JP4365572B2 - Positive electrode material composite containing poly (3,4-ethylenedioxythiophene) and lithium secondary battery having a positive electrode made of the composite - Google Patents

Positive electrode material composite containing poly (3,4-ethylenedioxythiophene) and lithium secondary battery having a positive electrode made of the composite Download PDF

Info

Publication number
JP4365572B2
JP4365572B2 JP2002322530A JP2002322530A JP4365572B2 JP 4365572 B2 JP4365572 B2 JP 4365572B2 JP 2002322530 A JP2002322530 A JP 2002322530A JP 2002322530 A JP2002322530 A JP 2002322530A JP 4365572 B2 JP4365572 B2 JP 4365572B2
Authority
JP
Japan
Prior art keywords
positive electrode
composite
electrode material
pedot
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002322530A
Other languages
Japanese (ja)
Other versions
JP2004158286A (en
Inventor
慎二 東家
他會宏 杉江
吉晃 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichirin Co Ltd
Original Assignee
Nichirin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichirin Co Ltd filed Critical Nichirin Co Ltd
Priority to JP2002322530A priority Critical patent/JP4365572B2/en
Publication of JP2004158286A publication Critical patent/JP2004158286A/en
Application granted granted Critical
Publication of JP4365572B2 publication Critical patent/JP4365572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリ(3,4−エチレンジオキシチオフェン)を含有する正極材料複合体および該複合体からなる正極を有するリチウム二次電池に関する。
【0002】
【従来の技術】
エレクトロニクス技術の進歩により、携帯電話、無線機などの移動体通信器やノート型パソコン、ビデオカメラなどの携帯電子機器が、小型化・軽量化され、また、機能・信頼性も向上し、広く普及してきている。
【0003】
このような状況下において、電池は電子機器の「心臓」ともいわれ、電子機器全体の大きさ・重量・性能を決定づける重要な意味を持つことから、電池の高エネルギー密度化が強く望まれている。とくに、高電圧および高エネルギー密度を有するリチウムイオン二次電池、リチウム二次電池が注目されており、その正極のサイクル特性、成形加工性、さらなる高エネルギー密度化などが重要な課題となっている。
【0004】
一般に、前記正極を構成する正極活物質としては、金属酸化物、導電性高分子などがあげられるが、金属酸化物のみでは導電性がわるく、また、自己成形性がないため、導電剤、バインダーを大量に添加する必要がある。そのため、期待されるエネルギー密度を得ることが困難である。それゆえ、加工性に優れ、柔軟性もあり、軽量である導電性高分子を材料とする正極材料の開発が進められている。
【0005】
前記導電性高分子としては、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェンなどがあげられ、高いサイクル特性を示すなどの利点を有する。しかし、理論容量にドープ率とドーパントの重量を含めるため、実際の重量あたりのエネルギー容量は小さくなり、また、金属酸化物と比較すると密度が低いため、体積あたりのエネルギー密度も低いという欠点を有する。
【0006】
前記金属酸化物と導電性高分子の互いの欠点を補い、利点を生かし、問題を解消する方法として、導電性高分子と金属酸化物との複合体電極が提案されている(たとえば、非特許文献1参照)。また、無機活物質の表面をコーティングすることによってサイクル特性を改善する方法が提案されている(たとえば、非特許文献2参照)。
【0007】
【非特許文献1】
ジィ アール ゴワード他(G.R.Goward, et. al.),エレクトロケミカ アクタ(Electrochim. Acta), 43, 1307 (1998)
【非特許文献2】
杉田勝, 野口英行, 添嶋康廣, 芳尾真幸,エレクトロケミストリィ(Electrochemistry), 68, 587 (2000)
【0008】
【発明が解決しようとする課題】
しかしながら、これまで開発された導電性高分子と金属酸化物との複合体電極の場合、金属酸化物電極と比較するとサイクル特性は改善され、容量も大きくなるが、まだ完全にサイクル劣化を抑えて理論容量に近い容量を引き出すことができていない。
【0009】
【課題を解決するための手段】
本発明者らは、前記問題を解決するため鋭意研究を重ねた結果、正極材料の調製時にポリ(3,4−エチレンジオキシチオフェン)を添加して正極材料中にポリ(3,4−エチレンジオキシチオフェン)を含有させた正極材料複合体とすることによって、前記問題を解決することができ、エネルギー密度が高く、サイクル特性および成形加工性に優れたリチウム二次電池を提供することができることを見出し、本発明を完成するにいたった。
【0010】
すなわち、本発明は、
正極材料の調製時にポリ(3,4−エチレンジオキシチオフェン)を添加して正極材料中にポリ(3,4−エチレンジオキシチオフェン)が含有され、当該ポリ(3,4−エチレンジオキシチオフェン)の含有量が、前記正極材料に含まれる無機活物質に対して、10〜150重量%である正極材料複合体が正極として使用されリチウム二次電池であって、
前記無機物質の平均粒径が1〜100μmであることを特徴とするリチウム二次電池(請求項
に関する。
【0011】
【発明の実施の形態】
本発明の正極材料複合体は、正極材料の調製時に導電性高分子であるポリ(3,4−エチレンジオキシチオフェン)を添加した、ポリ(3,4−エチレンジオキシチオフェン)と正極材料との複合体である。正極材料に含有せしめられた導電性高分子は、通常、正極材料に含まれる無機活物質の表面付近に存在すると考えられる。
【0012】
前記正極材料複合体をリチウム二次電池の正極の製造に使用すると、正極材料単独で正極を製造した場合よりも高エネルギー密度にすることができ、充放電サイクルに対する容量劣化を抑制することができる。この改善効果は、ポリ(3,4−エチレンジオキシチオフェン)(以下、PEDOTともいう)を含有させることによって、正極材料に含まれる無機活物質に導電性が付与され、無機活物質の酸化還元(充放電)反応に伴う体積変化や結晶構造の崩壊が抑制され、酸化還元反応を繰り返し行なうことによって生じる特性劣化が軽減するためと考えられる。
