており、この熱応力により均熱板2には均熱板
2の載置面3側が凸になるような反りが発生していた。
これまで、均熱板2の表面に発生する温度分布を小さく
するために、均熱板2の載置面3の面積に対する発熱抵
抗体5の面積比率Sについては60%程度としていた
が、この面積比率を大きくすると反りが大きくなり過ぎ
て好ましくないことが判った。
Due to this difference in the coefficient of thermal expansion, thermal stress is generated in the uniform heat plate 2, and due to this thermal stress, the uniform heat plate 2 is warped such that the mounting surface 3 side of the uniform heat plate 2 is convex. Had occurred.
Up to now, in order to reduce the temperature distribution generated on the surface of the heat equalizing plate 2, the area ratio S of the heating resistor 5 to the area of the mounting surface 3 of the heat equalizing plate 2 has been set to about 60%. It was found that when the area ratio is increased, the warp becomes too large, which is not preferable.

【0025】均熱板2の反りを低減するためには均熱板
2の厚みを厚くすれば良いが、均熱板2の厚みを厚くし
過ぎると、均熱板2の冷却性能が悪くなってしまう。そ
こで、均熱板2の厚みは4mm以下に調整する。また、
上記反りを防止するためには均熱板2の厚みは2mm以
上にすることが好ましい。より好ましくは、均熱板2の
厚みは3mm±0.5mm程度とする。
In order to reduce the warpage of the heat equalizing plate 2, the thickness of the heat equalizing plate 2 may be increased, but if the thickness of the heat equalizing plate 2 is excessively increased, the cooling performance of the heat equalizing plate 2 deteriorates. Will end up. Therefore, the thickness of the soaking plate 2 is adjusted to 4 mm or less. Also,
In order to prevent the warp, it is preferable that the soaking plate 2 has a thickness of 2 mm or more. More preferably, the soaking plate 2 has a thickness of about 3 mm ± 0.5 mm.

【0026】最近は、1枚1枚のウエハWを個別に処理
する枚葉式の処理時間を短縮することが要求されてお
り、載置面3側に設置されるウエハWの温度の昇温過渡
時の均熱性を向上させることが要求されており、処理後
のウエハWを取り除き新しいウエハWを設置した後、ウ
エハWが150±0.3℃に保持されるまでの時間を5
0秒以下にすることが要求されている。このためには、
載置面3側が20〜60μm程度凸になるように反りを
調整することが好ましい事が判っている。中心部に較べ
外周部の温度は上がり難いため、中心部の発熱は外周に
較べて小さくなるように調整されている。このため、ウ
エハWを載せ替えた際のウエハ中心部の温度は上がり難
くなっている。そこで、載置面3の中心部を外周に較べ
て凸になるように調整する。このためには、均熱板2の
載置面3の面積に対する発熱抵抗体5の面積比率Sを1
5〜50%とすることが好ましいことが判った。
Recently, it has been required to reduce the processing time of the single wafer processing for individually processing each wafer W individually, and the temperature of the wafer W installed on the mounting surface 3 side is raised. It is required to improve the thermal uniformity during the transition, and the time until the wafer W is maintained at 150 ± 0.3 ° C. after removing the processed wafer W and installing a new wafer W is 5
It is required to be 0 seconds or less. For this,
It has been found that it is preferable to adjust the warp so that the mounting surface 3 side is convex about 20 to 60 μm. Since the temperature of the outer peripheral portion is less likely to rise than that of the central portion, heat generation in the central portion is adjusted to be smaller than that of the outer peripheral portion. For this reason, it is difficult for the temperature of the central portion of the wafer to rise when the wafer W is replaced. Therefore, the central portion of the mounting surface 3 is adjusted to be convex as compared with the outer periphery. For this purpose, the area ratio S of the heating resistor 5 to the area of the mounting surface 3 of the heat equalizing plate 2 is set to 1
It has been found that 5 to 50% is preferable.

【0027】この面積比率Sを15%未満にすると、均
熱板2の均熱性が損なわれ、載置面3に載置したウエハ
Wの温度分布が、150±0.3℃になるまでの時間が
長くなってしまうので、好ましくない。
When the area ratio S is less than 15%, the heat uniformity of the heat equalizing plate 2 is impaired, and the temperature distribution of the wafer W mounted on the mounting surface 3 reaches 150 ± 0.3 ° C. This is not preferable because it takes a long time.

【0028】また、この面積比率Sを、50%を越える
値にすると、均熱板2の反りが60μmを越えてしま
い、中心部の昇温が早くなり過ぎてしまうため好ましく
ない。さらに、面積比率Sを15〜40%とすることが
好ましい。
If the area ratio S exceeds 50%, the warp of the heat equalizing plate 2 exceeds 60 μm, and the temperature rise in the central portion becomes too fast, which is not preferable. Further, the area ratio S is preferably set to 15 to 40%.

【0029】この面積比率は、載置面の面積と発熱抵抗
体の面積の設計値から算出することができる。また、実
際の均熱板2から直接測定する場合は、画像解析により
算出することができる。
This area ratio can be calculated from the design value of the area of the mounting surface and the area of the heating resistor. Further, when the measurement is performed directly from the actual soaking plate 2, it can be calculated by image analysis.

【0030】また、図3に示すように、前記均熱板2の
外周側に形成される少なくともひとつの発熱抵抗体5の
線幅w1が内周側に形成される発熱抵抗体5の線幅w2
よりも狭くなるように形成することが好ましい。このよ
うに外周部の発熱抵抗体5の線幅w1を均熱板2の内周
部に形成する発熱抵抗体5の線幅w2よりも狭く形成す
ることにより、発熱抵抗体5の線熱膨張率の差による熱
応力を分割することにより、反りの応力が緩和され、反
りを小さくすることが可能となる。好ましくは、w1/
w2が0.9より小さくなるように調整することが好ま
しい。外周部の線幅w1を内周部の線幅w2より小さく
することは、熱放散が大きい外周部の温度を有効に上昇
させるためにも有効である。もし、発熱抵抗体5が径方
向に3つのブロックに分割されている場合は、w1は最
外周のブロックの線幅、w2は中央部のブロックの線幅
を意味する。また、線幅w1、w2は、それぞれのブロ
ックの線幅の平均である。
Further, as shown in FIG. 3, the line width w1 of at least one heating resistor 5 formed on the outer peripheral side of the heat equalizing plate 2 is the line width of the heating resistor 5 formed on the inner peripheral side. w2
It is preferably formed so as to be narrower than the above. By thus forming the line width w1 of the heating resistor 5 on the outer peripheral portion to be narrower than the line width w2 of the heating resistor 5 formed on the inner peripheral portion of the heat equalizing plate 2, the linear thermal expansion of the heating resistor 5 is performed. By dividing the thermal stress due to the difference in the rate, the stress of the warp is relaxed, and the warp can be reduced. Preferably w1 /
It is preferable to adjust w2 to be smaller than 0.9. Making the line width w1 of the outer peripheral portion smaller than the line width w2 of the inner peripheral portion is also effective for effectively increasing the temperature of the outer peripheral portion where heat dissipation is large. If the heating resistor 5 is radially divided into three blocks, w1 means the line width of the outermost block and w2 means the line width of the central block. The line widths w1 and w2 are averages of the line widths of the respective blocks.

【0031】そして、前記外周部の発熱抵抗体5の線幅
w1とそれに近接する線間距離g1の比w1:g1を
0.2:1〜0.8:1とし、且つ線幅w1を4mm以
下とすることが好ましい。前記線幅w1を4mmより大
きくすると、屈曲部において電流が内側を集中的に流れ
るようになり、屈曲部の外周部の温度が上がり難くなる
ため、均熱板2の温度を、±0.3℃に保持することが
難しくなる。特に、発熱抵抗体5を複数のブロックに分
割した際に、ブロック間の境界付近の温度分布を調整し
難くなる。さらに好ましくは、線幅w1を1.0〜2.
5mmとすることが好ましい。
The ratio w1: g1 of the line width w1 of the heat generating resistor 5 in the outer peripheral portion to the line distance g1 adjacent to the line is set to 0.2: 1 to 0.8: 1, and the line width w1 is 4 mm. The following is preferable. When the line width w1 is larger than 4 mm, the current flows in the bent portion in a concentrated manner and the temperature of the outer peripheral portion of the bent portion is hard to rise, so that the temperature of the heat equalizing plate 2 is ± 0.3. It becomes difficult to keep at ℃. In particular, when the heating resistor 5 is divided into a plurality of blocks, it becomes difficult to adjust the temperature distribution near the boundaries between the blocks. More preferably, the line width w1 is 1.0 to 2.
It is preferably 5 mm.

【0032】また、線幅w1とギャップg1の関係w1
/g1は、温度分布からすれば、w1/g1を1より大
きくする方が発熱面積を大きくして温度分布を小さくす
るのに有利であるが、発熱抵抗体5の面積を大きくする
と均熱板2の反りが大きくなるので、w1:g1を0.
2:1〜0.8:1に調整する。さらに好ましくは、w
1:g1を0.3:1〜0.6:1にすると良い。
The relationship w1 between the line width w1 and the gap g1
In view of the temperature distribution, it is advantageous to make w1 / g1 larger than 1 in order to increase the heat generation area and reduce the temperature distribution. Since the warp of 2 becomes large, w1: g1 is set to 0.
Adjust to 2: 1 to 0.8: 1. More preferably, w
It is preferable to set 1: g1 to 0.3: 1 to 0.6: 1.

【0033】この線幅w1と線間距離g1の関係は、内
周部分の線幅w2とギャップg2についても同様である
が、特に外周部分の比率が反りに対して重要である。
The relationship between the line width w1 and the inter-line distance g1 is the same for the line width w2 and the gap g2 of the inner peripheral portion, but the ratio of the outer peripheral portion is particularly important for warping.

【0034】内周部の発熱抵抗体5の線幅w2と線間距
離g2の関係についても同様とすることが好ましい。
It is preferable that the relationship between the line width w2 of the heating resistor 5 on the inner peripheral portion and the line distance g2 be the same.

【0035】さらに、前記発熱抵抗体5が少なくとも中
央部と外周部に分割されており、その外周部に形成され
ている発熱抵抗体5が周方向に4つ以上に分割されてお
り、該外周部の発熱抵抗体5の電力密度が中心部の電力
密度に対して100〜200%であることが好ましい。
電力密度とは、発熱抵抗体5を加熱した際に発熱抵抗体
5の導体部の単位面積当りの発熱量を意味する。周方向
の温度分布を±0.3℃以内に調整するためには、外周
部の発熱抵抗体5を少なくとも4つ以上に分割すること
が必要である。また、外周部の電力密度を内周部の電力
密度に対して、100〜200%、さらに好ましくは1
30〜160%に調整すると良い。
Further, the heat generating resistor 5 is divided into at least a central portion and an outer peripheral portion, and the heat generating resistor 5 formed in the outer peripheral portion is divided into four or more in the circumferential direction. It is preferable that the power density of the heating resistor 5 in the central part is 100 to 200% of the power density in the central part.
The power density means the amount of heat generated per unit area of the conductor portion of the heating resistor 5 when the heating resistor 5 is heated. In order to adjust the temperature distribution in the circumferential direction within ± 0.3 ° C., it is necessary to divide the heating resistor 5 in the outer peripheral portion into at least four or more. Further, the power density of the outer peripheral portion is 100 to 200% with respect to the power density of the inner peripheral portion, more preferably 1
It is good to adjust to 30-160%.

【0036】均熱板2の放熱特性を考慮すると、中心部
は外周部からの熱伝導によりさほど大きく加熱しなくて
も加熱しやすいが、外周部は中心部に較べて放熱量が多
いので中心部に較べて、発熱量を多くしないと均熱性が
保てない。均熱板2の厚みが2〜4mmと薄い本発明の
均熱板2については、均熱板2の熱容量が小さいため、
温度分布が発生しやすくなる。このように厚みの薄い均
熱板2を用いる場合、温度分布により均熱板2に反りが
発生すると、さらに載置面2上に載せたウエハWの温度
分布が大きくなる。
Considering the heat radiation characteristics of the heat equalizing plate 2, the central portion is easy to heat without heating so much due to the heat conduction from the outer peripheral portion, but the outer peripheral portion has a large amount of heat radiation compared to the central portion, so If the calorific value is not increased compared to the parts, the uniform heating cannot be maintained. Regarding the heat equalizing plate 2 of the present invention in which the thickness of the heat equalizing plate 2 is as thin as 2 to 4 mm, the heat capacity of the heat equalizing plate 2 is small,
Temperature distribution is likely to occur. When the uniform heat plate 2 having such a small thickness is used, if the uniform heat plate 2 is warped due to the temperature distribution, the temperature distribution of the wafer W placed on the mounting surface 2 is further increased.

【0037】そこで、ウエハWを交換した時の昇温過渡
時の温度分布についても小さくする必要がある。そこ
で、発熱抵抗体5の抵抗分布について、中心部から外周
部に向けて徐々に抵抗値が大きくなるようにし、昇温過
渡時から温度分布が小さくなるようにすることが好まし
い。
Therefore, it is also necessary to reduce the temperature distribution during the temperature rise transition when the wafer W is exchanged. Therefore, regarding the resistance distribution of the heating resistor 5, it is preferable that the resistance value gradually increases from the central portion toward the outer peripheral portion so that the temperature distribution becomes smaller after the temperature rise transient.

【0038】また、発熱抵抗体5の厚みは、10〜50
μmにすることが好ましい。該厚みが10μm未満であ
れば、発熱抵抗体5と均熱板2の間には熱膨張差がある
ため、昇温降温時の熱サイクルにより、発熱抵抗体5の
抵抗値が上昇し、引いては断線に繋がるので好ましくな
い。また、発熱抵抗体5の厚みが50μmを越えると、
発熱抵抗体5と均熱板2の熱膨張差による応力が大きく
なり、均熱板2の反りが大きくなるので好ましくない。
さらに好ましくは、20〜40μmとすると良い。
The thickness of the heating resistor 5 is 10 to 50.
It is preferable that the thickness is μm. If the thickness is less than 10 μm, there is a difference in thermal expansion between the heating resistor 5 and the soaking plate 2. Therefore, the resistance value of the heating resistor 5 increases and decreases due to the heat cycle during the temperature rise and decrease. However, it is not preferable because it will lead to disconnection. If the thickness of the heating resistor 5 exceeds 50 μm,
The stress due to the difference in thermal expansion between the heating resistor 5 and the heat equalizing plate 2 increases, and the warpage of the heat equalizing plate 2 increases, which is not preferable.
More preferably, it is 20 to 40 μm.

【0039】さらに、本発明のウエハ加熱装置1の構造
について、図を用いて説明する。
Further, the structure of the wafer heating apparatus 1 of the present invention will be described with reference to the drawings.

【0040】また、本発明のウエハ加熱装置1は、図2
に示すように載置面3には複数の凹部21が形成されて
おり、該凹部21の中にウエハWを支えるための支持ピ
ン17を配置している。そして、前記支持ピン17の載
置面3からの突出高さは、0.05〜0.5mmであ
り、該支持ピン17はウエハ中心部1点と、さらに少な
くとも3点のウエハ径×0.6以上の同心円外周上に配
列され、外周上の該支持ピン17高さのバラツキは15
μm以下であり、かつ該中央部の支持ピン17高さは外
周上の支持ピン17高さより低くなるように調整されて
いる。
The wafer heating apparatus 1 of the present invention is shown in FIG.
As shown in FIG. 3, a plurality of recesses 21 are formed on the mounting surface 3, and support pins 17 for supporting the wafer W are arranged in the recesses 21. The protruding height of the support pin 17 from the mounting surface 3 is 0.05 to 0.5 mm, and the support pin 17 has one wafer center portion and at least three wafer diameters × 0. The support pins 17 are arranged on the outer circumference of 6 or more concentric circles, and the height variation of the support pins 17 is 15
The height of the support pin 17 at the central portion is adjusted to be lower than the height of the support pin 17 on the outer circumference.

【0041】前記突出高さが0.05mm未満となる
と、均熱板2の温度を拾いやすくなり昇温過渡時の温度
バラツキが大きくなりすぎるので好ましくない。また、
前記突出高さが0.5mmを越えるとウエハW交換後の
ウエハW温度の昇温応答性が悪くなり、ウエハWの温度
が安定するまでの時間が長くなるので好ましくない。こ
れに対し、前記突出高さを0.05〜0.5mmとする
と、昇温過渡時の温度バラツキを小さくすることがで
き、かつウエハWの温度を速やかに安定させることがで
きる。より好ましくは0.05〜0.3mmの範囲とす
る方がよい。
If the protrusion height is less than 0.05 mm, the temperature of the heat equalizing plate 2 is likely to be picked up, and the temperature variation during the temperature rise transition becomes too large, which is not preferable. Also,
When the protrusion height exceeds 0.5 mm, the temperature responsiveness of the temperature of the wafer W after the exchange of the wafer W deteriorates, and the time until the temperature of the wafer W stabilizes is undesirably long. On the other hand, when the protrusion height is set to 0.05 to 0.5 mm, it is possible to reduce the temperature variation during the temperature rise transition and to stabilize the temperature of the wafer W promptly. More preferably, the range is 0.05 to 0.3 mm.

【0042】また、前記支持ピン17の先端は曲面形状
をなすとともに、該曲面部分の表面粗さはRa≦0.8
μmでなければならない。なぜならば、ウエハWに対す
るパーティクル付着を低減させるためには、ウエハWを
支持する部材はウエハWを傷つけるものであってはなら
ないことは勿論のこと、ウエハWに接触する面積は少な
い方が良いためである。ウエハWに接触する面積を極小
とするには、前記支持ピン17の先端は鋭利形状とすべ
きであるが、逆にウエハWを削り取りパーティクルを発
生させる恐れがある。よって、前記支持ピン17の先端
は曲面形状とするとともに、該曲面部分の表面粗さはR
a≦0.8μmとして、ウエハWと摺動してもウエハW
や前記支持ピン17自身を傷つけないような滑らかな仕
上げとしなければならない。
Further, the tip of the support pin 17 has a curved shape, and the surface roughness of the curved portion is Ra ≦ 0.8.
Must be μm. This is because, in order to reduce the adhesion of particles to the wafer W, the member supporting the wafer W should not damage the wafer W, and the area in contact with the wafer W should be small. Is. In order to minimize the area in contact with the wafer W, the tip of the support pin 17 should have a sharp shape, but on the contrary, the wafer W may be scraped off to generate particles. Therefore, the tip of the support pin 17 has a curved shape, and the surface roughness of the curved portion is R.
If a ≦ 0.8 μm, even if the wafer W slides, the wafer W
Also, the support pin 17 must have a smooth finish so as not to damage the support pin 17 itself.

【0043】なお、支持ピン17は凹部21に接合せず
に単に載置しておくだけでよい。その場合、脱落を防止
するために、図2に示すように固定治具24を凹部21
の上部に設置する。この固定治具24は、支持ピン17
とは接触しても接触しなくても特に支障はなく、固定治
具24は市販のスナップリングを用いても何ら問題な
い。ただし、固定治具24の材質としては、Ni、SU
S316、SUS631、42アロイ、インコネル、イ
ンコロイ等、耐熱金属のものを使用すべきである。
The support pin 17 need not be joined to the recess 21 but simply placed. In that case, in order to prevent the falling off, as shown in FIG.
Installed on top of. This fixing jig 24 is provided with a support pin 17
There is no particular problem with or without contact with, and there is no problem even if a commercially available snap ring is used as the fixing jig 24. However, the material of the fixing jig 24 is Ni or SU.
A refractory metal such as S316, SUS631, 42 alloy, Inconel, Incoloy should be used.

【0044】また、均熱板2を弾性的に支持体11に保
持することにより、支持体11内の温度分布によって発
生する反りを、この弾性的構造で緩和することができる
ので、均熱板2の平坦度を維持することが可能となる。
Further, by elastically holding the heat equalizing plate 2 on the support body 11, the warp caused by the temperature distribution in the support body 11 can be alleviated by this elastic structure, so the heat equalizing plate It is possible to maintain the flatness of 2.

【0045】ところで、金属製の支持体11は、側壁部
と板状構造体13を有し、該板状構造体13には、その
面積の5〜50%にあたる開口部が形成されている。ま
た、該板状構造体13には、必要に応じて他に、均熱板
2の発熱抵抗体5に給電するための給電部6と導通する
ための導通端子7、均熱板2を冷却するためのガス噴出
口、均熱板2の温度を測定するための熱電対10を設置
する。
By the way, the metal support 11 has a side wall and a plate-like structure 13, and the plate-like structure 13 has an opening corresponding to 5 to 50% of its area. In addition, the plate-like structure 13 may further include a conduction terminal 7 for conducting a power supply portion 6 for supplying power to the heating resistor 5 of the heat equalizing plate 2 and a heat equalizing plate 2 if necessary. A gas outlet for this purpose and a thermocouple 10 for measuring the temperature of the soaking plate 2 are installed.

【0046】また、不図示のリフトピンは支持体11内
に昇降自在に設置され、ウエハWを載置面3上に載せた
り、載置面3より持ち上げるために使用される。そし
て、このウエハ加熱装置1により半導体ウエハWを加熱
するには、不図示の搬送アームにて載置面3の上方まで
運ばれたウエハWをリフトピンにより支持したあと、リ
フトピンを降下させてウエハWを載置面3上に載せる。
次に、給電部6に通電して発熱抵抗体5を発熱させ、絶
縁層4及び均熱板2を介して載置面3上のウエハWを加
熱する。
Further, a lift pin (not shown) is installed in the support 11 so as to be able to move up and down, and is used for mounting the wafer W on the mounting surface 3 or lifting it from the mounting surface 3. Then, in order to heat the semiconductor wafer W by the wafer heating device 1, after the wafer W carried to the upper side of the mounting surface 3 by a transfer arm (not shown) is supported by lift pins, the lift pins are lowered to lower the wafer W. Is placed on the placing surface 3.
Next, the power supply unit 6 is energized to generate heat in the heating resistor 5, and the wafer W on the mounting surface 3 is heated via the insulating layer 4 and the heat equalizing plate 2.

【0047】このとき、本発明によれば、均熱板2を窒
化アルミニウム質焼結体により形成してあることから、
熱を加えても変形が小さく、板厚を薄くできるため、所
定の処理温度に加熱するまでの昇温時間及び所定の処理
温度から室温付近に冷却するまでの冷却時間を短くする
ことができ、生産性を高めることができるとともに、1
80W/m・Kと高い熱伝導率を有することから、薄い
板厚でも発熱抵抗体5のジュール熱を素早く伝達し、載
置面3の温度バラツキを極めて小さくすることができ
る。
At this time, according to the present invention, since the soaking plate 2 is formed of an aluminum nitride sintered body,
Since deformation is small even if heat is applied and the plate thickness can be made thin, it is possible to shorten the temperature rising time until heating to a predetermined processing temperature and the cooling time until cooling from a predetermined processing temperature to near room temperature. Productivity can be increased and 1
Since it has a high thermal conductivity of 80 W / m · K, the Joule heat of the heating resistor 5 can be quickly transmitted even with a thin plate thickness, and the temperature variation of the mounting surface 3 can be made extremely small.

【0048】また、窒化アルミニウム質焼結体として
は、主成分の窒化アルミニウムに対し、焼結助剤として
23やYb23等の希土類元素酸化物と必要に応じて
CaO等のアルカリ土類金属酸化物を添加して十分混合
し、平板状に加工した後、窒素ガス中1900〜210
0℃で焼成することにより得られる。
The aluminum nitride-based sintered body contains aluminum nitride as a main component, rare earth element oxides such as Y 2 O 3 and Yb 2 O 3 as sintering aids, and CaO and the like as necessary. After adding an alkaline earth metal oxide and mixing it well, and processing it into a flat plate, it is 1900 to 210 in nitrogen gas.
Obtained by firing at 0 ° C.

【0049】さらに、均熱板2の載置面3とは反対側の
主面は、平面度20μm以下、面粗さを中心線平均粗さ
(Ra)で0.1μm〜0.5μmに研磨しておくこと
が好ましい。
Further, the main surface of the heat equalizing plate 2 opposite to the mounting surface 3 has a flatness of 20 μm or less and a surface roughness of 0.1 μm to 0.5 μm in terms of center line average roughness (Ra). Preferably.

【0050】ただし、発熱抵抗体5に銀を用いる場合、
マイグレーションが発生する恐れがあるため、このよう
な場合には、発熱抵抗体5を覆うようにマイグレーショ
ンを防止するための緻密な被覆を形成すれば良い。
However, when silver is used for the heating resistor 5,
Since migration may occur, in such a case, a dense coating for preventing migration may be formed so as to cover the heating resistor 5.

【0051】[0051]

【実施例】実施例 1 窒化アルミニウム原料に3重量%の酸化イットリウムを
適量のバインダーおよび溶剤を用いて混合し、造粒した
後成形圧100MPaで成形し、1900〜2100℃
で焼成して、熱伝導率が180W/m・Kであり外径が
200mmの円盤状の窒化アルミニウム質焼結体を得
た。
EXAMPLES Example 1 3% by weight of yttrium oxide was mixed with an aluminum nitride raw material by using an appropriate amount of a binder and a solvent, granulated, and then molded at a molding pressure of 100 MPa, 1900 to 2100 ° C.
To obtain a disc-shaped aluminum nitride-based sintered body having a thermal conductivity of 180 W / m · K and an outer diameter of 200 mm.

【0052】この焼結体の両主面に研削加工を施し、板
厚4mm、外径200mmの円盤状をした均熱板2と
し、さらに大気中で1200℃×1時間の熱処理を施し
前記焼結体の表面に酸化膜24を形成した。次いで酸化
皮膜24上に発熱抵抗体5を被着するため、導電材とし
てAu粉末とPt粉末を混合したガラスペーストを、ス
クリーン印刷法にて所定のパターン形状に印刷したあ
と、80℃に加熱して有機溶剤を乾燥させ、さらに45
0℃で30分間脱脂処理を施したあと、700〜900
℃の温度で焼き付けを行うことにより、厚みが30μm
の発熱抵抗体5を形成した。また、均熱板2の載置面3
の面積に対する発熱抵抗体5の面積比率Sを10%、1
5%、25%、30%、40%、50%、60%と変化
させたものを準備した。
Both main surfaces of this sintered body were ground to obtain a disk-shaped soaking plate 2 having a plate thickness of 4 mm and an outer diameter of 200 mm, which was further heat-treated in the atmosphere at 1200 ° C. for 1 hour to carry out the firing. An oxide film 24 was formed on the surface of the bonded body. Next, in order to deposit the heating resistor 5 on the oxide film 24, a glass paste in which Au powder and Pt powder are mixed as a conductive material is printed in a predetermined pattern shape by a screen printing method, and then heated to 80 ° C. And dry the organic solvent.
After degreasing treatment at 0 ° C for 30 minutes, 700 ~ 900
By baking at a temperature of ℃, the thickness is 30 μm
The heating resistor 5 was formed. In addition, the mounting surface 3 of the heat equalizing plate 2
The area ratio S of the heating resistor 5 to the area of
Those prepared by changing 5%, 25%, 30%, 40%, 50% and 60% were prepared.

【0053】発熱抵抗体5は図2に示すような中心部と
外周部を径方向に3等分し、さらに外周部を周方向に4
等分した6パターン構成とした。しかるのち発熱抵抗体
5に給電部6を導電性接着剤にて固着させることによ
り、均熱板2を製作した。
As shown in FIG. 2, the heating resistor 5 has a central portion and an outer peripheral portion which are radially divided into three equal parts, and the outer peripheral portion is divided into four peripheral portions.
Six patterns were equally divided. After that, the heat feeding resistor 5 was fixed to the power feeding portion 6 with a conductive adhesive to manufacture the soaking plate 2.

【0054】また、支持体11は、主面の40%に開口
部を形成した厚み2.5mmのSUS304からなる2
枚の板状構造体13を準備し、この内の1枚に、熱電対
10、10本の導通端子7を所定の位置に形成し、同じ
くSUS304からなる側壁部とネジ締めにて固定して
支持体11を準備した。
The support 11 is made of SUS304 having a thickness of 2.5 mm and having openings formed in 40% of the main surface.
A plate-shaped structure 13 is prepared, and one of the plate-shaped structures 13 is formed with thermocouples 10 and 10 conductive terminals 7 at predetermined positions, and the same is fixed to the side wall made of SUS304 by screwing. The support 11 was prepared.

【0055】その後、前記支持体11の上に、均熱板2
を重ね、その外周部を弾性体8を介してネジ締めするこ
とにより図1に示した本発明のウエハ加熱装置1とし
た。
Then, the soaking plate 2 is placed on the support 11.
The wafer heating apparatus 1 of the present invention shown in FIG.

【0056】さらに、転写法により金ペーストからなる
給電部6を形成し、900℃で焼き付け処理した。その
後、バネを有する導通端子7を装着した支持体11にそ
の外周部を弾性体8を介してネジ締めすることにより図
1に示した本発明のウエハ加熱装置1とした。
Further, the feeding portion 6 made of gold paste was formed by the transfer method and baked at 900 ° C. After that, the outer periphery of the support 11 having the conductive terminals 7 having springs attached thereto is screwed with the elastic body 8 between them to obtain the wafer heating apparatus 1 of the present invention shown in FIG.

【0057】また、支持ピン17の載置面3からの突出
高さは、100μmとした。
The height of protrusion of the support pin 17 from the mounting surface 3 was 100 μm.

【0058】そして、このようにして得られたウエハ加
熱装置1の導電端子7に通電して200℃で保持し、載
置面3の上に載せたウエハ表面の温度分布を、均熱板2
の同心円で半径40mm、60mm、90mmの円周上
の3等分点9点の合計10点の温度バラツキが±0.3
℃以内となることを確認した後、さらに、150℃に3
0分保持し、その後、ウエハWを載せてウエハWが15
0℃に保持されるまでのウエハ面内の温度バラツキの過
渡特性を評価した。
Then, the conductive terminals 7 of the wafer heating apparatus 1 thus obtained are energized and held at 200 ° C., and the temperature distribution of the wafer surface placed on the placing surface 3 is determined by the soaking plate 2
Concentric circles with radiuses of 40 mm, 60 mm, and 90 mm, and a total of 10 points of 9 points that divide the circle into three equal points have a temperature variation of ± 0.3.
After confirming that the temperature is within ℃, further increase the temperature to 150 ℃.
Hold for 0 minutes, then place the wafer W on the wafer W
The transient characteristics of the temperature variation within the wafer surface until the temperature was maintained at 0 ° C. were evaluated.

【0059】評価基準としては、ウエハ面の温度上昇時
における温度のオーバーシュートが1.0℃以内である
ものをOKとし、それ以上となるものはNGとした。こ
こでいうオーバーシュート量とは、均熱板2の温度を制
御してウエハWの温度を所定の温度に制御する際に、勢
い余ってその設定温度より高めになってしまった温度差
のことである。
As an evaluation criterion, a temperature overshoot within 1.0 ° C. when the temperature of the wafer surface rises was set to OK, and a temperature overshoot exceeding NG was set to NG. The overshoot amount mentioned here is a temperature difference that is excessively higher than the set temperature when the temperature of the soaking plate 2 is controlled to control the temperature of the wafer W to a predetermined temperature. Is.

【0060】また、ウエハを入れ替えた際の温度が±
0.3℃に安定するまでの時間を同時に測定した。これ
については、50秒以内に安定したものを良好とし、こ
れ以上の時間を要するものは、不良として判定した。
Further, the temperature when the wafers are replaced is ±
The time to stabilize at 0.3 ° C. was measured at the same time. Regarding this, those that were stable within 50 seconds were judged to be good, and those that required more time were judged to be defective.

【0061】結果を表1に示した。The results are shown in Table 1.

【0062】[0062]

【表1】 [Table 1]

【0063】表1から判るように、発熱抵抗体5の面積
比率が10%であるNo.1は、発熱抵抗体5の発熱時
に発生する温度分布がなかなか一定にならず、±0.3
%以内にウエハの温度分布が安定するまでの時間が目標
の50秒を越えてしまった。また、発熱抵抗体5の面積
を60%にしたNo.6は、均熱板2の反りが80μm
と大きくなり、同じく±0.3%以内にウエハの温度分
布が安定するまでの時間が目標の50秒を越えてしまっ
た。
As can be seen from Table 1, No. 1 having an area ratio of the heating resistor 5 of 10%. 1 indicates that the temperature distribution generated when the heating resistor 5 generates heat does not easily become uniform and is ± 0.3.
The time required for the temperature distribution of the wafer to stabilize within 50% exceeds the target of 50 seconds. Further, in No. 3 in which the area of the heating resistor 5 is 60%. No. 6 has a soaking plate 2 with a warp of 80 μm
Similarly, the time for the temperature distribution of the wafer to stabilize within ± 0.3% exceeded the target of 50 seconds.

【0064】これに対し、発熱抵抗体5の面積比率が1
5〜50%のNo.2〜5は、前記安定時間が50秒以
内となり良好な昇温特性を示した。
On the other hand, the area ratio of the heating resistor 5 is 1
No. 5 to 50%. In Nos. 2 to 5, the stable time was within 50 seconds and good temperature rising characteristics were exhibited.

【0065】実施例 2 ここでは、発熱抵抗体5の外周部の線幅w1と内周部の
線幅w2と均熱板2の反りとの関係について調査した。
外径が320mmφ、厚みが3mmの窒化アルミニウム
板を両面研磨機を用いて平面研磨し、2つの主面の平行
度を10μm以下となるようにした後、表面に導体成分
としてAgを結合剤としてガラスを含有する発熱抵抗体
5を20μmプリント形成し、800℃で焼付処理した
のち、均熱板の反りを評価した。w1/w2を1:1、
0.8:1、0.6:1、0.4:1と変更して、均熱
板2の反りを確認した。ここで、線幅w1、w2は、最
外周のブロックと中央のブロック各々の任意の10点の
線幅の平均値を取った。
Example 2 Here, the relationship between the line width w1 of the outer peripheral portion of the heating resistor 5, the line width w2 of the inner peripheral portion, and the warp of the heat equalizing plate 2 was investigated.
An aluminum nitride plate having an outer diameter of 320 mmφ and a thickness of 3 mm was flat-polished using a double-sided polishing machine so that the parallelism between the two main surfaces was 10 μm or less, and then Ag was used as a conductor component on the surface as a binder. The heating resistor 5 containing glass was formed into a print with a thickness of 20 μm and baked at 800 ° C., after which the warpage of the soaking plate was evaluated. w1 / w2 is 1: 1,
The warpage of the soaking plate 2 was confirmed by changing to 0.8: 1, 0.6: 1 and 0.4: 1. Here, as the line widths w1 and w2, the average value of the line widths at arbitrary 10 points in each of the outermost block and the central block was taken.

【0066】結果を表2に示した。The results are shown in Table 2.

【0067】[0067]

【表2】 [Table 2]

【0068】表2から判るように、発熱抵抗体5の幅の
比率w1/w2を1:1としたNo.1は、均熱板2の
反りが80μm発生したが、前記比w1/w2を1:1
より小さくしたNo.2〜7は、前記比率を小さくする
につれ反りが低減する傾向を示した。温度安定時間も、
発熱抵抗体5の面積比率w1/w2を小さくするに従い
改善する傾向を示した。
As can be seen from Table 2, No. 1 with the width ratio w1 / w2 of the heating resistor 5 being 1: 1. 1, the warpage of the heat equalizing plate 2 was 80 μm, but the ratio w1 / w2 was 1: 1.
The smaller No. 2 to 7 showed a tendency that the warp was reduced as the ratio was decreased. The temperature stabilization time is also
There was a tendency for improvement as the area ratio w1 / w2 of the heating resistor 5 was reduced.

【0069】発熱抵抗体5の外周部の線幅w1を内周部
の線幅w2に較べて狭くすることにより、均熱板2の反
りを低減できることが判った。
It has been found that the warp of the heat equalizing plate 2 can be reduced by narrowing the line width w1 of the outer peripheral portion of the heating resistor 5 compared with the line width w2 of the inner peripheral portion.

【0070】実施例 3 ここでは、発熱抵抗体5の外周部の線幅w1とそれに近
接する線間距離g1との比w1:g1と、均熱板2の反
りとの関係を調査した。w1:g1を1:1、0.8:
1、0.6:1、0.5:1、0.4:1、0.3:
1、0.2:1、0.1:1と変更して、均熱板2の反
りを確認した。また、この均熱板2を支持体11に組み
込んで、実施例1と同様に、ウエハWを載せ替えた際の
ウエハWの温度が均一になるまでの温度安定時間を測定
した。発熱抵抗体5としては、Ag78重量%に低融点
ガラスである亜鉛−ホウ珪酸ガラス22重量%を混合し
たペーストを40μmプリントしたものを用いた。
Example 3 Here, the relationship between the ratio w1: g1 of the line width w1 of the outer peripheral portion of the heating resistor 5 and the distance g1 between the lines and the warp of the heat equalizing plate 2 was investigated. w1: g1 is 1: 1, 0.8:
1, 0.6: 1, 0.5: 1, 0.4: 1, 0.3:
The warpage of the soaking plate 2 was confirmed by changing the values to 1, 0.2: 1 and 0.1: 1. In addition, by incorporating the heat equalizing plate 2 into the support 11, the temperature stabilization time until the temperature of the wafer W becomes uniform when the wafer W is remounted was measured as in Example 1. As the heating resistor 5, a paste obtained by printing 40 μm of a mixture of 78% by weight of Ag and 22% by weight of zinc-borosilicate glass which is a low melting point glass was used.

【0071】なお、発熱抵抗体5の配置は、中心部と外
周部に分割し、さらに外周の発熱抵抗体5を円周方向に
4分割したパターンを用いた。
The heating resistor 5 was arranged in a pattern in which the heating resistor 5 was divided into a central portion and an outer peripheral portion, and the heating resistor 5 on the outer periphery was divided into four in the circumferential direction.

【0072】結果を、表3に示した。The results are shown in Table 3.

【0073】[0073]

【表3】 [Table 3]

【0074】表3から判るように、発熱抵抗体5の幅の
比率w1:g1を1:1としたNo.1は、均熱板2の
反りが80μm発生したが、前記比w1:g1を1:1
より小さくしたNo.2〜7は、前記比率を小さくする
につれ反りが低減する傾向を示した。温度安定時間も、
発熱抵抗体5の比率w1:g1を小さくするに従い改善
する傾向を示した。しかしながら、比率w1:g1を
0.1:1は、線間距離g1に対して線幅w1が狭過ぎ
るためか、温度安定時間が増加する傾向を示した。そこ
で、好ましくは比率w1:g1を0.2:1〜0.8:
1とするのが良いと判断した。
As can be seen from Table 3, No. 1 in which the width ratio w1: g1 of the heating resistor 5 was 1: 1. In No. 1, the warp of the heat equalizing plate 2 was 80 μm, but the ratio w1: g1 was 1: 1.
The smaller No. 2 to 7 showed a tendency that the warp was reduced as the ratio was decreased. The temperature stabilization time is also
There was a tendency for improvement as the ratio w1: g1 of the heating resistor 5 was reduced. However, when the ratio w1: g1 is 0.1: 1, the temperature stabilization time tends to increase probably because the line width w1 is too narrow with respect to the line distance g1. Therefore, the ratio w1: g1 is preferably 0.2: 1 to 0.8:
I decided that it would be better to set it to 1.

【0075】[0075]

【発明の効果】以上のように、本発明によれば、窒化ア
ルミニウム質セラミックスからなる均熱板の一方の主面
をウエハの載置面とし、他方の主面に発熱抵抗体を有す
るとともに、該発熱抵抗体と電気的に接続される給電部
を前記他方の主面に具備してなるウエハ加熱装置におい
て、前記均熱板の一方の主面の面積に対する発熱抵抗体
の面積比率をS(%)としたとき、30≦S≦50とす
ることにより、ウエハを交換した際のウエハ温度の昇温
過渡時のオーバーシュートを8℃以下に小さくし、オー
バーシュート量を小さくするとともに、所定温度±0.
3℃に50秒以下という短時間でウエハ温度を安定させ
ることが可能なウエハ加熱装置を提供できるようになっ
た。
As described above, according to the present invention, one main surface of the heat equalizing plate made of aluminum nitride ceramics serves as a wafer mounting surface, and the other main surface has a heating resistor. In a wafer heating apparatus having a power supply portion electrically connected to the heating resistor on the other main surface, the area ratio of the heating resistor to the area of one main surface of the heat equalizing plate is S ( %), By setting 30 ≦ S ≦ 50, the overshoot during the temperature rise transition of the wafer when the wafer is exchanged is reduced to 8 ° C. or less, the overshoot amount is reduced, and the predetermined temperature is reduced. ± 0.
It has become possible to provide a wafer heating apparatus capable of stabilizing the wafer temperature at 3 ° C. in a short time of 50 seconds or less.

【0076】また、発熱抵抗体の線幅を内周部より外周
部の方が狭くなるようにすることにより、均熱板の反り
を低減することが可能となり、ウエハ交換時の温度回復
時間を低減できるようになった。
Further, by making the line width of the heating resistor narrower at the outer peripheral portion than at the inner peripheral portion, it is possible to reduce the warpage of the heat equalizing plate, and the temperature recovery time at the time of wafer replacement is reduced. It can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のウエハ加熱装置を示す断面図である。FIG. 1 is a sectional view showing a wafer heating apparatus of the present invention.

【図2】本発明のウエハ加熱装置の支持ピン設置部の拡
大断面図である。
FIG. 2 is an enlarged sectional view of a support pin installation portion of the wafer heating apparatus of the present invention.

【図3】本発明のウエハ加熱装置の発熱抵抗体の一例を
示す平面図である。
FIG. 3 is a plan view showing an example of a heating resistor of the wafer heating apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1:ウエハ加熱装置 2:均熱板 3:載置面 4:絶縁層 5:発熱抵抗体 6:給電部 7:導通端子 8:弾性体 10:熱電対 11:支持体 20:支持ピン 21:凹部 24:固定治具 W:ウエハ 1: Wafer heating device 2: Soaking plate 3: Mounting surface 4: Insulation layer 5: Heating resistor 6: Power supply unit 7: Conductive terminal 8: Elastic body 10: Thermocouple 11: Support 20: Support pin 21: Recess 24: Fixing jig W: Wafer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 3/20 373 H01L 21/30 567 3/74 21/302 101G Fターム(参考) 3K034 AA02 AA08 AA10 AA15 AA16 AA19 AA34 BB06 BB14 BC04 BC12 BC24 BC29 CA02 CA17 CA22 CA27 CA32 HA01 HA10 JA10 3K092 PP20 QA05 QB02 QB20 QB26 QB31 QB43 QB75 QB76 QC02 QC20 QC25 QC31 QC38 QC43 QC49 QC58 RF03 RF11 RF19 RF22 TT16 VV16 VV22 VV26 5F004 AA01 AA16 BB26 BB29 5F045 AA03 BB01 BB08 EK09 EM09 5F046 KA04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H05B 3/20 373 H01L 21/30 567 3/74 21/302 101G F term (reference) 3K034 AA02 AA08 AA10 AA15 AA16 AA19 AA34 BB06 BB14 BC04 BC12 BC24 BC29 CA02 CA17 CA22 CA27 CA32. BB01 BB08 EK09 EM09 5F046 KA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】窒化アルミニウム質セラミックスからなる
均熱板の一方の主面をウエハの載置面とし、他方の主面
に発熱抵抗体を有するとともに、該発熱抵抗体と電気的
に接続される給電部を前記他方の主面に具備してなるウ
エハ加熱装置において、前記均熱板の一方の主面の面積
に対する発熱抵抗体の面積比率をS(%)としたとき、
15≦S≦50であることを特徴とするウエハ加熱装
置。
1. A soaking plate made of aluminum nitride ceramics has one main surface as a wafer mounting surface, the other main surface has a heating resistor, and is electrically connected to the heating resistor. In a wafer heating apparatus having a power feeding portion on the other main surface, when the area ratio of the heating resistor to the area of one main surface of the heat equalizing plate is S (%),
A wafer heating apparatus, wherein 15 ≦ S ≦ 50.
【請求項2】前記均熱板の外周側に形成される少なくと
もひとつの発熱抵抗体の線幅が内周側に形成される発熱
抵抗体の線幅よりも狭いことを特徴とする請求項1記載
のウエハ加熱装置。
2. The line width of at least one heat generating resistor formed on the outer peripheral side of the heat equalizing plate is narrower than the line width of the heat generating resistor formed on the inner peripheral side. Wafer heating apparatus described.
【請求項3】前記均熱板の外周部に形成される発熱抵抗
体の線幅w1とそれに近接する線間距離g1の比w1:
g1が0.2:1〜0.8:1であり、且つ線幅w1が
4mm以下であることを特徴とする請求項1記載のウエ
ハ加熱装置。
3. A ratio w1: of a line width w1 of a heating resistor formed on the outer peripheral portion of the heat equalizing plate and a distance g1 between adjacent lines.
2. The wafer heating apparatus according to claim 1, wherein g1 is 0.2: 1 to 0.8: 1 and line width w1 is 4 mm or less.
【請求項4】前記発熱抵抗体が中央部と外周部に分割さ
れ、これらのうち外周部に形成されている発熱抵抗体が
周方向に4つ以上に分割されており、上記外周部の発熱
抵抗体の電力密度が中心部の電力密度に対して100〜
200%であることを特徴とする請求項1記載のウエハ
加熱装置。
4. The heat generating resistor is divided into a central portion and an outer peripheral portion, and among these, the heat generating resistor formed on the outer peripheral portion is divided into four or more in the circumferential direction, and heat generation in the outer peripheral portion. The power density of the resistor is 100 to the power density of the central part.
The wafer heating apparatus according to claim 1, wherein the wafer heating rate is 200%.
JP2002078203A 2002-03-20 2002-03-20 Wafer heating device Expired - Fee Related JP4325902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078203A JP4325902B2 (en) 2002-03-20 2002-03-20 Wafer heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002078203A JP4325902B2 (en) 2002-03-20 2002-03-20 Wafer heating device

Publications (2)

Publication Number Publication Date
JP2003282393A true JP2003282393A (en) 2003-10-03
JP4325902B2 JP4325902B2 (en) 2009-09-02

Family

ID=29228277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078203A Expired - Fee Related JP4325902B2 (en) 2002-03-20 2002-03-20 Wafer heating device

Country Status (1)

Country Link
JP (1) JP4325902B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016796A (en) * 2006-07-05 2008-01-24 Momentive Performance Materials Inc Electrode pattern for ohmic-resistance heating elements, and substrate treating device
JP2019075443A (en) * 2017-10-13 2019-05-16 株式会社サカエ Thermal treatment equipment and support component of processed material for use therein

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325881A (en) * 1989-06-23 1991-02-04 Dainippon Ink & Chem Inc Planar heating element
JPH07161725A (en) * 1993-12-06 1995-06-23 Sumitomo Osaka Cement Co Ltd Wafer heater and electrode part member for heater
JPH11339939A (en) * 1998-05-29 1999-12-10 Kyocera Corp Ceramic heater
JP2000228270A (en) * 1998-11-30 2000-08-15 Komatsu Ltd Disc heater and temperature control unit
JP2001135464A (en) * 1999-08-10 2001-05-18 Ibiden Co Ltd Ceramic heater
JP2001244053A (en) * 2000-02-29 2001-09-07 Tdk Corp Resistive element for heating
JP2001257200A (en) * 2000-03-13 2001-09-21 Ibiden Co Ltd Ceramic substrate for semiconductor manufacturing and checking device
JP2001274052A (en) * 2000-03-23 2001-10-05 Tokyo Electron Ltd Heating device and method
JP2001351765A (en) * 1999-08-09 2001-12-21 Ibiden Co Ltd Ceramic heater for semiconductor manufacturing- inspecting device
WO2002003434A1 (en) * 2000-07-03 2002-01-10 Ibiden Co., Ltd. Ceramic heater for semiconductor manufacturing/testing apparatus
JP2002025755A (en) * 2000-07-04 2002-01-25 Tokyo Electron Ltd Hot plate manufacturing method
JP2002506279A (en) * 1998-03-05 2002-02-26 エフエスアイ インターナショナル インコーポレイテッド Heating / cooling device with low heat capacity, heat conductive heating plate

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325881A (en) * 1989-06-23 1991-02-04 Dainippon Ink & Chem Inc Planar heating element
JPH07161725A (en) * 1993-12-06 1995-06-23 Sumitomo Osaka Cement Co Ltd Wafer heater and electrode part member for heater
JP2002506279A (en) * 1998-03-05 2002-02-26 エフエスアイ インターナショナル インコーポレイテッド Heating / cooling device with low heat capacity, heat conductive heating plate
JPH11339939A (en) * 1998-05-29 1999-12-10 Kyocera Corp Ceramic heater
JP2000228270A (en) * 1998-11-30 2000-08-15 Komatsu Ltd Disc heater and temperature control unit
JP2001351765A (en) * 1999-08-09 2001-12-21 Ibiden Co Ltd Ceramic heater for semiconductor manufacturing- inspecting device
JP2001135464A (en) * 1999-08-10 2001-05-18 Ibiden Co Ltd Ceramic heater
JP2001244053A (en) * 2000-02-29 2001-09-07 Tdk Corp Resistive element for heating
JP2001257200A (en) * 2000-03-13 2001-09-21 Ibiden Co Ltd Ceramic substrate for semiconductor manufacturing and checking device
JP2001274052A (en) * 2000-03-23 2001-10-05 Tokyo Electron Ltd Heating device and method
WO2002003434A1 (en) * 2000-07-03 2002-01-10 Ibiden Co., Ltd. Ceramic heater for semiconductor manufacturing/testing apparatus
JP2002025755A (en) * 2000-07-04 2002-01-25 Tokyo Electron Ltd Hot plate manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016796A (en) * 2006-07-05 2008-01-24 Momentive Performance Materials Inc Electrode pattern for ohmic-resistance heating elements, and substrate treating device
US8168050B2 (en) 2006-07-05 2012-05-01 Momentive Performance Materials Inc. Electrode pattern for resistance heating element and wafer processing apparatus
JP2019075443A (en) * 2017-10-13 2019-05-16 株式会社サカエ Thermal treatment equipment and support component of processed material for use therein

Also Published As

Publication number Publication date
JP4325902B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
US20040045951A1 (en) Ceramic heater
JP2006127883A (en) Heater and wafer heating device
JP2001244059A (en) Ceramic heating resistor and its applied wafer heating device
JP3502827B2 (en) Wafer heating device
JP3929879B2 (en) Wafer support member
JP2003077779A (en) Wafer heater
JP4146707B2 (en) Wafer heating device
JP2004031630A (en) Wafer supporting member
JP2001313155A (en) Disc heater and wafer treatment device
JP3981300B2 (en) Wafer support member
JP2002198297A (en) Wafer heating equipment
JP2006210932A (en) Wafer-heating device
JP2003282393A (en) Wafer-heating device
JP2005317940A (en) Wafer-heating apparatus
JP4002409B2 (en) Wafer heating device
JP4975146B2 (en) Wafer heating device
JP2002083858A (en) Wafer heating device
JP2001223257A (en) Ceramic substrate for semiconductor production and inspection device
JP2005019477A (en) Wafer heating equipment
JP3860732B2 (en) Wafer heating device
JP2002164291A (en) Wafer heating equipment
JP2003223971A (en) Ceramic heater and wafer heating device and fixing device to use the same
JP2001313243A (en) Wafer heater
JP3904826B2 (en) Wafer heating device
JP2003257593A (en) Wafer support member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4325902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees