JPS62154477A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS62154477A
JPS62154477A JP60291838A JP29183885A JPS62154477A JP S62154477 A JPS62154477 A JP S62154477A JP 60291838 A JP60291838 A JP 60291838A JP 29183885 A JP29183885 A JP 29183885A JP S62154477 A JPS62154477 A JP S62154477A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
aluminum alloy
electrode
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60291838A
Other languages
Japanese (ja)
Inventor
Hidenori Nakamura
英則 中村
Riichi Shishikura
利一 獅々倉
Hiroshi Konuma
博 小沼
Toshiyuki Sakai
酒井 敏幸
Masataka Takeuchi
正隆 武内
Masao Kobayashi
小林 征男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP60291838A priority Critical patent/JPS62154477A/en
Publication of JPS62154477A publication Critical patent/JPS62154477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent the collapse of a negative electrode in charge-discharge, to increase energy density, to decrease self-discharge rate, and to increase charge-discharge efficiency by using aniline group polymer in a positive electrode and a complex comprising lithium-aluminum alloy powder and magnesium powder in a negative electrode. CONSTITUTION:Polyaniline crystal is filtered, washed with a large amount of pure water, neutralized with aqueous ammonia, washed again, and dried, then filled in a mold, and press-molded at room temperature to manufacture a positive electrode. Lithium-aluminum alloy powder and magnesium powder are uniformaly mixed, and the mixture is filled in a mold having a shape of electrode, then press-molded to manufacture a negative electrode. Thereby, the collapse of the negative electrode is prevented, and a secondary battery having high energy density, low self-discharge rate, and high charge-discharge efficiency can be obtained.

Description

【発明の詳細な説明】 1JUl=匹皿■匁1 本発明は、充放電時の負極のtnl壊が防止された、エ
ネルギー密度が高く、自己放電率が低く、かつ充放電効
率の高い高性能二次電池に関する。
[Detailed Description of the Invention] 1 JUl = 1 JUl = Momme 1 The present invention is a high-performance battery with high energy density, low self-discharge rate, and high charge/discharge efficiency, which prevents TNL destruction of the negative electrode during charging and discharging. Regarding secondary batteries.

正米豊韮薯 現在、汎用されている二次電池には、鉛蓄電池、ニッケ
ルーカドミウム電池等がある。これらの二次電池は、単
セルの電池電圧が2.0v程度であり、一般には水溶液
系電池である。
Toyota ShomaiCurrently, commonly used secondary batteries include lead-acid batteries and nickel-cadmium batteries. These secondary batteries have a single cell battery voltage of about 2.0V, and are generally aqueous batteries.

近年、電池電圧を高く取ることができる二次電池として
、リチウムを負極に用い、電導性高分子、層間化物、無
機酸化物等を正極に用いた二次電池の研究が盛んに行な
われており、特に電導性高分子を正極に用い、リチウム
を負極に用いた二次型ば− 池は、高エネルギ密度二次電池として期待されている。
In recent years, research has been actively conducted on secondary batteries that use lithium as the negative electrode and conductive polymers, interlayer compounds, inorganic oxides, etc. as the positive electrode, as secondary batteries that can achieve high battery voltage. In particular, secondary batteries using a conductive polymer as a positive electrode and lithium as a negative electrode are expected to be used as high-energy density secondary batteries.

上記電池の正極として使用される電導性高分子としては
、ポリアセチレンをはじめ、ポリチオフェン、ポリバラ
フェニレンおよびポリピロール等のごとき主鎖に共役二
重結合を右する電導性高分子が知られている〔ジエー・
エイチ・カーフマン。
As the conductive polymer used as the positive electrode of the above-mentioned battery, conductive polymers having a conjugated double bond in the main chain such as polyacetylene, polythiophene, polyparaphenylene, and polypyrrole are known.・
H.Curfman.

ジエーφダブルφカウフ?−,ニー・ジL−・こ−ガー
、アール・カーナー、ニー・ジー・マクダイアミド、フ
ィジックスレビュー、、32曝第2327頁(1982
年)、(J、H,にaufman、 J、 W、 Ka
wfer。
JE φ double φ Kauf? -, N.J. L. Kogar, Earl Kerner, N.G. McDiarmid, Physics Review, 32nd exposure, p. 2327 (1982
), (J, H, aufman, J, W, Ka
wfer.

^、J、IIeeger、 R,にancr、 A、G
、HacDiarmid、 phys、 Rev、 。
^, J, IIeger, R, ni ancr, A, G
, HacDiarmid, phys, Rev.

1碁、 2327 (1982) > )。1 Go, 2327 (1982)>).

また、アニリンを酸化重合して得られるポリアニリンを
水溶液系または非水溶媒系の電池の11転として用いる
提案もすでになされている〔ニー・ジー・マクダイアミ
ド等、ポリマー・プレプリンツ、第25巻、亀2.第2
48頁(1984年)く八、G、HacDiariid
等、Po1ya+er、Preprints、25. 
 Na2、248  (1984) > 、佐々木等、
電気化学協会筒50回大会要旨集、123頁(1983
年)、電気化学協会箱51回大会要旨集、228頁(1
984年)〕。
In addition, there has already been a proposal to use polyaniline obtained by oxidative polymerization of aniline as the 11th inverter for aqueous or non-aqueous batteries [N.G. McDiamide et al., Polymer Preprints, Vol. 25, Kame 2 .. Second
48 pages (1984) Kuhachi, G., HacDiariid
et al., Polya+er, Preprints, 25.
Na2, 248 (1984)>, Sasaki et al.
Proceedings of the 50th Annual Conference of the Electrochemical Society, p. 123 (1983
), Electrochemical Society Box 51st Conference Abstracts, 228 pages (1
984)].

これらのths性高分子のうら、高エネルギー密度、低
自己放電率、高充放電効率、長サイクル寿命等を考)!
ffるどポリアニリンを正極として使用するのが最も好
ましい。しかし、リチウムを負極層 活物質とし、ポリアニリンを正極活物質として二次電池
反応を行なう場合には、充電時に、リチウムイオンが還
元されてリチウム金属になるとき、デンドライトが生じ
、充放電効率の低下および正・負極の短絡等の問題があ
る。そのため、デンドライトを防止し、負極の充放電効
率、サイクル寿命を改良づるための技術開光も数多く報
告されており、例えばメチル化した環状エーテル系溶媒
を電池の電解液の溶媒として用いる方法〔ケー・エム・
アブラハム笠゛″リチウム バッチリーズ。
Considering the high energy density, low self-discharge rate, high charge/discharge efficiency, long cycle life, etc. of these THS polymers)!
Most preferably, polyaniline is used as the positive electrode. However, when performing a secondary battery reaction using lithium as the negative electrode layer active material and polyaniline as the positive electrode active material, dendrites are formed when lithium ions are reduced to lithium metal during charging, reducing charge and discharge efficiency. There are also problems such as short circuits between the positive and negative electrodes. Therefore, many new technologies have been reported to prevent dendrites and improve the charge/discharge efficiency and cycle life of negative electrodes. M
Abraham Kasa゛″Lithium Batches.

ジエー・ピー・カルバノ糧集、アカデミツクブレス発行
、ロンドン(1983年) 〈に、H,Abraham
 etal、in”L口重um Batteries 
” 、 J、P、Gabano。
G.P. Calvano Collection, Academic Press, London (1983), H. Abraham
etal, in”L-Kuchijuum Batteries
”, J., P., Gabano.

editor、^cademic press、Lon
don (1983) ) )や電解液系に添加物を配
合したり、負極自体をアルミニウムと合金化することに
より、リチウムのデンドライトを防止する方法〔特開昭
59−108281号〕等が提案されている。しかし、
上記方法は、デンドライトの改良効果が必ずしも満足す
べきものではないばかりではなく、リチウム−アルミニ
ウムない等の問題があった。また、銀とアルカリ金属と
の固溶体を負極として用いることも提案されている(特
開昭56−73860号)。この場合はリチウムとアル
ミニウムとの合金のような崩壊はないが、十分に速く合
金化するアルカリ金属の通が少なく、金属状のアルカリ
金属が合金化しないまま析出する場合があり、これを防
ぐために多孔質体の使用などを推奨している。従って、
大電流の充電効率は悪く、またアルカリ金属比率の多い
代金は充放電による微細化が徐々に加速され、サイクル
寿命が急激に減少する等の問題がある。
editor, ^ academic press, Lon
(1983) )), a method of preventing lithium dendrites by adding additives to the electrolyte system, or alloying the negative electrode itself with aluminum [Japanese Patent Application Laid-open No. 108281/1983] has been proposed. There is. but,
The above method not only does not necessarily provide a satisfactory dendrite improvement effect, but also has problems such as the lack of lithium-aluminum. It has also been proposed to use a solid solution of silver and an alkali metal as a negative electrode (Japanese Unexamined Patent Publication No. 73860/1983). In this case, there is no collapse like in the alloy of lithium and aluminum, but there is less passage of the alkali metal that alloys quickly enough, and the metallic alkali metal may precipitate without being alloyed.To prevent this, The use of porous materials is recommended. Therefore,
The charging efficiency of large currents is poor, and batteries with a high proportion of alkali metals have problems such as gradual acceleration of micronization due to charging and discharging, resulting in a rapid decrease in cycle life.

さらに、リチウムホイルとアルミニウムホイルを重ね合
せ゛Cラミネート状とし、これを電解液中で合金化して
電極を作製する方法(米国特許第4.056,413号
明細四)、リチウム−アルミニウム合金粉末とリチウム
粉末を混合し加圧成形して電極を作製する方法(特開昭
60−175366)等が提案されている。しかし、こ
れらの方法で得られる電極を負極として用いた場合、デ
ンドライトの改良効果が必ずしも満足すべきものでなく
、電圧平坦性、高エネルギー密度、低自己放電率、高充
放電効率(ちよび艮サイクル寿命の二次電池は得られ!
轡なかった。
Furthermore, we have developed a method in which lithium foil and aluminum foil are laminated to form a C laminate and then alloyed in an electrolytic solution to produce an electrode (U.S. Pat. No. 4,056,413 Specification 4), and lithium-aluminum alloy powder A method has been proposed in which an electrode is prepared by mixing lithium powder and press-molding the mixture (Japanese Unexamined Patent Publication No. 175366/1983). However, when the electrodes obtained by these methods are used as negative electrodes, the dendrite improvement effect is not necessarily satisfactory, and voltage flatness, high energy density, low self-discharge rate, and high charge-discharge efficiency (Chiyobi cycle cycle You can get a rechargeable battery with a long life!
There was no fall.

く °1しよ とす Zl一 本発明の目的は、前記従来の二次°電池の欠点を克服し
、充放電時の負極の崩壊が防止され、エネ中 ル1=密度が高く、自己放電率が低く、かつ充放電効率
の高い二次電池を提供するにある。
An object of the present invention is to overcome the drawbacks of the conventional secondary batteries, prevent collapse of the negative electrode during charging and discharging, have high energy density, and provide self-discharge. An object of the present invention is to provide a secondary battery with a low charge/discharge efficiency and a high charge/discharge efficiency.

IJ       ”         7こ    
の ;本発明者らは、前記従来技術の欠点を解決ずべく
種々検討した結果、リチウム−アルミニウム合金粉末と
マグネシウム粉末とからなる複合体を負極に用いると、
上記目的を達成し得る高性能の二次電池が得られること
を見出し、本発明を完成するに至った。
IJ” 7
As a result of various studies to solve the drawbacks of the above-mentioned conventional techniques, the present inventors found that when a composite consisting of lithium-aluminum alloy powder and magnesium powder is used for the negative electrode,
The present inventors have discovered that a high-performance secondary battery that can achieve the above objects can be obtained, and have completed the present invention.

即ち、本発明に従えば、正極にアニリン系重合体、負極
にリチウム−アルミニウム合金粉末とマグネシウム粉末
とからなる複合体を用いたことを特徴とする二次電池が
提供される。
That is, according to the present invention, there is provided a secondary battery characterized by using an aniline polymer for the positive electrode and a composite consisting of lithium-aluminum alloy powder and magnesium powder for the negative electrode.

本発明で負極として使用される複合体は、リチウム−ア
ルミニウム合金粉末とマグネシウム粉末との混合物から
作製される成形体を意味する。
The composite used as a negative electrode in the present invention means a molded body made from a mixture of lithium-aluminum alloy powder and magnesium powder.

本発明において負極の構成要素の一つとして使用される
リブラム−アルミニウム合金粉末は、リチウムとアルミ
ニウムの元素組成比が10 : 90から90:10ま
でのものが利用できるが、実用的にはアルミニウム中の
リチウムの拡散速度の大きい、40;60から90:1
0の範囲で使用するのが好ましい。すをボールミル等に
よって粉砕して粉末状となした侵、篩着1.−よって分
級して得られる粒径が50メツシユ以ト、好ましくは2
00から300メツシュ間の粉末を減圧下、100から
400℃の温度において乾燥してから用いることが好ま
しい。上記の加熱処I11!によって、合金粉末の表面
上の不純物質が除去され、マグネシウム粉末と混合η′
る時にマグネシウム粉末との接着性が良くなる。
The Libram-aluminum alloy powder used as one of the constituent elements of the negative electrode in the present invention can have an elemental composition ratio of lithium to aluminum of 10:90 to 90:10, but practically it is High diffusion rate of lithium, 40:60 to 90:1
It is preferable to use it in the range of 0. 1. - Therefore, the particle size obtained by classification is less than 50 mesh, preferably 2
It is preferable to use the powder after drying it under reduced pressure at a temperature of 100 to 400°C. The above heat treatment I11! The impurities on the surface of the alloy powder are removed and mixed with the magnesium powder η′
Adhesion with magnesium powder improves when

本発明の負極の構成要糸の他の一方の成分として使用さ
れるマグネシウム粉末は、融点が約650℃であり、溶
媒や支持電解質に対して不活性であバ リ、不純物や溶出物がなく、電導性も良好である。:マ
グネシウム粉末の配合0は、リチウム−アル。
The magnesium powder used as the other component of the main fiber of the negative electrode of the present invention has a melting point of about 650°C, is inert to solvents and supporting electrolytes, and is free of burrs, impurities, and eluates. It also has good electrical conductivity. :Blend 0 of magnesium powder is lithium-Al.

ミニラム合金粉末に対して1重量%から50重量%、好
ましくは5mff1%から20tfifi1%である。
The amount is 1% to 50% by weight, preferably 5mff1% to 20tfifi1%, based on the Miniram alloy powder.

マグネシウム粉末の配合口が1重量%未満では、リチウ
ム−アルミニウム合金の充放電時の崩壊性の改良効果が
充分ではなく、一方マグネシウム粉末の配合口が50重
量%より多い場合には、リチウムの拡散速度が低下し、
電池性能が悪くなるというガ。
If the proportion of magnesium powder is less than 1% by weight, the effect of improving the disintegration properties during charging and discharging of the lithium-aluminum alloy will not be sufficient; on the other hand, if the proportion of magnesium powder is more than 50% by weight, the diffusion of lithium will be reduced. speed decreases,
The problem is that battery performance deteriorates.

を有する。has.

リチウム−アルミニウム合金粉末とマグネシウム粉末と
の混合物から複合体を作製する方法としては、例えば以
下の方法があげられる。
Examples of methods for producing a composite from a mixture of lithium-aluminum alloy powder and magnesium powder include the following method.

(1)  リヂウムーアルミニウム合金粉末とマグネシ
ウム粉末とを均一に混合し、次いで電極の形状をした金
型内に混合物を充填し、常温にて圧力を加えて成形する
方法があげられる。
(1) One method is to uniformly mix a lithium aluminum alloy powder and a magnesium powder, then fill the mixture into a mold shaped like an electrode, and mold the mixture by applying pressure at room temperature.

この際の圧力は、混合物の充填迅により異なるので一概
には決められないが、一般には0.2t/cIR2から
5t/n2が良く、最も好ましい圧力範囲は0.2t/
cm2からit/α2である。
The pressure at this time varies depending on the filling speed of the mixture, so it cannot be determined unconditionally, but in general, 0.2t/cIR2 to 5t/n2 is good, and the most preferable pressure range is 0.2t/cIR2 to 5t/n2.
cm2 to it/α2.

(2)  リチウム−アルミニウム合金粉末とマグネシ
ウム粉末とからなる混合物を前記(1)と同様な方法に
よって、常温で加圧成形後、マグネシウム粉末の融点以
下、常温より高い温度で加熱、または加熱加圧処理する
方法。
(2) A mixture consisting of lithium-aluminum alloy powder and magnesium powder is press-molded at room temperature by the same method as in (1) above, and then heated at a temperature below the melting point of the magnesium powder and higher than room temperature, or heated and pressurized. How to process.

(3)  リチウム−アルミニウム合金粉末とマグネシ
ウム粉末とからなる混合物を電極の形状をした金型内に
充填して、マグネシウム粉末の融点以下、常温より高い
温度で加熱加圧処理する方法。
(3) A method in which a mixture of lithium-aluminum alloy powder and magnesium powder is filled into an electrode-shaped mold, and heated and pressurized at a temperature below the melting point of the magnesium powder and above room temperature.

上記(2)および(3)の加熱加圧処理の際の圧力は前
記(1)と同様である。
The pressure during the heating and pressure treatment in (2) and (3) above is the same as in (1) above.

また、上記(2)および(3)の方法における加熱は、
常温から徐々に処理温度まで昇温させてもよいし、また
、最初から処理温度まで加熱しておいてもよい。(2)
および(3)の方法において、処理温度がマグネシウム
の融点より高い場合は、本発明の効果が得られない。処
理温度が常温の場合は、(1)の方法と同様になって格
別の意味が認められず、また処理温度が常温より低い場
合は、本発明の効果が得られない。
In addition, the heating in the methods (2) and (3) above is
The temperature may be gradually raised from room temperature to the processing temperature, or it may be heated to the processing temperature from the beginning. (2)
In method (3), if the treatment temperature is higher than the melting point of magnesium, the effects of the present invention cannot be obtained. When the treatment temperature is room temperature, the method is similar to method (1) and no special significance is recognized, and when the treatment temperature is lower than room temperature, the effects of the present invention cannot be obtained.

さらに、上記(2)および(3)の方法における加熱時
間は、処理温度により選択され、処理温度と処理時間は
反比例の関係となる。例えば処理温度が600℃の場合
、1分から30分、好ましくは2分から15分の時間が
望ましい。
Further, the heating time in the methods (2) and (3) above is selected depending on the treatment temperature, and the treatment temperature and treatment time are inversely proportional. For example, when the treatment temperature is 600°C, the desired time is 1 minute to 30 minutes, preferably 2 minutes to 15 minutes.

前記、(1) 、 (2)および(3)の方法のうちで
、(2)および(3)の方法がリチウム−アルミニウム
合金とマグネシウムの接合度が増加し、電極強度も高く
なり、かつ崩壊もマグネシウムの融点以下、常温より高
い温度で加熱処理しない未処理品より少なくなる点で好
ましく、(3)の方法が特に好ましい。
Among the methods (1), (2) and (3) above, methods (2) and (3) increase the degree of bonding between the lithium-aluminum alloy and magnesium, increase the electrode strength, and prevent collapse. It is preferable that the amount of carbon dioxide is lower than that of an untreated product that is not heat-treated at a temperature below the melting point of magnesium and higher than room temperature, and method (3) is particularly preferable.

゛ なお、リチウム−アルミニウム合金粉末は、水分、
酸素、窒素等に対して極めて反応性が高いことから、粉
砕、混合、成形、加熱等の操作は、不活性ガス雰囲気下
または真空下で行うことが望ましい。  1 本発明において正極どして使用されるアニリン系重合体
は、過1aMアンモニウムや過酸化水素等の酸化剤とア
ニリン系モノマーを反応させて化学的に重合する方法、
アニリン系モノマーの酸性水溶液中に電極を設置し、通
電により正極−ヒにアニリン系重合体を酸化析出する電
気化学的重合方法等、いずれの方法で製造したものでも
よい。
゛ In addition, lithium-aluminum alloy powder is free from moisture,
Since it is highly reactive to oxygen, nitrogen, etc., operations such as crushing, mixing, molding, and heating are preferably performed under an inert gas atmosphere or under vacuum. 1. The aniline polymer used as the positive electrode in the present invention can be chemically polymerized by reacting an aniline monomer with an oxidizing agent such as ammonium peroxide or hydrogen peroxide;
It may be manufactured by any method such as an electrochemical polymerization method in which an electrode is placed in an acidic aqueous solution of an aniline monomer and an aniline polymer is oxidized and deposited on the positive electrode by applying electricity.

アニリン系モノマーの代表例としては、アニリン、2−
メトキシアニリン、3−メトキシアニリン、2.3−ジ
メトキシアニリン、2.5−ジメトキシアニリン、2.
6−ジメトキシアニリン、3.5−ジメトキシアニリン
、2−エトキシ−3−メトキシアニリン、2,5−ジフ
ェニルアニリン、2−フェニル−3−メチルアニリン、
2,3゜5−トリメトキシアニリン、2,3−ジメヂル
アニリン、2.3,5.6−チトラメヂルアニリン等が
あげられるが、これらの中でも好ましいものはアニリン
である。アニリン系重合体の具体的な製造方法は、例え
ばニー・ジー・グリーンおよびニー・イー・ウッドハー
ド、ジャーナル・オブ・ケミカル・フサイアティ0.第
97@(1910年)。
Representative examples of aniline monomers include aniline, 2-
Methoxyaniline, 3-methoxyaniline, 2.3-dimethoxyaniline, 2.5-dimethoxyaniline, 2.
6-dimethoxyaniline, 3,5-dimethoxyaniline, 2-ethoxy-3-methoxyaniline, 2,5-diphenylaniline, 2-phenyl-3-methylaniline,
Examples include 2,3.5-trimethoxyaniline, 2,3-dimedylaniline, and 2.3,5.6-titramedylaniline, and among these, aniline is preferred. Specific methods for producing aniline polymers are described in, for example, N.G. Green and N.E. Woodhard, Journal of Chemical Fussiati. No. 97 @ (1910).

第2388頁;同第101巻(1913年)、第111
7頁;ニー・キタニおよびジエー・イズミ等;ブリチン
・ケミカル・ソサイアテイ・オブ・ジャパン、第57巻
(1984年)、繊8.第2254頁に記載されている
Page 2388; Volume 101 (1913), No. 111
Page 7; N. Kitani and J. Izumi et al.; Britin Chemical Society of Japan, Vol. 57 (1984), Sen 8. It is described on page 2254.

上記方法で製造したアニリン系重合体は、水分や不純物
等を含有した形で得られることが多く、そのまま正極ど
して使用した場合は、これらの水分や不純物等は電池性
能に対して悪影響を及ぼし、特にリチウムとの反応性が
大きいため、自己放電率およびサイクル数を低下させる
恐れがある。従って、アニリン系重合体は、洗浄、乾燥
して水分や不純物等を除去してから使用することが好ま
しい。
The aniline polymer produced by the above method is often obtained in a form containing water and impurities, and if used as a positive electrode as is, these water and impurities may have a negative effect on battery performance. Since it has a high reactivity with lithium, it may reduce the self-discharge rate and cycle number. Therefore, it is preferable to wash and dry the aniline polymer to remove moisture, impurities, etc. before use.

本発明の二次電池に用いる電解液の溶媒としでは、非プ
ロトン性で、かつ高誘電率のものが好ましい。例えばエ
ーテル類、ケトン類、アミド類、硫黄化合物、リン酸ニ
スデル系化合物、塩素化炭化水素類、エステル類、カー
ボネート類、ニトロ化合物、スルホラン類等を用いるこ
とができるが、これらのうちでもエーテル類、ケトン類
、リン酸エステル系化合物、塩素化炭化水素類、カーボ
ネート類、スルホラン類が好ましい。これらの溶媒の代
表例としては、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1.4−ジオキサン、モノグリム、4−
メチル−2−ペンタノン、1゜2−ジクロロエタン、γ
−ブチロラクトン、バレロラクトン、ジメトキシエタン
、メチルフォルメート、プロピレンカーボネート、エチ
レンカーボネート、ジメチルホルムアミド、ジメチルス
ルホニ1:シド、ジメチルチオホルムアミド、リン酸エ
チル、リン酸メチル、クロロベンゼン、スルホラン、3
−メチルスルホラン等をあげることができる。
The solvent for the electrolytic solution used in the secondary battery of the present invention is preferably aprotic and has a high dielectric constant. For example, ethers, ketones, amides, sulfur compounds, Nisder phosphate compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, sulfolanes, etc. can be used, but among these, ethers , ketones, phosphate ester compounds, chlorinated hydrocarbons, carbonates, and sulfolanes are preferred. Representative examples of these solvents include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, monoglyme, 4-
Methyl-2-pentanone, 1゜2-dichloroethane, γ
-butyrolactone, valerolactone, dimethoxyethane, methylformate, propylene carbonate, ethylene carbonate, dimethylformamide, dimethylsulfony 1:side, dimethylthioformamide, ethyl phosphate, methyl phosphate, chlorobenzene, sulfolane, 3
-Methylsulfolane and the like can be mentioned.

これらの溶媒は、二種以上を混合して用いることもでき
る。
These solvents can also be used in combination of two or more.

また、本発明の二次電池に用いる支持電解質の兵体例と
しては、Li PFe 、li Sb Fe 。
Furthermore, examples of supporting electrolytes used in the secondary battery of the present invention include Li PFe and li Sb Fe.

Li C104、Li As Fe 、CF3 SO3
Li 。
Li C104, Li As Fe, CF3 SO3
Li.

Li BF4 、 Li B (Bu)4 。Li BF4, Li B (Bu)4.

Li B (C6H5) 4 、1i B (Et)2
(Bu)zなどをあげることができるが、必ずしもこれ
らに限定されるものではない。これらの支持電解質は−
V類また(よ二種類以上を混合して使用してもよい。
Li B (C6H5) 4 , 1i B (Et) 2
Examples include (Bu)z, but are not necessarily limited to these. These supporting electrolytes are −
Class V may also be used in combination of two or more types.

支持電解質の濃度は、正極に用いるアニリン系重合体の
種類、充電条件、作8温度、支持電解質のFFI類およ
び溶媒の種類等によって異なるので一概には規定づるこ
とはできないが、一般には0.5〜10モル/ρの範囲
内であることが、好ましい。
The concentration of the supporting electrolyte cannot be unconditionally defined because it varies depending on the type of aniline polymer used in the positive electrode, charging conditions, temperature, FFI of the supporting electrolyte, type of solvent, etc., but it is generally 0. It is preferably within the range of 5 to 10 mol/ρ.

電解液は均−系でも不均一系でもよい。The electrolyte may be homogeneous or heterogeneous.

本発明の二次電池において、アニリン系重合体にドープ
されるドーパントの量は、アニリン系重合体の繰り返し
単位1モルに対して、10〜180モル%であり、好ま
しくは20〜100モル%である。
In the secondary battery of the present invention, the amount of dopant doped into the aniline polymer is 10 to 180 mol%, preferably 20 to 100 mol%, based on 1 mol of repeating units of the aniline polymer. be.

リチウム−アルミニウム合金粉末とマグネシウ°ム粉末
とからなる複合体においてはいリチウムの利用率を多く
した方が、エネルギー密度を上げられるので有利である
が、全リチウムを利用するとデンドライト等が起きやす
くなることから10%から90%の利用率で充放電を行
うことが好ましい。
In a composite made of lithium-aluminum alloy powder and magnesium powder, it is advantageous to increase the utilization rate of lithium because it increases the energy density, but if all lithium is used, dendrites etc. are likely to occur. It is preferable to perform charging and discharging at a utilization rate of 10% to 90%.

ドープ徂やリチウム利用率は、充電の際に流れた電気団
を測定することによって自由に制御することができる。
The doping level and lithium utilization rate can be freely controlled by measuring the electrical groups flowing during charging.

一定電流下でも一定電圧下でもまた電流および電圧の変
化する条件下のいずれの方法で行ってもよい。
It may be carried out either under constant current, constant voltage, or under varying conditions of current and voltage.

火IJI 次ぎに、実施例および比較例をあげて本発明をさらに詳
細に説明する。
Next, the present invention will be explained in more detail by giving Examples and Comparative Examples.

実施例 (正極の作製) アニリン濃度が0゜22モル/1の1規定塩酸水溶液i
oo Idを機械的に撹拌しながら、液温を40℃に保
つように外部加熱した。その液中に酸化剤として0.2
5モル/1相当の過硫酸アンモニウム((N+−14)
 2 S208 )を徐々に添加すると液中にポリアニ
リンの結晶が析出した。過硫酸アンモニウムの添加終了
後、そのまま40℃にて3時間保持し、反応を完結させ
た。、得られたポリアニリンは、粉末状の緑黒色の結晶
であった。この結晶を濾過し、5怨の純水で洗浄後、ア
ンモニア水を用いて中和した。その侵再度水洗浄を行っ
た。次いで、80℃、減圧下で、5時間水分のなくなる
まで乾燥を行った。
Example (Preparation of positive electrode) 1N aqueous hydrochloric acid solution i with an aniline concentration of 0°22 mol/1
oo Id was externally heated while stirring mechanically to maintain the liquid temperature at 40°C. 0.2 as an oxidizing agent in the liquid
Ammonium persulfate ((N+-14) equivalent to 5 mol/1
2S208) was gradually added, polyaniline crystals were precipitated in the solution. After the addition of ammonium persulfate was completed, the temperature was maintained at 40° C. for 3 hours to complete the reaction. The polyaniline obtained was a powdery green-black crystal. The crystals were filtered, washed with pure water, and then neutralized with aqueous ammonia. After washing, washing with water was performed again. Next, drying was performed at 80° C. under reduced pressure for 5 hours until moisture disappeared.

乾燥したポリアニリン34j19を10.φの金型に充
填し、常温で加圧成形して正極を作製した。
10. Dried polyaniline 34j19. A positive electrode was prepared by filling a φ mold and press-molding it at room temperature.

く負極の作¥IJ) 水域金属(株)社製の元素組成比が50 : 50のリ
チウム−アルミニウム合金の塊をボールミルを用いて1
時間粉砕した。得られたりヂウムーアルミニウム合金粉
末を200から300メツシユの篩上にて分級し、その
粉末を減圧に引ぎながら350℃に加熱して1時間乾燥
を行った。
Production of negative electrode (IJ) A lump of lithium-aluminum alloy with an elemental composition ratio of 50:50 manufactured by Suido Metal Co., Ltd. was milled using a ball mill.
Time crushed. The obtained aluminum alloy powder was classified on a 200 to 300 mesh sieve, and the powder was heated to 350° C. under reduced pressure and dried for 1 hour.

マグネシウム粉末は、高純度化学−社製の粉末を200
〜300メツシユの篩上にて分級し、減圧下、150℃
にて乾燥を行った。
Magnesium powder is manufactured by Kojundo Kagaku Co., Ltd.
Classified on a sieve with ~300 mesh and heated at 150°C under reduced pressure.
It was dried at.

゛ 前記のように処理して得られたリチウム−アルミニ
ウム合金粉末とマグネシウム粉末を=ffll比で合金
粉末80に対してマグネシウム粉末20の割合で配合し
、タンブラ−混合磯にて2時間況合し、合金粉末とマグ
ネシウム粉末を均一化した。混合された粉末35■を1
0sφの金型に充填し、0.5t/が600μ卯、密度
が0.74 g/、3であった。
゛ The lithium-aluminum alloy powder and magnesium powder obtained by the above treatment were mixed at a ratio of 80 parts of the alloy powder to 20 parts of the magnesium powder, and mixed in a tumbler for 2 hours. , the alloy powder and magnesium powder were homogenized. 35μ of mixed powder 1
It was filled into a mold of 0 sφ, 0.5 t/ was 600 μm, and the density was 0.74 g/3.

(実験セルの構成) 上記の方法で作製した正極(ポリアニリン)と負極(リ
チウム−アルミニウム合金粉末とマグネシウム粉末から
なる複合体)を図に示す実験用セルに組み込み、正極と
負極の間には、1モル/Ill相 l当のホウフッ化リチウムを体積比が1:1のプロピレ
ンカーボネートと1.2−ジメトキシエタン混合溶媒に
溶解させた電解液を含浸した多孔性ポリプロピレン隔膜
を入れ、両極が短絡しない構造とした。
(Structure of experimental cell) The positive electrode (polyaniline) and negative electrode (composite of lithium-aluminum alloy powder and magnesium powder) produced by the above method were assembled into the experimental cell shown in the figure, and between the positive electrode and negative electrode, A porous polypropylene diaphragm impregnated with an electrolytic solution in which 1 mol/Ill equivalent of lithium fluoroboride is dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1:1 is inserted to prevent short-circuiting between the two electrodes. Structure.

(電池性能試験) 充放電の電流密度を3mA/in2に設定し、放電時の
下限電圧を1.0■にした条件下で充放電の練り返し試
験を行なった。サイクル数5回目で充放電効率が97%
になり、その時の電気mは、13.42クーロンであり
、リチウムの利用率は15%であった。この電池は、勺
イクル数300回目でも5回目と同様な結果であり、3
01回目に自己放電試験を720時間で行ったところ、
3.8%の自己放電率であった。
(Battery Performance Test) A repeated charging and discharging test was conducted under conditions in which the current density for charging and discharging was set at 3 mA/in 2 and the lower limit voltage during discharging was set at 1.0 ■. Charge/discharge efficiency is 97% at the 5th cycle
The electricity m at that time was 13.42 coulombs, and the lithium utilization rate was 15%. This battery had the same results even after the 300th cycle as the 5th cycle.
When the self-discharge test was conducted for 720 hours on the 01st time,
The self-discharge rate was 3.8%.

毘」[1 実施例で負極として用いたリチウム−アルミニウム合金
粉末とマグネシウム粉末からなる複合体の代りに、リチ
ウム−アルミニウム合金のみを負極として用いた以外は
、実施例と同じ充放電条件にてサイクルテストを実施し
た。その結果、5回目で充放電効率93%であった。そ
の時に流れた電気量は13.2クーロンであり、リチウ
ムの利用率は13.7%であったが、ナイクル数150
回目で充tli電効率が80%と低下し、次ぎの回で自
己放電率を測定したところ、720時間で80%であっ
た。実験線゛了後、電池セルを分解し、負極を観察した
ところ、崩壊がひどく電極の形状を維持していなかった
[1] Cycles were carried out under the same charging and discharging conditions as in the example, except that only a lithium-aluminum alloy was used as the negative electrode instead of the composite of lithium-aluminum alloy powder and magnesium powder used as the negative electrode in the example. A test was conducted. As a result, the charging/discharging efficiency was 93% at the fifth time. The amount of electricity that flowed at that time was 13.2 coulombs, and the utilization rate of lithium was 13.7%, but the Nykle number was 150.
The charging efficiency decreased to 80% in the second cycle, and when the self-discharge rate was measured in the next cycle, it was 80% after 720 hours. After the experimental run was completed, the battery cell was disassembled and the negative electrode was observed, and it was found that the electrode had collapsed so badly that it did not maintain its shape.

l且立皇」 以上記述したように、負極としてリチウム−アルミニウ
ム合金粉末とマグネシウム粉末とからなる複合体を用い
ることによって、リチウム〜・アルミニウム合金からな
る負極の崩壊を防止することができ、高エネルギー密度
、低自己放電率、高充放電効率で作動する二次電池を得
ることが可能どなった。
As described above, by using a composite made of lithium-aluminum alloy powder and magnesium powder as the negative electrode, it is possible to prevent the negative electrode made of lithium-aluminum alloy from collapsing, and to achieve high energy It has become possible to obtain secondary batteries that operate with high density, low self-discharge rate, and high charge/discharge efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一興体例である二次電池の特性測′定用電
池セルの断面概略図である。 1・・・負極用ニッケルリード線 2・・・負極用ニッケル精巣重体 3・・・負 極 4・・・多孔性ポリプロピレン製隔膜 5・・・正 極 6・・・正極用ニッケル網来電体 7・・・正極リード線   8・・・テフロン製容器特
許出願人  昭和電工株式会社 株式会社日立製作所
The figure is a schematic cross-sectional view of a battery cell for measuring characteristics of a secondary battery, which is an example of the present invention. 1... Nickel lead wire for negative electrode 2... Nickel testicular body for negative electrode 3... Negative electrode 4... Porous polypropylene diaphragm 5... Positive electrode 6... Nickel net conductor for positive electrode 7...Positive electrode lead wire 8...Teflon container Patent applicant Showa Denko Co., Ltd. Hitachi Ltd.

Claims (1)

【特許請求の範囲】[Claims] 正極にアニリン系重合体、負極にリチウム−アルミニウ
ム合金粉末とマグネシウム粉末とからなる複合体を用い
たことを特徴とする二次電池。
A secondary battery characterized by using an aniline polymer for the positive electrode and a composite consisting of lithium-aluminum alloy powder and magnesium powder for the negative electrode.
JP60291838A 1985-12-26 1985-12-26 Secondary battery Pending JPS62154477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291838A JPS62154477A (en) 1985-12-26 1985-12-26 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291838A JPS62154477A (en) 1985-12-26 1985-12-26 Secondary battery

Publications (1)

Publication Number Publication Date
JPS62154477A true JPS62154477A (en) 1987-07-09

Family

ID=17774070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291838A Pending JPS62154477A (en) 1985-12-26 1985-12-26 Secondary battery

Country Status (1)

Country Link
JP (1) JPS62154477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431354A (en) * 1987-07-27 1989-02-01 Sharp Kk Laminated cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431354A (en) * 1987-07-27 1989-02-01 Sharp Kk Laminated cell

Similar Documents

Publication Publication Date Title
KR101686640B1 (en) Preparation method for Nitrogen doped graphene having a polymer coating-sulfur complexes, the prepared complexes and lithium-sulfur battery using the same
JPH03129679A (en) Polyaniline battery and manufacture of polyaniline powder using in this battery
JP4365572B2 (en) Positive electrode material composite containing poly (3,4-ethylenedioxythiophene) and lithium secondary battery having a positive electrode made of the composite
JPS63314766A (en) Organic electrolyte cell having activated carbon metal oxide composite as positive electrode
WO2014024940A1 (en) Positive electrode for electricity-storage device and method for manufacturing electricity-storage device and slurry for electricity-storage-device positive electrode
JP5676886B2 (en) Non-aqueous secondary battery positive electrode and non-aqueous secondary battery using the same
JP2014053298A (en) Cathode for power storage device and method of manufacturing the same, cathode active material for power storage device and method of manufacturing the same, and power storage device
JPS62154477A (en) Secondary battery
JPS6231962A (en) Secondary battery
JPS6229076A (en) Secondary cell
JP3284860B2 (en) Electrode for lead-acid battery and its manufacturing method
JPS62154478A (en) Secondary battery
JPS63250069A (en) Secondary battery
JP3287837B2 (en) Battery electrodes and non-aqueous electrolyte secondary batteries
JPH01260767A (en) Secondary battery
JPS62154457A (en) Secondary battery
JP2501821B2 (en) Secondary battery
JPS6376274A (en) Secondary battery
JP3020509B2 (en) Organic electrolyte battery
JPS6243066A (en) Secondary battery
JPS62100951A (en) Secondary battery
JPH01265465A (en) Secondary cell
JPH01248471A (en) Secondary battery
JPS63248078A (en) Secondary battery
JPH0357171A (en) Polymer battery