【0013】
通常、正極材料複合体に用いられる導電性高分子としては、ポリアニリン類、ポリピロール類、ポリチオフェン類、ポリアセチレン類などがあげられるが、本発明に使用する導電性高分子としては、すぐれた耐熱性、高い環境安定性および高い電気伝導性を有するPEDOTが選ばれる。
【0014】
正極材料複合体に使用するPEDOTの分子量などにはとくに限定はなく、一般にPEDOTと呼ばれているものであれば使用することができ、なかでもとくに良好な電気特性が得られるものとして好ましく使用されているものは、高い電気伝導性を有するものである。
【0015】
PEDOTの導電率は、一般に0.01〜300S/cmであるが、電極などの導電材料として使用するには、なるべく導電率が高いものがよく、導電率が1S/cm以上のものが好ましい。
【0016】
前記PEDOTの導電率を高くするために、通常ドーピングが行なわれるが、ドーピングに使用するドーパントの種類やドープ率としては、一般に導電性高分子に使用されるドーパント、一般に導電性高分子に行なわれるドープ率(0.1〜0.5程度)を採用することができる。
【0017】
なお、PEDOTの耐熱性は、熱重量分析において最低200℃まで重量変化しない耐熱性を有し、正極材料として使用するのに充分な耐熱性を有する。
【0018】
PEDOTは、化学重合法、電解重合法などの公知の重合法により製造可能であるが、電解重合法による製造では重合体は電極上にフィルムとして得られるが、多大な電気エネルギーを必要とし、工業的に不利であるので、化学重合法によるのが好ましい。
【0019】
PEDOTを、化学重合法により製造する場合、たとえばEDOTの有機溶媒溶液中に酸化剤を添加して重合する方法や、界面活性剤を含む液に、EDOTを乳化させた液を用意し、酸化剤水溶液を添加して重合する方法などにより製造することができる。後者の場合、低酸化剤濃度でも高収率・高電気伝導度のPEDOTが得られるため好ましい。
【0020】
PEDOTは、正極材料の調製時に添加して正極材料中に含有せしめられ、正極材料複合体とされる。
【0021】
PEDOTの含有量は、前記正極材料に含まれる無機活物質に対して10〜150%、さらには14〜50%であるのが好ましい。PEDOTの含有量が少なすぎる場合、PEDOTを含有させることによる充分な効果が得られず、多すぎる場合、リチウム二次電池にした場合に電池容量の低下を招くおそれがある。
【0022】
前記無機活物質としては、たとえばTiS2、MoS2、Co26、FeS2、NbS2、ZrS2、VSe2などの遷移金属カルゴゲン化合物、V25、MoO3、MnO2、CoO2などの金属酸化物、コバルト、マンガン、ニッケル、鉄などから選ばれるいずれかの金属とリチウムとを構成元素として含む複合酸化物があげられる。これらは1種で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちではコバルトとリチウムとを構成元素として含む複合酸化物(たとえばコバルト酸リチウム)、ニッケルとリチウムとを構成元素として含む複合酸化物(たとえばニッケル酸リチウム)、V25(バナジウム酸化物)、MoO3(モリブデン酸化物)などが、理論容量が大きい点から好ましい。さらに、V25、MoO3が、前記導電性高分子の電気化学的酸化還元反応を起こす電位付近に放電曲線の平坦部を持つ点から好ましい。
【0023】
前記無機活物質の粒径としては、平均粒径が0.1〜150μm、さらには0.5〜120μm、とくには1〜100μmであるのが好ましい。平均粒径は、小さくなるほど表面積が増え、初期の電池容量が増大するため、平均粒径が大きすぎるものは実用的でない。一方、平均粒径が小さくなりすぎると、充放電サイクルを経るうちに電池容量が低下する問題や、電極を調製する際の分散性が劣化につながるなどの問題が生じやすくなる。
【0024】
本発明において、PEDOTを含有する正極材料複合体を製造する方法としては、たとえば正極材料に含まれる無機活物質とPEDOTと導電剤およびバインダーとを、有機溶媒中で混合・撹拌して均一に分散させた組成物の溶媒を除去することにより製造することができる。
【0025】
また、前記分散液を乾燥させる際の条件にもとくに制限はないが、溶媒が完全に除去することが好ましい。
【0026】
前記導電剤としては、たとえばアセチレンブラック、グラファイト、カーボンなどがあげられる。これらの炭素材料のうち、アセチレンブラックは若干導電性は劣るものの、0.1μm以下の結晶がぶどうの房状に連なっているため、0.1〜150μmの大きさの無機活物質と効率よく接触可能であるため、正極材料において一般的な導電剤として使用されている。本発明に使用する無機活物質の平均粒径は0.1〜150μmの範囲であるので、導電剤にアセチレンブラックを使用することが好ましい。
【0027】
前記バインダーとしては、たとえばポリフッ化ビニリデン、ポリ4フッ化エチレンなどがあげられる。正極活物質と導電剤を強く縛り付けることにより、正極の高い導電性を保持することができるポリマーが、一般に使用される。
【0028】
前記有機溶媒としては、たとえばN−メチル−2−ピロリドン、ジメチルホルムアミドなどのごとき、導電性高分子やバインダーに対して良溶媒である溶媒が一般に使用される。
【0029】
前記有機溶媒の使用量は、溶媒を含む組成物が均一に撹拌できる量であればよく、とくにどれだけの量という規定はないが、電極を乾燥(溶媒を除去)する工程があるために、N−メチル-2−ピロリドンを用いる場合には、揮発しにくいのでなるべく少量(たとえば、バインダー10重量部(以下、部という)に対して100〜200部程度)にするのが好ましい。
【0030】
前記無機活物質とPEDOTと導電剤およびバインダーとを有機溶媒中で混合・撹拌して均一に分散させる際の温度、時間などにはとくに制限はない。
【0031】
また、前記有機溶媒を乾燥させる際の条件にもとくに制限はないが、溶媒が完全に除去することが好ましい。
【0032】
無機活物質複合体(所定量の無機活物質とPEDOTを混合したもののこと)、導電剤、バインダーからなる溶媒を除く組成物中に占める各成分の割合としては、無機活物質複合体が60〜100%、さらには70〜95%、導電剤が0〜30%、さらには5〜25%、バインダーが0〜20%、さらには0〜15%であるのが好ましい。前記無機活物質複合体の割合が少なすぎる場合には、電池容量が低下しやすくなる。また、前記導電剤の割合が多すぎる場合には、電極の成形が困難になったり、エネルギー密度が低下したりしやすくなる。さらに、前記バインダーの割合が多すぎる場合には、バインダーの絶縁性による電子伝導が不良となりやすくなる。
【0033】
なお、無機活物質複合体中に含まれる導電性高分子(PEDOT)が無機活物質のバインダーおよび導電剤も兼ねることができるので、バインダーおよび導電剤を添加しなくても電極は作製できるが、本発明においては、電極の特性を充分に引き出すことを考慮して、無機複合体にバインダーおよび導電剤を添加して正極材料を作製する方法が好ましい。
【0034】
本発明のリチウム二次電池は、リチウム二次電池の正極として、前記正極材料複合体を用いて製造した正極を有するものであり、正極以外については特別な限定はない。
【0035】
前記正極材料複合体を用いて製造した正極というのは、通常、前記無機活物質複合体または無機活物質およびPEDOTと、導電剤、バインダー、溶媒とからなる組成物を均一に混合し、溶媒を除去して得られた正極材料複合体を、集電体とともに成形して得られる電極のことである。
【0036】
前記集電体としては、たとえばニッケル、アルミニウム、ステンレス、チタン、銅、金、白金などからなるメッシュ、箔、板などがあげられる。
【0037】
前記正極を成形する際の条件にはとくに限定はなく、従来からの方法にしたがって成形すればよい。したがって、正極の形状にもとくに限定はない。
【0038】
前記正極が取り付けられるリチウム二次電池の負極材料としては、従来から使用されているのと同様の、たとえば金属リチウム、リチウム−アルミニウム合金などのリチウムを吸蔵/放出可能な材料をあげることができる。
【0039】
本発明のリチウム二次電池に使用される非水電解質についてもとくに制限はなく、従来から使用されているのと同様の非水電解質、たとえば電解質である塩を有機溶媒に溶解させた電解質溶液や固体電解質を使用することができる。
【0040】
前記電解質である塩としては、リチウム塩、たとえばLiClO4、LiBF4、LiPF6、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などを用いることができる。これらは1種で用いてもよく、2種以上を組み合わせて用いてもよい。
【0041】
また、前記有機溶媒としては、たとえばエチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、スルホラン、ジメチルスルホキシドなどを用いることができる。これらは1種で用いてもよく、2種以上を組み合わせて混合溶媒として用いてもよい。
【0042】
前記非水電解質として電解質溶液を使用する場合、電解質溶液が電極と実質的に化学反応を起こしさえしなければ、とくに制限はない。電解質溶液中の電解質濃度にもとくに制限はなく、使用する電解質の種類と溶媒とを考慮して適宜設定すればよい。通常、0.001〜10M、さらには0.01〜2Mの範囲のものが使用される。
【0043】
一方、前記非水電解質として固体電解質を用いる場合、電解質溶液の偏りや漏液、ガス発生がなく、変形に強く、信頼性の高いリチウム二次電池を製造することができる。
【0044】
前記固体電解質としては、たとえばポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフッ化ビニリデン、ポリアクリルアミドなどの高分子材料をマトリックスとし、前述の電解質である塩をこのマトリックス中に溶解させた複合体、該複合体のゲル架橋体、低分子量ポリエチレンオキサイドやクラウンエーテルなどのイオン解離基をポリマー主鎖にグラフトさせたもの、前述の電解質溶液を含有させたゲル状態の高分子量重合体などがあげられる。
【0045】
本発明のリチウム二次電池では、必要に応じてセパレータを用いても本発明の効果は損われない。
【0046】
前記セパレータとしては、たとえばポリエチレン、ポリプロピレン、ポリエステル、ガラス、ポリテトラフルオロエチレンなどから選んだ1種以上の材質から製造された不織布や織布などがあげられる。
【0047】
前述のごとき本発明のリチウム二次電池は、正極として、充放電サイクルを繰り返すうちに結晶構造が崩壊され、エネルギー密度が低下するという問題が生じにくい、ポリ(3,4−エチレンジオキシチオフェン)を含有する無機活物質複合体を用いて製造した正極を使用しているため、充放電サイクル中の無機活物質の構造が安定化され、放電容量が増加するとともに、充放電サイクル特性が向上したものとなる。
【0048】
【実施例】
つぎに、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれらに限定されるものではない。
【0049】
実施例1
本実施例では、実験室レベルの実験として簡易型三電極式セルを用いた。作用極は、無機活物質にPEDOTを含有させた複合体を用いて製造し、対極および参照極は、金属リチウム箔を用いて製造した。また、非水電解質として、LiClO4をプロピレンカーボネートに溶解させた溶液を使用し、電池特性を評価した。
【0050】
まず、PEDOTの製造は、高電気伝導度の観点から、界面活性剤水溶液にEDOTを乳化させた乳化液に、酸化剤水溶液を添加することにより行なった。
【0051】
酸化剤として硫酸第二鉄(Fe2(SO43)、界面活性剤としてドデシルベンゼンスルホン酸ナトリウムを用いた。
【0052】
界面活性剤の0.012M水溶液200mlに、3,4−エチレンジオキシチオフェンモノマー(バイエル社製のバイトロンM)0.05Mを混合し、乳化させた。これに酸化剤0.05Mを溶解させた水溶液50mlを滴下し、室温で1日撹拌後、アセトンを加えて生成物を析出させ、濾別、洗浄(水・アセトン)、乾燥させてPEDOT(粉末)を得た。
【0053】
得られたPEDOTの導電率は10S/cmで、耐熱性は、熱重量分析で200℃までは重量変化しない安定性に優れたポリマーであった。
【0054】
つぎに、作用極(正極)を作製した。
【0055】
前記PEDOT 50mg、無機活物質である酸化バナジウム(太陽鉱工(株)製、V25、平均粒径100μm)350mg、ポリフッ化ビニリデン(PVDF)(アルドリッチ(Aldrich)社製)50mgおよびアセチレンブラック(電気化学工業(株)製)50mgを、N−メチル−2−ピロリドン(以下、NMPという)の適量中で混合し、1日撹拌後、70℃で乾燥させた。
【0056】
得られた電極材料をニッケルメッシュ(100メッシュ、10×10×0.1mm)に挟み込み、約29.4MPa(300kg/cm2)で加圧したのち室温で一晩以上真空乾燥させたものを作用極とした。なお、本実施例の場合、活物質量は5〜10mgとした。
【0057】
つぎに、前記作用極を用いて簡易型三極式セルを組み立てた。対極と参照極には金属リチウム箔(旭東金属工業(株)製、厚さ0.2mm)を用いた。非水電解質として、プロピレンカーボネートにLiClO4を1M濃度に溶解させた溶液を用いた。これらの操作はすべてアルゴン雰囲気のドライボックスで行なった。
【0058】
得られた簡易型三極式セルの評価を、下記の方法により行なった。結果を表1に示す。
【0059】
実施例2〜3
本実施例では、正極材料を製造するときの仕込量を、V25 320mgおよびPEDOT 80mg(実施例2)、V25 267mgおよびPEDOT 133mg(実施例3)にそれぞれ変更した以外は実施例1と同様にして作用極、ついで簡易型三極式セルを製造し、評価した。結果を表1に示す。
【0060】
実施例4〜6
本実施例では、無機活物質として酸化モリブデン(太陽鉱工(株)製、MoO3、平均粒径1〜5μm)を用いて作用極を製造した。
【0061】
作用極を製造するときの仕込量を、MoO3 320mgおよびPEDOT 80mg(実施例4)、MoO3 300mgおよびPEDOT 100mg(実施例5)、MoO3 267mgおよびPEDOT 133mg(実施例6)にそれぞれ変更した以外は実施例1と同様にして作用極を製造し、ついで簡易型三極式セルを製造し、評価した。結果を表2に示す。
【0062】
比較例1〜2
PEDOTを添加せずに400mgの無機活物質単独で使用した以外実施例1と同様にして作用極を製造し、ついで簡易型三極式セルを製造し、評価した。結果を表1、表2に示す。
【0063】
酸化バナジウムを用いた場合が比較例1で、酸化モリブデンを用いた場合が比較例2である。
【0064】
比較例3
無機活物質を使用せずに400mgのPEDOT単独で使用した以外は実施例1と同様にして作用極を製造し、ついで簡易型三極式セルを製造し、評価した。結果を表1、2に示す。
【0065】
(リチウム電池の評価)
得られた簡易型三極式セルを用い、室温で充放電サイクル試験を10サイクル行なった。試験には充放電測定装置(北斗電工(株)製のHJ−101SM6型)を用いた。サイクル条件は活物質により異なり、下記の条件A、条件Bの2種類を使い分けた。
条件A:電極活物質にV25が含まれるリチウム二次電池
定電流20mA/gで電池電圧2.5Vまで放電→1分間休止→定電流20mA/gで電池電圧4.0Vまで充電→1分間休止
条件B:電極活物質にMoO3が含まれるリチウム二次電池
定電流20mA/gで電池電圧2.0Vまで放電→1分間休止→定電流20mA/gで電池電圧4.0Vまで充電→1分間休止
【0066】
【表1】

Figure 0004365572
【0067】
【表2】
Figure 0004365572
【0068】
以上の結果から明らかなように、本発明の無機活物質複合体を用いた実施例の電池の場合、本発明の無機活物質複合体を用いていない比較例の電池の場合に比べ、放電容量が大きくなり、充放電サイクルに伴なう放電容量の低下が小さい。
【0069】
したがって、本発明が放電容量の増加と充放電サイクル特性の改善に有効であることがわかる。
【0070】
【発明の効果】
本発明のPEDOTを含有する無機活物質複合体をリチウム二次電池の正極材料として用いることにより、エネルギー密度が高く、サイクル特性および成形加工性に優れたリチウム二次電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive electrode material composite containing poly (3,4-ethylenedioxythiophene) and a lithium secondary battery having a positive electrode made of the composite.
[0002]
[Prior art]
Due to advances in electronics technology, mobile electronic devices such as mobile phones and wireless devices, and portable electronic devices such as notebook computers and video cameras have been reduced in size and weight, and their functions and reliability have been improved, resulting in widespread use. Have been doing.
[0003]
Under such circumstances, the battery is also referred to as the “heart” of the electronic device, and since it has an important meaning that determines the size, weight, and performance of the entire electronic device, it is strongly desired to increase the energy density of the battery. . In particular, lithium ion secondary batteries and lithium secondary batteries having high voltage and high energy density are attracting attention, and the cycle characteristics, molding processability, and higher energy density of the positive electrode are important issues. .
[0004]
In general, examples of the positive electrode active material constituting the positive electrode include metal oxides and conductive polymers. However, since only metal oxides have poor conductivity and self-formability, conductive agents and binders. Need to be added in large quantities. Therefore, it is difficult to obtain the expected energy density. Therefore, development of a positive electrode material made of a conductive polymer that is excellent in workability, flexibility, and light weight is in progress.
[0005]
Examples of the conductive polymer include polyacetylene, polyaniline, polypyrrole, polythiophene and the like, and have advantages such as high cycle characteristics. However, since the theoretical capacity includes the doping rate and the weight of the dopant, the actual energy capacity per weight is small, and the density is lower than the metal oxide, so the energy density per volume is low. .
[0006]
A composite electrode of a conductive polymer and a metal oxide has been proposed as a method of making up for the disadvantages of the metal oxide and the conductive polymer, taking advantage of them, and solving the problem (for example, non-patented). Reference 1). In addition, a method for improving cycle characteristics by coating the surface of an inorganic active material has been proposed (for example, see Non-Patent Document 2).
[0007]
[Non-Patent Document 1]
GR Goward, et. Al., Electrochim. Acta, 43, 1307 (1998)
[Non-Patent Document 2]
Masaru Sugita, Hideyuki Noguchi, Yasunori Soejima, Masayuki Yoshio, Electrochemistry, 68, 587 (2000)
[0008]
[Problems to be solved by the invention]
However, in the case of the composite electrode of conductive polymer and metal oxide developed so far, the cycle characteristics are improved and the capacity is increased as compared with the metal oxide electrode, but the cycle deterioration is still completely suppressed. The capacity that is close to the theoretical capacity cannot be extracted.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have added poly (3,4-ethylenedioxythiophene) during the preparation of the positive electrode material and added poly (3,4-ethylene in the positive electrode material. The positive electrode material composite containing dioxythiophene) can solve the above problems, and can provide a lithium secondary battery with high energy density and excellent cycle characteristics and moldability. As a result, the present invention has been completed.
[0010]
That is, the present invention
Poly in the positive electrode material was added to poly (3,4-ethylenedioxythiophene) in the preparation of the cathode material (3,4-ethylenedioxythiophene) are contained, the poly (3,4-ethylenedioxythiophene ) Is a lithium secondary battery in which a positive electrode material composite having a content of 10 to 150% by weight with respect to the inorganic active material contained in the positive electrode material is used as a positive electrode,
Lithium secondary battery wherein an average particle diameter of the inorganic substance is 1 to 100 [mu] m (claim 1)
About.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The positive electrode material composite of the present invention is obtained by adding poly (3,4-ethylenedioxythiophene), which is a conductive polymer, at the time of preparation of the positive electrode material, poly (3,4-ethylenedioxythiophene), the positive electrode material, It is a complex. It is considered that the conductive polymer contained in the positive electrode material is usually present near the surface of the inorganic active material contained in the positive electrode material.
[0012]
When the positive electrode material composite is used for the production of a positive electrode of a lithium secondary battery, the energy density can be made higher than the case where the positive electrode material is produced alone and the capacity deterioration with respect to the charge / discharge cycle can be suppressed. . This improvement effect is achieved by adding poly (3,4-ethylenedioxythiophene) (hereinafter also referred to as PEDOT) to impart electrical conductivity to the inorganic active material contained in the positive electrode material, and thereby redox the inorganic active material. (Charge / discharge) It is considered that the volume change and the collapse of the crystal structure accompanying the reaction are suppressed, and the characteristic deterioration caused by repeatedly performing the redox reaction is reduced.
[0013]
Usually, examples of the conductive polymer used in the positive electrode material composite include polyanilines, polypyrroles, polythiophenes, and polyacetylenes, but the conductive polymer used in the present invention has excellent heat resistance, PEDOT with high environmental stability and high electrical conductivity is selected.
[0014]
There is no particular limitation on the molecular weight of PEDOT used in the positive electrode material composite, and it can be used as long as it is generally called PEDOT. Those having high electrical conductivity.
[0015]
The conductivity of PEDOT is generally 0.01 to 300 S / cm. However, in order to use it as a conductive material such as an electrode, the conductivity is preferably as high as possible, and the conductivity is preferably 1 S / cm or more.
[0016]
In order to increase the conductivity of the PEDOT, doping is usually performed. As a kind and a doping rate of a dopant used for doping, a dopant generally used for a conductive polymer, generally a conductive polymer is used. A doping rate (about 0.1 to 0.5) can be adopted.
[0017]
The heat resistance of PEDOT has heat resistance that does not change in weight up to 200 ° C. in thermogravimetric analysis, and has sufficient heat resistance to be used as a positive electrode material.
[0018]
PEDOT can be produced by a known polymerization method such as a chemical polymerization method or an electrolytic polymerization method. However, in the production by the electrolytic polymerization method, the polymer is obtained as a film on the electrode, but requires a lot of electric energy, Therefore, it is preferable to use a chemical polymerization method.
[0019]
When PEDOT is produced by a chemical polymerization method, for example, a method in which an oxidant is added to an organic solvent solution of EDOT to polymerize, or a liquid in which EDOT is emulsified in a liquid containing a surfactant is prepared. It can be produced by a method in which an aqueous solution is added for polymerization. The latter case is preferable because PEDOT with high yield and high electrical conductivity can be obtained even at a low oxidizing agent concentration.
[0020]
PEDOT is added at the time of preparation of the positive electrode material and contained in the positive electrode material to form a positive electrode material composite.
[0021]
The content of PEDOT is preferably 10 to 150%, more preferably 14 to 50% with respect to the inorganic active material contained in the positive electrode material. When the content of PEDOT is too small, a sufficient effect due to the inclusion of PEDOT cannot be obtained. When the content is too large, there is a possibility that the battery capacity is reduced when a lithium secondary battery is used.
[0022]
Examples of the inorganic active material include transition metal cargoogen compounds such as TiS 2 , MoS 2 , Co 2 S 6 , FeS 2 , NbS 2 , ZrS 2 , VSe 2 , V 2 O 5 , MoO 3 , MnO 2 , CoO 2. And metal oxides such as cobalt, manganese, nickel, iron, and the like, and composite oxides containing lithium as constituent elements. These may be used alone or in combination of two or more. Among these, composite oxides containing cobalt and lithium as constituent elements (for example, lithium cobaltate), composite oxides containing nickel and lithium as constituent elements (eg, lithium nickelate), V 2 O 5 (vanadium oxide) ) And MoO 3 (molybdenum oxide) are preferable from the viewpoint of a large theoretical capacity. Furthermore, V 2 O 5 and MoO 3 are preferable because they have a flat portion of the discharge curve in the vicinity of the potential causing the electrochemical redox reaction of the conductive polymer.
[0023]
The inorganic active material preferably has an average particle size of 0.1 to 150 μm, more preferably 0.5 to 120 μm, and particularly preferably 1 to 100 μm. As the average particle size decreases, the surface area increases and the initial battery capacity increases, so that an average particle size that is too large is not practical. On the other hand, when the average particle size becomes too small, problems such as a problem that the battery capacity is reduced during the charge / discharge cycle and a problem that the dispersibility in preparing the electrode is deteriorated easily occur.
[0024]
In the present invention, as a method for producing a positive electrode material composite containing PEDOT, for example, an inorganic active material contained in the positive electrode material, PEDOT, a conductive agent, and a binder are mixed and stirred in an organic solvent and uniformly dispersed. It can manufacture by removing the solvent of the made composition.
[0025]
The conditions for drying the dispersion are not particularly limited, but it is preferable that the solvent is completely removed.
[0026]
Examples of the conductive agent include acetylene black, graphite, and carbon. Among these carbon materials, although acetylene black is slightly inferior in conductivity, crystals of 0.1 μm or less are connected in the shape of a bunch of grapes, so that it efficiently contacts an inorganic active material having a size of 0.1 to 150 μm. Since it is possible, it is used as a general conductive agent in the positive electrode material. Since the average particle diameter of the inorganic active material used in the present invention is in the range of 0.1 to 150 μm, it is preferable to use acetylene black as the conductive agent.
[0027]
Examples of the binder include polyvinylidene fluoride and polytetrafluoroethylene. Generally, a polymer that can maintain high conductivity of the positive electrode by strongly binding the positive electrode active material and the conductive agent is used.
[0028]
As the organic solvent, a solvent that is a good solvent for the conductive polymer and the binder, such as N-methyl-2-pyrrolidone and dimethylformamide, is generally used.
[0029]
The amount of the organic solvent used is not particularly limited as long as the composition containing the solvent can be uniformly stirred, but there is a step of drying the electrode (removing the solvent). When N-methyl-2-pyrrolidone is used, since it is difficult to volatilize, it is preferable to make it as small as possible (for example, about 100 to 200 parts per 10 parts by weight of the binder (hereinafter referred to as “parts”)).
[0030]
There are no particular limitations on the temperature, time, and the like when the inorganic active material, PEDOT, conductive agent, and binder are mixed and stirred in an organic solvent for uniform dispersion.
[0031]
Further, the conditions for drying the organic solvent are not particularly limited, but it is preferable that the solvent is completely removed.
[0032]
As the ratio of each component in the composition excluding the solvent composed of an inorganic active material composite (a mixture of a predetermined amount of an inorganic active material and PEDOT), a conductive agent and a binder, the inorganic active material composite is 60 to 60%. 100%, more preferably 70 to 95%, conductive agent is 0 to 30%, further 5 to 25%, binder is 0 to 20%, further preferably 0 to 15%. When the proportion of the inorganic active material composite is too small, the battery capacity tends to decrease. Moreover, when there are too many ratios of the said electrically conductive agent, shaping | molding of an electrode will become difficult or an energy density will fall easily. Furthermore, when the ratio of the binder is too large, electron conduction due to the insulating properties of the binder tends to be poor.
[0033]
In addition, since the conductive polymer (PEDOT) contained in the inorganic active material composite can also serve as the binder and conductive agent of the inorganic active material, the electrode can be produced without adding the binder and conductive agent, In the present invention, a method of preparing a positive electrode material by adding a binder and a conductive agent to the inorganic composite is preferable in consideration of sufficiently extracting the characteristics of the electrode.
[0034]
The lithium secondary battery of this invention has a positive electrode manufactured using the said positive electrode material composite as a positive electrode of a lithium secondary battery, and there is no special limitation except a positive electrode.
[0035]
The positive electrode manufactured using the positive electrode material composite is usually obtained by uniformly mixing a composition comprising the inorganic active material composite or the inorganic active material and PEDOT with a conductive agent, a binder, and a solvent. It is an electrode obtained by molding the positive electrode material composite obtained by removing together with the current collector.
[0036]
Examples of the current collector include meshes, foils, and plates made of nickel, aluminum, stainless steel, titanium, copper, gold, platinum, and the like.
[0037]
The conditions for molding the positive electrode are not particularly limited, and may be molded according to a conventional method. Therefore, the shape of the positive electrode is not particularly limited.
[0038]
Examples of the negative electrode material of the lithium secondary battery to which the positive electrode is attached include the same materials that can occlude / release lithium, such as metal lithium and lithium-aluminum alloy, which have been used conventionally.
[0039]
The non-aqueous electrolyte used in the lithium secondary battery of the present invention is not particularly limited, and the same non-aqueous electrolyte as conventionally used, for example, an electrolyte solution in which a salt that is an electrolyte is dissolved in an organic solvent, A solid electrolyte can be used.
[0040]
As the electrolyte salt, a lithium salt such as LiClO 4 , LiBF 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3, or the like is used. Can do. These may be used alone or in combination of two or more.
[0041]
Examples of the organic solvent include ethylene carbonate, propylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, sulfolane, dimethyl sulfoxide, and the like. These may be used alone or in combination of two or more as a mixed solvent.
[0042]
When an electrolyte solution is used as the nonaqueous electrolyte, there is no particular limitation as long as the electrolyte solution does not substantially cause a chemical reaction with the electrode. The concentration of the electrolyte in the electrolyte solution is not particularly limited, and may be appropriately set in consideration of the type of electrolyte to be used and the solvent. Usually, the thing of the range of 0.001-10M and also 0.01-2M is used.
[0043]
On the other hand, when a solid electrolyte is used as the non-aqueous electrolyte, a lithium secondary battery that is not deformed, leaks, generates gas, is resistant to deformation, and has high reliability can be manufactured.
[0044]
Examples of the solid electrolyte include a composite in which a polymer material such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, and polyacrylamide is used as a matrix, and a salt that is the aforementioned electrolyte dissolved in the matrix, and a gel of the composite Cross-linked products, those obtained by grafting ion dissociation groups such as low molecular weight polyethylene oxide and crown ether onto the polymer main chain, and high molecular weight polymers in the gel state containing the electrolyte solution described above.
[0045]
In the lithium secondary battery of the present invention, the effect of the present invention is not impaired even if a separator is used as necessary.
[0046]
Examples of the separator include a nonwoven fabric and a woven fabric manufactured from one or more materials selected from polyethylene, polypropylene, polyester, glass, polytetrafluoroethylene, and the like.
[0047]
As described above, the lithium secondary battery of the present invention is a poly (3,4-ethylenedioxythiophene), which is less likely to cause a problem that the crystal structure is collapsed and the energy density is lowered during repeated charge / discharge cycles. As a result, the structure of the inorganic active material in the charge / discharge cycle is stabilized, the discharge capacity is increased, and the charge / discharge cycle characteristics are improved. It will be a thing.
[0048]
【Example】
Next, the present invention will be described more specifically based on examples, but the present invention is not limited thereto.
[0049]
Example 1
In this example, a simple three-electrode cell was used as a laboratory-level experiment. The working electrode was manufactured using a composite containing PEDOT in an inorganic active material, and the counter electrode and the reference electrode were manufactured using a metal lithium foil. In addition, as a nonaqueous electrolyte, a solution in which LiClO 4 was dissolved in propylene carbonate was used, and the battery characteristics were evaluated.
[0050]
First, PEDOT was manufactured by adding an oxidizing agent aqueous solution to an emulsion obtained by emulsifying EDOT in a surfactant aqueous solution from the viewpoint of high electrical conductivity.
[0051]
Ferric sulfate (Fe 2 (SO 4 ) 3 ) was used as the oxidizing agent, and sodium dodecylbenzenesulfonate was used as the surfactant.
[0052]
In 200 ml of a 0.012M aqueous solution of a surfactant, 0.05M of 3,4-ethylenedioxythiophene monomer (Baitlon M manufactured by Bayer) was mixed and emulsified. To this was added 50 ml of an aqueous solution in which 0.05 M of an oxidizing agent was dissolved, and after stirring at room temperature for 1 day, acetone was added to precipitate the product, which was separated by filtration, washed (water / acetone), dried, and PEDOT (powder )
[0053]
The obtained PEDOT had a conductivity of 10 S / cm, and the heat resistance was a polymer having excellent stability that did not change in weight until 200 ° C. by thermogravimetric analysis.
[0054]
Next, a working electrode (positive electrode) was produced.
[0055]
PEDOT 50 mg, inorganic active material vanadium oxide (manufactured by Taiyo Mining Co., Ltd., V 2 O 5 , average particle size 100 μm) 350 mg, polyvinylidene fluoride (PVDF) (manufactured by Aldrich) 50 mg, and acetylene black 50 mg (manufactured by Denki Kagaku Kogyo Co., Ltd.) was mixed in an appropriate amount of N-methyl-2-pyrrolidone (hereinafter referred to as NMP), stirred for 1 day, and dried at 70 ° C.
[0056]
The obtained electrode material was sandwiched between nickel meshes (100 mesh, 10 × 10 × 0.1 mm), pressurized at about 29.4 MPa (300 kg / cm 2 ), and then vacuum dried at room temperature overnight or more. It was the pole. In this example, the amount of active material was 5 to 10 mg.
[0057]
Next, a simple triode cell was assembled using the working electrode. As the counter electrode and the reference electrode, metallic lithium foil (manufactured by Asahi East Metal Industry Co., Ltd., thickness 0.2 mm) was used. As a nonaqueous electrolyte, a solution in which LiClO 4 was dissolved in propylene carbonate at a concentration of 1M was used. All these operations were performed in a dry box in an argon atmosphere.
[0058]
The obtained simple triode cell was evaluated by the following method. The results are shown in Table 1.
[0059]
Examples 2-3
In this embodiment, the charge amount at the time of producing a positive electrode material, V 2 O 5 320 mg and PEDOT 80 mg (Example 2), except for changing each of V 2 O 5 267 mg and PEDOT 133 mg (Example 3) is performed In the same manner as in Example 1, a working electrode and then a simple triode cell were produced and evaluated. The results are shown in Table 1.
[0060]
Examples 4-6
In this example, a working electrode was produced using molybdenum oxide (MoO 3 manufactured by Taiyo Mining Co., Ltd., average particle size of 1 to 5 μm) as an inorganic active material.
[0061]
The amount charged when the working electrode was produced was changed to 320 mg MoO 3 and 80 mg PEDOT (Example 4), 300 mg MoO 3 and 100 mg PEDOT (Example 5), 267 mg MoO 3 and 133 mg PEDOT (Example 6), respectively. A working electrode was produced in the same manner as in Example 1, and then a simple triode cell was produced and evaluated. The results are shown in Table 2.
[0062]
Comparative Examples 1-2
A working electrode was produced in the same manner as in Example 1 except that 400 mg of the inorganic active material alone was used without adding PEDOT, and then a simple tripolar cell was produced and evaluated. The results are shown in Tables 1 and 2.
[0063]
The case where vanadium oxide is used is Comparative Example 1, and the case where molybdenum oxide is used is Comparative Example 2.
[0064]
Comparative Example 3
A working electrode was produced in the same manner as in Example 1 except that 400 mg of PEDOT alone was used without using an inorganic active material, and then a simple tripolar cell was produced and evaluated. The results are shown in Tables 1 and 2.
[0065]
(Evaluation of lithium battery)
Using the obtained simple triode cell, the charge / discharge cycle test was performed 10 cycles at room temperature. A charge / discharge measuring device (HJ-101SM6 type manufactured by Hokuto Denko Co., Ltd.) was used for the test. The cycle conditions differed depending on the active material, and the following two conditions A and B were used properly.
Condition A: Lithium secondary battery containing V 2 O 5 in the electrode active material is discharged to a battery voltage of 2.5 V at a constant current of 20 mA / g → paused for 1 minute → charged to a battery voltage of 4.0 V at a constant current of 20 mA / g → 1-minute rest condition B: Lithium secondary battery containing MoO 3 in the electrode active material is discharged to a battery voltage of 2.0 V at a constant current of 20 mA / g → paused for 1 minute → charged to a battery voltage of 4.0 V at a constant current of 20 mA / g → Pause for 1 minute [0066]
[Table 1]
Figure 0004365572
[0067]
[Table 2]
Figure 0004365572
[0068]
As is clear from the above results, in the case of the battery of the example using the inorganic active material composite of the present invention, the discharge capacity was compared with the case of the battery of the comparative example not using the inorganic active material composite of the present invention. And the decrease in discharge capacity accompanying the charge / discharge cycle is small.
[0069]
Therefore, it can be seen that the present invention is effective in increasing the discharge capacity and improving the charge / discharge cycle characteristics.
[0070]
【The invention's effect】
By using the inorganic active material composite containing PEDOT of the present invention as a positive electrode material of a lithium secondary battery, a lithium secondary battery having high energy density and excellent cycle characteristics and molding processability can be provided.

Claims (1)

正極材料の調製時にポリ(3,4−エチレンジオキシチオフェン)を添加して正極材料中にポリ(3,4−エチレンジオキシチオフェン)が含有され、当該ポリ(3,4−エチレンジオキシチオフェン)の含有量が、前記正極材料に含まれる無機活物質に対して、10〜150重量%である正極材料複合体が正極として使用されリチウム二次電池であって、
前記無機物質の平均粒径が1〜100μmである
ことを特徴とするリチウム二次電池
Poly in the positive electrode material was added to poly (3,4-ethylenedioxythiophene) in the preparation of the cathode material (3,4-ethylenedioxythiophene) are contained, the poly (3,4-ethylenedioxythiophene ) Is a lithium secondary battery in which a positive electrode material composite having a content of 10 to 150% by weight with respect to the inorganic active material contained in the positive electrode material is used as a positive electrode,
The average particle size of the inorganic substance is 1 to 100 μm
A lithium secondary battery characterized by that .
JP2002322530A 2002-11-06 2002-11-06 Positive electrode material composite containing poly (3,4-ethylenedioxythiophene) and lithium secondary battery having a positive electrode made of the composite Expired - Fee Related JP4365572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322530A JP4365572B2 (en) 2002-11-06 2002-11-06 Positive electrode material composite containing poly (3,4-ethylenedioxythiophene) and lithium secondary battery having a positive electrode made of the composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322530A JP4365572B2 (en) 2002-11-06 2002-11-06 Positive electrode material composite containing poly (3,4-ethylenedioxythiophene) and lithium secondary battery having a positive electrode made of the composite

Publications (2)

Publication Number Publication Date
JP2004158286A JP2004158286A (en) 2004-06-03
JP4365572B2 true JP4365572B2 (en) 2009-11-18

Family

ID=32802704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322530A Expired - Fee Related JP4365572B2 (en) 2002-11-06 2002-11-06 Positive electrode material composite containing poly (3,4-ethylenedioxythiophene) and lithium secondary battery having a positive electrode made of the composite

Country Status (1)

Country Link
JP (1) JP4365572B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932243B2 (en) * 2005-12-13 2012-05-16 富士重工業株式会社 Positive electrode for lithium battery and secondary battery using the same
EP2287946A1 (en) * 2009-07-22 2011-02-23 Belenos Clean Power Holding AG New electrode materials, in particular for rechargeable lithium ion batteries
JP5455211B2 (en) * 2009-11-05 2014-03-26 テイカ株式会社 Conductive auxiliary agent composition for lithium ion battery, method for producing the same, electrode mixture composition for lithium ion battery, method for producing the same, and lithium ion battery
US8877385B2 (en) 2011-11-02 2014-11-04 Hitachi, Ltd. Non-aqueous secondary battery
DE102012022976A1 (en) 2012-11-26 2014-05-28 Ewe-Forschungszentrum Für Energietechnologie E. V. Use of conductive polymers in battery electrodes
JP5472952B1 (en) * 2012-12-13 2014-04-16 株式会社日立製作所 Non-aqueous secondary battery
JP6310178B2 (en) * 2013-01-25 2018-04-11 株式会社ダイセル Composition for photoelectric conversion element and photoelectric conversion element
KR101668367B1 (en) * 2014-12-29 2016-10-31 서울대학교산학협력단 All solid ion battery
GB2622411A (en) 2022-09-15 2024-03-20 Dyson Technology Ltd Electrode precursor composition
GB2622410A (en) 2022-09-15 2024-03-20 Dyson Technology Ltd Electrode precursor composition

Also Published As

Publication number Publication date
JP2004158286A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP5213305B2 (en) Positive electrode active material, manufacturing method thereof, and positive electrode and lithium battery employing the same
JP4370079B2 (en) Lithium polymer battery
CN106463781B (en) Aqueous energy storage device with organic electrode materials
WO2015005135A1 (en) Electricity-storage-device electrode, manufacturing method therefor, and electricity-storage device using said electrode
CN111819716A (en) Electrode active material having cellulose-based or weakly acidic compound-based conductive polymer, and lithium ion battery comprising same
CN110620256A (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
CN101595580B (en) Polyradical compound-conductive material composite body, method for producing the same, and battery using the same
JP4365572B2 (en) Positive electrode material composite containing poly (3,4-ethylenedioxythiophene) and lithium secondary battery having a positive electrode made of the composite
CN113939939A (en) Secondary battery
JP3952749B2 (en) Method for producing electrode for lithium battery and electrode for lithium battery
JP2013196910A (en) Nonaqueous electrolyte secondary battery
JP2012099316A (en) Cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP2013225488A (en) Nonaqueous electrolyte secondary battery
JP2010277701A (en) Secondary battery and its manufacturing method
JP4649692B2 (en) Positive electrode mixture paste for lithium secondary battery and lithium secondary battery
JP2015165481A (en) Electrode and power storage device using the same
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JP2009277432A (en) Electrode for secondary battery, manufacturing method thereof, and secondary battery
KR20130107927A (en) Composite cathode active material, electrode for lithium secondary battery comprising the same and lithium secondary battery
WO2014024940A1 (en) Positive electrode for electricity-storage device and method for manufacturing electricity-storage device and slurry for electricity-storage-device positive electrode
WO2013172222A1 (en) Electricity storage device, positive electrode and porous sheet used in electricity storage device, and method for improving dope rate
WO2014006973A1 (en) Electrode for electricity storage devices, electricity storage device using same, and method for producing same
KR102280793B1 (en) Density controlled organic compounds-based lithium secondary batteries and methods of forming the same
JP2000348729A (en) Positive electrode plate for lithium secondary battery, its manufacture and lithium secondary battery manufactured by using the positive electrode plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180828

Year of fee payment: 9

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180828

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees