JPS62152532A - Method for producing powder and hermetically closed microwave plasma reactor - Google Patents

Method for producing powder and hermetically closed microwave plasma reactor

Info

Publication number
JPS62152532A
JPS62152532A JP61292634A JP29263486A JPS62152532A JP S62152532 A JPS62152532 A JP S62152532A JP 61292634 A JP61292634 A JP 61292634A JP 29263486 A JP29263486 A JP 29263486A JP S62152532 A JPS62152532 A JP S62152532A
Authority
JP
Japan
Prior art keywords
gas
casing
torch
reactor
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61292634A
Other languages
Japanese (ja)
Inventor
ブノワ・ダルマンクール
ラサン・ウガラン
ジヤン−ルツク・ラバ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of JPS62152532A publication Critical patent/JPS62152532A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/002Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out in the plasma state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/20Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
    • C01B13/22Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides
    • C01B13/28Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides using a plasma or an electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0643Preparation from boron halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • C01B21/0763Preparation from titanium, zirconium or hafnium halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/029Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • C01B33/183Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process by oxidation or hydrolysis in the vapour phase of silicon compounds such as halides, trichlorosilane, monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/212Scandium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/07Producing by vapour phase processes, e.g. halide oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/004Oxides; Hydroxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、シリコンまたはシリコン化合物の粉末を製
造する方法に関し、また、この方法を遂行するに使用さ
れる密閉されたマイクロ波プラズマ反応器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing silicon or silicon compound powder, and to a sealed microwave plasma reactor used to carry out the method.

この発明の目的は、廃品ηで細かい粒子寸法(7ミクロ
ン以下)を有する粉末を得ることのできる技術を提供す
ることにある。
The object of the invention is to provide a technique that makes it possible to obtain powder with fine particle size (7 microns or less) from waste η.

故に、この発明によれば、シランまたはその誘導体を含
有するガスを、特に環状形状のマイクロ波プラズマの流
れの中に送シ、次いで反応生成物全冷却する、シリコン
またはシリコン化合物の粉末全製造する方法、が提供さ
れる。
Therefore, according to the invention, a powder of silicon or silicon compounds is produced, in which a gas containing silane or its derivatives is passed into a microwave plasma stream, in particular in an annular shape, and then the reaction product is cooled down. A method is provided.

この発明によればざらに、プラズマ生成ガスの源に連結
するに適し、かつマイクロ波プラズマ流を生じるに適し
たマイクロ阪プラズマトーチ、プラズマ流全通して反応
生成物を進めるための手段、トーチが内部で開く反応ケ
ーシング、および、曾閉方式でケーシングの壁を通して
延長する、トーチを点火するための手段、を有する吾、
閉aれたマイクロ波プラズマ反応器が提供される。
The invention generally provides a micro-infrared plasma torch suitable for connection to a source of plasma-generating gas and suitable for producing a microwave plasma stream, a means for advancing reaction products throughout the plasma stream, and a torch. having an internally opening reaction casing and means for igniting a torch extending through the wall of the casing in a collapsible manner;
A closed microwave plasma reactor is provided.

別の観4点から見ると、この発明によれば、人口通路を
包含する密閉された反応ケーシングと、前記人口通路の
中に密閉方式で延長する出口スリーブと桜向きオリフィ
スとを包含する密閉された補助ケーシングと、補助ケー
シングの中を密閉方式で延長しかつスリーブの中を開−
j・線に延長する少くとも1つのガス供給管と、削記管
金包島するT継手とT継手の柄に電気的に接続されるよ
うにiii記仙向きオリフィスの中にffr’ fif
された導波管との結合のための端部材とを包含する超高
周波エネルギ供給手段とを伽えた、龜閉されたマイクロ
波プラズマ反応器か提供される。
Viewed from four different points of view, the present invention includes a sealed reaction casing containing an artificial passageway, an outlet sleeve and a cherry-facing orifice extending in a sealed manner into said artificial passageway. The inside of the auxiliary casing is extended in a closed manner and the inside of the sleeve is opened.
at least one gas supply tube extending into the j-line, and a T-fitting to which the tube is attached and an ffr' fift into the transversely facing orifice so as to be electrically connected to the handle of the T-fitting.
A closed microwave plasma reactor is provided, comprising an ultra-high frequency energy supply means including an end member for coupling with a sealed waveguide.

以下、図面を参照しながら、この発明の実&ii Nj
について鮫、明する。
Hereinafter, with reference to the drawings, the details of the present invention will be explained.
About the shark, reveal.

第1図に総括的に図示される反応器は、はぼ垂面の@=
糺X−Xを有し、主として、複流マイクロ波プラズマト
ーチ11反応ケーシングコおよび粉末集め@鋤3からな
る0反応器のすべての要素は、内部空間を包囲′8f、
−気から完全に隔離するように、v、=閉された方式で
相互連結される。トーチlおよびケーシングコは、支持
フレーム(図示なし)に固定される。
The reactor generally illustrated in Figure 1 has a vertical surface.
All the elements of the reactor, consisting mainly of a double-flow microwave plasma torch 11 reaction casing and a powder collector 3, surround an internal space '8f,
- interconnected in a closed manner, v, = completely isolated from air. The torch l and the casing co are fixed to a support frame (not shown).

第2図に明示されるように、トーチlはさ状体ダを有し
、こjには、直角四辺形の断面(第2図には図示なし)
を有する導緘管Sが、オリフィスを介して連結される。
As clearly shown in FIG. 2, the torch l has a wedge-shaped body j, which has a right quadrilateral cross section (not shown in FIG. 2).
A stub S having a duct S is connected via an orifice.

このオリフィスの甲には、電気的結合端MS材6が配信
される。幹線X−Xを有する2つの同心の管りおよびS
は、太きfr間隙を□□□いて、シ状体ダの中を同@1
組に延長する。管7は金す、外管であり、内管である智
gは、金属からなることも、石英のような熱に耐える電
気絶縁材料からなることもできる。身、状B+の上方で
、管gは、反応ガスの源(図示なし)に連結ちれ、管り
は、横向き連結部材9を介して、プラズマ生成ガスの源
(図示なし)に連結される。一つの管の間r(形成され
る現状空間は、連結部材ワの上方で溶接によって閉じら
ね、下方部分で開くa枦状体ダの内部で、T継手10が
管りを包囲し、その柄は、端部材乙に電気的rc接続さ
れる。私状体qを閉じる上蓋1/は、密閉された継手で
管りを包囲する。遮蔽ガスの流入のためのオリフィス1
3を備えたスリーブノコが、枦状体亭の下方開口のまわ
りに固定され、このスリーブノコは、大きな間隙で、管
りおよびgを同軸糺に包囲する。管7、l#gおよびス
リーブノコの下端は、はぼ同じ水平面の中に位置する。
An electrical coupling end MS material 6 is delivered to the instep of this orifice. Two concentric pipes with trunk X-X and S
The thick fr gap is □□□, and the inside of the strip body is the same @1.
Extend to group. The tube 7 is a metal outer tube, and the inner tube can be made of metal or of a heat-resistant electrically insulating material such as quartz. Above the body B+, the tube g is connected to a source of reactant gas (not shown), and the tube is connected via a transverse connecting member 9 to a source of plasma-generating gas (not shown). . The current space formed between one pipe is the one that is closed by welding above the connecting member and opens at the lower part. The handle is electrically rc connected to the end member B. The top cover 1/ that closes the private body q encloses the tube with a sealed fitting. The orifice 1 for the inflow of shielding gas
A sleeve saw with 3 is fixed around the lower opening of the rod bow, which coaxially surrounds the tube and g with a large gap. The tube 7, l#g and the lower end of the sleeve saw lie approximately in the same horizontal plane.

ケーシングλは、ガラスまたは金網のベル/Qによって
形成され、とjは、不銹鋼のケースl乙によって、下向
きに延長する。ベルがガラスのような絶縁材料からなる
場合には、と4に点火装置を設けることは不必要であり
、確かに、点火は、任意の知られている遠隔点火手段に
よって、外部から達成できる。
The casing λ is formed by a bell/Q of glass or wire mesh, and extends downwardly by a casing l of stainless steel. If the bell is made of an insulating material such as glass, it is unnecessary to provide an ignition device at and 4, and certainly ignition can be achieved externally by any known remote ignition means.

ベルlダは、その上方部分で、端7ランジ/gを有する
ネック14、に紗(。このネックは、スリーブノコの本
体部分を包囲し、端フランジlsに接する一対の水平フ
ランジ/9.コ0は、瞥、・閉のき成のため、ボルト(
図示なし)によって、ネック14、のガ縁とスリーブ/
jの外面の間で0−リング2/を圧縮する。
In its upper part, the bell lug is fitted with a neck 14, which has an end 7 flange/g. This neck surrounds the main body part of the sleeve saw and is fitted with a pair of horizontal flanges/9. is a glance, and a bolt (
(not shown) between the edge of the neck 14 and the sleeve/
Compress the O-ring 2/ between the outer surfaces of j.

図示のツ施例(俯3図)において、ベル/ダは枦向き%
2コを有し、これの中を、取外し可能に亀付けられた点
火装置15が延長する。この点火装置ば、中央オリ゛フ
ィスを伽えた支持板7!3を有し、この支持板は、鑑閉
O−リングーグ全介して、憤向き管2−の端縁に押付は
配置される。この押付は記音は、横向き!・−一の端フ
ランジ−りに接するフランジコjK向けて、ボルト(図
示なし)によってこの支持et締付けることによって、
達成きれる。支持板−3の外面に対し、案内ねじコgが
半径方向にねじ込まれるカラーが、固定される。
In the illustrated example (top view 3), the bell/da is % in the downward direction.
The ignition device 15 has two removably hooked ignition devices 15 extending therein. This ignition device has a support plate 7,3 with a central orifice, which support plate is placed against the end of the facing tube 2- through the entire closing O-ring. This pressing is written horizontally!・By tightening this support et with bolts (not shown) toward the flange jK in contact with the one end flange,
I can achieve it. A collar into which a guide screw g is radially screwed is fixed to the outer surface of the support plate-3.

内9Iにおいて、貧内スリーブコデが、支?:fe、2
3のオリスイスの中に固定される。捧30が、僅かな間
隙で、支持板コJおよび案内スリーブコテ′jic辿っ
て延長する。この棒は、七〇内端で、変位ノブ3ノを渋
持し、その中間部分に、老内ねじ2gの先41pと連携
する溝3コを吻し、その内giで、S形ブリッジ部拐3
ダな・備える絶縁外部材33を支持する。密閉ベロー3
5が、一端で端部材33にIMl定され、他部で身内ス
リーブコデに固定される。調節可能の止め36が、支持
板=3の外部1で、棒3θに固定される。
In the 9th year of the year, is the sleeve coordination of the poor? :fe, 2
It is fixed in the oriswiss of 3. The support plate 30 follows and extends, with a small gap, over the support plate J and the guide sleeve. This rod holds the displacement knob 3 at its inner end, has 3 grooves in its middle part that cooperate with the tip 41p of the internal screw 2g, and has an S-shaped bridge section at its inner end. kidnapping 3
It supports the insulating outer member 33 that is provided. Airtight bellows 3
5 is fixed to the end member 33 at one end and fixed to the internal sleeve cord at the other end. An adjustable stop 36 is fixed to the rod 3θ on the outside 1 of the support plate=3.

棒3Qは、第3図にいずれも図示嘔れるコつの位Ik(
すなわち、こハがベルの外方に引出されてブリッジ部材
3ダが横向き管−一の中に後退した休止位置と、活性の
プラズマ点火位さ)の間で変位できる。この活性位置に
おいて、捧30は、止め36が蓬−内ねじコg全備えた
カラーに出会うまで、はルの内方に押されている。この
変位運動は、案内ねじ2gおよびf#3コによって、は
ぼ並進するように片肉されるが、これら要素の間の10
0程度の角度間隙と、棒30とスリーブコタおよび支持
板23のオリフィスとの間の周間隙とによって、ブリッ
ジ部材3ダの端部は、管りおよびSの端部に持って来て
同時にこれら両管の端縁に接触?せることかできる。こ
の方法によれは、トーチにプラズマ生成ガスおよびマイ
クロ波(または超高周波)エネルギか供給づれていると
きにマイクロ波プラズマの点火を生じるような、短絡回
路か作られる。
The rod 3Q is shown in Figure 3 at the point Ik (
That is, it can be displaced between a rest position, in which the bell is pulled out of the bell and the bridge member 3 is retracted into the transverse tube, and an active plasma ignition position. In this active position, the barb 30 is pushed inwardly into the barrel until the stop 36 meets the fully internally threaded collar. This displacement movement is partially translated by the guide screws 2g and f#3, but the distance between these elements is 10
Due to the angular gap of the order of 0 and the circumferential gap between the rod 30 and the orifice of the sleeve holder and the support plate 23, the end of the bridge member 3da can be brought to the end of the pipe and the S and at the same time Touching the edges of both tubes? I can do it. This method creates a short circuit that causes ignition of the microwave plasma when the torch is not supplied with plasma-generating gas and microwave (or ultra-high frequency) energy.

二重ケース16は、上方の円筒形部分と、同じ直径の中
間の円筒形部分と、集め装置3に連通する下向きに末つ
ほまる下方の円錐形部分とからなる。その上体は、支持
板コ3を横向き管ココに固定すると同様な方法で、フラ
ンジおよび密閉0−リングによって、同じ内径を有する
ベル/ダの下端縁に締付けられる。二)ケース16は、
その上方部分に、接線的に指向てれた閉込めカス注入オ
リフィス3りと、冷却ガス注入オリフィス3gと′ft
fftc、える。冷却ガス注入オリフィス3gのおのお
のに逐らなる中空の曲がフ部材39は、本体部分と下向
きの出口並部分とを肩し、この本体部分1;t1ケーシ
ングの内壁に沿って、ベル/Qの中に上向きに延長し、
出口端部分は、1糺X−Xに向って軽く傾斜し、トーチ
lの下舵′から下方に僅かの距離のところで開く。ざら
に、二重ケース16は、上方の入口4toと下方の出口
4(/との間で、このケースの3つの部分の中を水が泊
列に下向きに循環できるようにする、水冷手段を包含す
るa変型として、水は、ケース16の中を上向きに循環
することもできる。ケース/l、には、さらに横向き導
貧ダコが連らなシ、これは、真空ボンプダ3および制圧
9PダダfI:備える。
The double case 16 consists of an upper cylindrical part, an intermediate cylindrical part of the same diameter, and a lower conical part terminating downwards and communicating with the collecting device 3. Its upper body is clamped by flanges and sealing O-rings to the lower edge of the bell/da having the same internal diameter in a similar manner to fixing the support plate 3 to the transverse tube. 2) Case 16 is
In its upper part there is a tangentially oriented confinement gas injection orifice 3 and a cooling gas injection orifice 3g and 'ft.
fftc, get it. A hollow curved flap member 39 formed by each of the cooling gas injection orifices 3g shoulders the main body portion and the downward outlet parallel portion, and along the inner wall of the main body portion 1; t1 casing, the bell/Q extend upward into the
The outlet end section is slightly sloping towards the direction X--X and opens a short distance downwardly from the lower rudder' of the torch I. In general, the double casing 16 is provided with water cooling means that allow water to circulate downwardly into the row in the three parts of this casing between the upper inlet 4 and the lower outlet 4 (/). As a variant a includes, the water can also be circulated upwards in the case 16.The case/l is further equipped with a series of lateral conductors, which are connected to the vacuum pumper 3 and the pressure suppressor 9P dada. fI: Prepare.

集め装置Jは、任意適当な粉末集め装置例えばフィルタ
でよい。反応器からガス状流出物を吐出するだめの導管
4c3は、集め装fM3の出口から、この流出物を処理
するためのステーション(図示なし)まで達する。遮蔽
ガス、閉込めガスおよび冷却ガスは、不活性ガス、望ま
しくは経済的理由から窒素である。冷却ガスは、その熱
伝導度を改善するために、成る割合のヘリウムを含有で
きる。
The collecting device J may be any suitable powder collecting device, such as a filter. A reservoir conduit 4c3 discharging the gaseous effluent from the reactor runs from the outlet of the collection device fM3 to a station (not shown) for treating this effluent. The shielding gas, confinement gas and cooling gas are inert gases, preferably nitrogen for economic reasons. The cooling gas may contain a proportion of helium to improve its thermal conductivity.

プラズマ生成ガスは、望ましくはアルゴンである。The plasma generating gas is preferably argon.

上述した反応器は、次のように作動する。The reactor described above operates as follows.

一番最初に、反応器の中に含trる空気が、例えば10
  m!nHgの程度の圧力に達するまで、真空ポンプ
4c3によって吐出され、次いで、窒素またはアルゴン
が、1.3バール給対の程度−の圧力に達するまで導入
される。おそらくは、これら予@作業が数回繰返された
のちに、反応器は、7.3バールの不活性雰囲気になシ
、酸素も水も含有しないようになる。その後の作業のを
いた、圧力は、調圧弁ダダによって、ケーシング2の中
で約1.3バールになるように常に設定され、これによ
って、反応器内への#素および水分の侵入が確実に阻止
される。
Initially, the air contained in the reactor is, for example, 10
m! Vacuum pump 4c3 delivers until a pressure of the order of nHg is reached, and then nitrogen or argon is introduced until a pressure of the order of 1.3 bar is reached. Presumably, after these preliminary operations have been repeated several times, the reactor becomes an inert atmosphere of 7.3 bar and contains neither oxygen nor water. During subsequent operations, the pressure was always set at approximately 1.3 bar in the casing 2 by means of the pressure regulating valve Dada, which ensured that no elements and moisture could enter the reactor. thwarted.

次いで、プラズマ生成ガスおよび遮蔽ガスが、龜りおよ
び管(スリーブ)lコ全通して供給され、閉込めガスお
よび冷却ガスが、オリフィス37および中空の曲かシ部
材3デ全通して供給され、超筐周波エネルギが、導波t
irsおよび端部材6を介して供給され、プラズマが、
トーチの下流端で、前述した方法で点火製品15によっ
て点火される。
Plasma-generating gas and shielding gas are then supplied through the aperture and tube (sleeve), confinement gas and cooling gas are supplied through the orifice 37 and the hollow curved member 3; Super casing frequency energy is guided by wave t
irs and the end member 6, the plasma is
At the downstream end of the torch, it is ignited by an ignition product 15 in the manner previously described.

この方法で、プラズマの集状の流れが、トーチlの出口
で得られる。次いで、反応ガスが、中央の省Sを通して
供給される。このガスは、プラズマを通澁する際に、こ
れによって熱的に処理され、反応生成物は、中空の曲が
シ部材3975−ら出るガスの流れの中で急冷される。
In this way, a convergent stream of plasma is obtained at the exit of the torch I. Reactant gas is then fed through the central tank S. The gas is thermally treated by the plasma as it passes through, and the reaction products are quenched in the gas flow exiting the hollow bent member 3975-.

この方法で、細かい粒子寸法ヲ肩する粉末か形成され、
この粉末は、下降するつる巻き径路を描く閉込めガスの
?i流によって、ケース16の内壁に沈積しないように
押ζえられる。粉末は、象め装−3によって受取られ、
この集め装置の性貴に依存して、連続的にまたは周知・
的に吐出される。
In this way, a powder with fine particle size is formed,
Is this powder a trapped gas that follows a downward spiral path? The i-stream presses down on the inner wall of the case 16 to prevent it from being deposited. The powder is received by the inlay-3;
Depending on the nature of this collecting device, it may be continuous or
is discharged.

以下において「シラン」と称せられる「シランおよびそ
の誘導体」とは、この発明によれば\水素化シリコン、
すなわちモノシラン、ジシラン、トリシランおよびり1
級シラン、ハ日ゲノシラン、アルキルシラン、ノ10ゲ
ノー/Sロゲノシラン、ハロゲノ−アルキルシラン、ヒ
ドロゲノ−アルカリシランおよびこれら化合物の混合物
を、一般に倉味するものとする。
According to the present invention, "silane and its derivatives", hereinafter referred to as "silane", are \silicon hydride,
i.e. monosilane, disilane, trisilane and trisilane
Hydrogeno-alkyl silanes, hydrogeno-alkyl silanes, hydrogeno-alkali silanes, and mixtures of these compounds are generally considered to be cured.

変型として、例えばプラズマ流の川口において生成され
る粉末の粒子寸法を増大させるため、反応性ガス状混合
物が、中空の曲が9部材3デ全通して導入できる。
As a variant, the reactive gaseous mixture can be introduced through the nine members 3, for example in order to increase the particle size of the powder produced at the mouth of the plasma stream.

反応器を利用した例として、次のものがあけられる。Examples of using reactors include:

(a)気相における複分解反応、これは、炭化シリコン
および窒化シリコンのような耐火組成物または被しの製
造において、特に興味かある。
(a) Metathesis reactions in the gas phase, which are of particular interest in the production of refractory compositions or overlays such as silicon carbide and silicon nitride.

、7SiH,+コN2→513N4(窒化シリコン)+
4[2、S iH,十CH,→5IC(炭化シリコン)
+ダH2、N2を、NH3またはN20または他の窒素
含有ガス或いはCnHmまたは他の炭素含有ガスに置き
換えることによって、並ひにS iH,を5iCt、ま
たは他のシランに狙き換えることによって、若しくはそ
のいずれかによって、同様の反応ヲ得ることかできる。
, 7SiH, + N2 → 513N4 (silicon nitride) +
4[2, SiH, 10CH, → 5IC (silicon carbide)
By replacing H2, N2 with NH3 or N20 or other nitrogen-containing gases or CnHm or other carbon-containing gases, as well as by redirecting SiH, with 5iCt, or other silanes, or A similar reaction can be obtained with either of them.

(1例えば酢化シリコン粉末を生成するための、酢化反
応、これら酸化物は、酸素または他の酸素含有ガスによ
るシランの酸化によって得られる。
(1) Acetylation reaction, for example to produce silicon acetate powder. These oxides are obtained by oxidation of silane with oxygen or other oxygen-containing gases.

かくして、例えば反応 5ict、+02→SiO□+コct2によって、歯肉
ば一ストの準侃に使用されるシリカ粉末1kl’造する
ことができる。
Thus, for example, by the reaction 5ict, +02→SiO□+coct2, 1 kl of silica powder, which is used for the preparation of gingival braces, can be produced.

(C)シリコン粉末の製°造のための還元反応。(C) Reduction reaction for the production of silicon powder.

例えば B i C!−、+ 2H2→B1+ダHct 。for example B i C! -, +2H2→B1+DaHct.

この場合に、水素は、中央の管Sにおいてシランと混合
させて、並ひにアルゴン−水素のようなプラズマ生成ガ
ス混合物の成分として、若しくはそのいずれかによって
、使用できる。
In this case, hydrogen can be used mixed with silane in the central tube S and/or as a component of a plasma-generating gas mixture such as argon-hydrogen.

(1例えばシリコン粉末を生じるシランの単分解反応0
例えば 81H,→EIi+、2H,。
(1 For example, monolysis reaction of silane that produces silicon powder 0
For example, 81H,→EIi+, 2H,.

この場合に、反応ガスは、前述した例におけるような混
合物ではなく、熱分解された「シラン」または「シラン
類」によって形成される。
In this case, the reaction gas is formed by pyrolyzed "silane" or "silanes" rather than a mixture as in the previous example.

この方法で得られる粉末は、高品質であるから、これは
、極めて細かい粒子の金μ組織を肩し従って優れた札械
的特性を有する部分の、製造に使用でき、或いは、沈&
または投射による極めて薄い表面破缶の生成に使用でき
る。注目すべき点として、反応器は、包囲雰bi気から
完全に隔離れているから、得られる粉末の純度は、使用
されるガスの純度だけに依存する。
Since the powder obtained in this way is of high quality, it can be used for the production of parts that carry extremely fine-grained gold μ-structures and thus have excellent mechanical properties, or can be used for precipitation and
Alternatively, it can be used to create extremely thin surface can breaks by projection. It is noteworthy that since the reactor is completely isolated from the surrounding atmosphere, the purity of the powder obtained depends only on the purity of the gas used.

変型(図示なし)において、トーチlの管7は省略され
、プラズマ生成ガスおよび反応ガスの双方が、単一の管
g全通して送られる。トーチの外91Iにおけるケーシ
ングコの場所から、ブラ:X−ff通して反応ガスを送
ることも、考えられる。
In a variant (not shown), the tube 7 of the torch l is omitted and both the plasma-generating gas and the reactant gas are routed through a single tube g. It is also conceivable to send the reactant gas through the bra:X-ff from the location of the casing at 91I outside the torch.

【図面の簡単な説明】[Brief explanation of drawings]

誹1図は、この発明による反応器を部分的に長手断面で
示したに図である。紐コ図は、シフ図に■で示した部分
の、拡大した長手断面図である。 し3図は、41図に■で示した部分の、12図と11!
rl &な図である。 図面において、lはトーチ、コはケーシング、3は東め
tj勅、ダは環状体、5は纒波管、6は熱部材、りと8
は住1心の管、9は横向き連結部材、IOはT継手、l
コはスリーブ、13はオリフィス、l弘はベル、15は
点火装置、16はケースを示す。 手続補正書(方式) 昭和62年 1月21日
Figure 1 shows a reactor according to the invention partially in longitudinal section. The string diagram is an enlarged longitudinal sectional view of the part indicated by ■ in the Schiff diagram. Figure 3 shows Figures 12 and 11 of the part marked with ■ in Figure 41!
This is a diagram of rl&. In the drawings, l is a torch, ko is a casing, 3 is a tome, da is an annular body, 5 is a wave tube, 6 is a heat member, and 8 is a
1 is the main pipe, 9 is the horizontal connecting member, IO is the T joint, l
Ko is the sleeve, 13 is the orifice, l is the bell, 15 is the ignition device, and 16 is the case. Procedural amendment (method) January 21, 1986

Claims (1)

【特許請求の範囲】 1、シランまたはその誘導体を含有するガスを、特に環
状形状のマイクロ波プラズマの流れの中に送り、次いで
反応生成物を冷却する、シリコンまたはシリコン化合物
の粉末を製造する方法。 2、前記ガスが、SiH_4、SiCl_4、N_2、
NH_3、N_2OおよびC_nH_mから選択された
ガス状混合物である、窒化シリコンまたは炭化シリコン
のような耐火材料の粉末を製造するための、特許請求の
範囲第1項に記載の方法。 3、前記ガスが酸素を含有する、酸化シリコン粉末を製
造するための、特許請求の範囲第1項に記載の方法。 4、前記ガスが、水素とシリコン化合物例えばSiCl
_4の混合物である、シリコン粉末を製造するための、
特許請求の範囲第1項に記載の方法。 5、前記ガスが、シリコン化合物例えばSiCl_4で
あり、プラズマ生成ガスが、水素を含有するガス例えば
アルゴン−水素混合物である、シリコン粉末を製造する
ための、特許請求の範囲第1項に記載の方法。 6、反応が前記ガスの単分解である、シリコン粉末を製
造するための、特許請求の範囲第1項に記載の方法。 7、作動が、大気圧より僅かに高い圧力で達成される、
特許請求の範囲第1項から第6項のいずれか1項に記載
の方法。 8、プラズマ生成ガスの源に連結するに適し、かつマイ
クロ波プラズマ流を生じるに適したマイクロ波プラズマ
トーチ、プラズマ流を通して反応生成物を進めるための
手段、トーチが内部で開く反応ケーシング、および、密
閉方法でケーシングの壁を通して延長する、トーチを点
火するための手段、を有する密閉されたマイクロ波プラ
ズマ反応器。 9、トーチに連結されるケーシングの少くとも一部分が
、電気絶縁材料によって構成される、特許請求の範囲第
8項に記載の反応器。 10、ケーシングが、冷却流体の循環のための通路を備
えたケースからなる、特許請求の範囲第8項に記載の反
応器。 11、ケーシングが、トーチの下流端の近くに位置する
トーチの軸線上の点に向って収束するガス流を注入する
ための手段を、包含する、特許請求の範囲第8項から第
10項のいずれか1項に記載の反応器。 12、ケーシングが真空ポンプに連結される、特許請求
の範囲第8項から第11項のいずれか1項に記載の反応
器。 13、ケーシングが、大気圧より高い圧力で作動するに
適し、かつ調圧弁を備える、特許請求の範囲第8項から
第12項のいずれか1項に記載の反応器。 14、前記点火手段が、トーチの下流端に対面するよう
な関係でケーシングの壁に密閉方式で摺動可能に取付け
られた、短絡回路で作動する点火器を備える、特許請求
の範囲第8項から第13項のいずれか1項に記載の反応
器。 15、ケーシングが、その内壁に対して接線方向にガス
を注入するための手段を備える、特許請求の範囲第8項
から第14項のいずれか1項に記載の反応器。 16、トーチが、二重流れ形式であって、プラズマ生成
ガスの源に連結するに適した環状の通路を包含し、この
通路が、前記反応生成物の源に連結するに適した中央の
通路を包囲する、特許請求の範囲第8項から第15項の
いずれか1項に記載の反応器。 17、入口通路を包含する密閉された反応ケーシングと
、前記入口通路の中に密閉方式で延長する出口スリーブ
と横向きオリフィスとを包含する密閉された補助ケーシ
ングと、補助ケーシングの中を密閉方式で延長しかつス
リーブの中を同軸線に延長する少くとも1つのガス供給
管と、前記管を包囲するT継手とT継手の柄に電気的に
接続されるように前記横向きオリフィスの中に配置され
た導波管との結合のための端部材とを包含する超高周波
エネルギ供給手段とを備えた、密閉されたマイクロ波プ
ラズマ反応器。 18、補助ケーシングが、出口スリーブと同軸線でかつ
横向きオリフィスを備えた環状体を包含する、特許請求
の範囲第17項に記載の反応器。 19、補助ケーシングが、これの上に取付けられた蓋に
よって密閉式に閉じられ、この蓋を、前記ガス供給管が
貫通する、特許請求の範囲第17項または第18項に記
載の反応器。 20、出口スリーブがガス入口オリフィスを備える、特
許請求の範囲第17項から第19項のいずれか1項に記
載の反応器。
[Claims] 1. Process for producing powders of silicon or silicon compounds, in which a gas containing silane or its derivatives is passed into a microwave plasma stream, in particular in an annular shape, and then the reaction product is cooled. . 2. The gas is SiH_4, SiCl_4, N_2,
A method according to claim 1 for producing a powder of a refractory material such as silicon nitride or silicon carbide, which is a gaseous mixture selected from NH_3, N_2O and C_nH_m. 3. The method according to claim 1 for producing silicon oxide powder, wherein the gas contains oxygen. 4. The gas contains hydrogen and a silicon compound such as SiCl.
For producing silicon powder, which is a mixture of _4,
A method according to claim 1. 5. The method according to claim 1 for producing silicon powder, wherein the gas is a silicon compound, e.g. SiCl_4, and the plasma-generating gas is a hydrogen-containing gas, e.g. an argon-hydrogen mixture. . 6. The method according to claim 1 for producing silicon powder, wherein the reaction is monolysis of the gas. 7. Operation is achieved at a pressure slightly above atmospheric;
A method according to any one of claims 1 to 6. 8. a microwave plasma torch suitable for coupling to a source of plasma-generating gas and suitable for producing a microwave plasma stream; a means for advancing reaction products through the plasma stream; a reaction casing within which the torch opens; A sealed microwave plasma reactor having means for igniting a torch, extending through the wall of the casing in a sealed manner. 9. The reactor according to claim 8, wherein at least a portion of the casing connected to the torch is constructed of an electrically insulating material. 10. Reactor according to claim 8, wherein the casing consists of a case with passages for the circulation of cooling fluid. 11. The method of claims 8 to 10, wherein the casing includes means for injecting a converging gas stream toward a point on the axis of the torch located near the downstream end of the torch. The reactor according to any one of the items. 12. The reactor according to any one of claims 8 to 11, wherein the casing is connected to a vacuum pump. 13. Reactor according to any one of claims 8 to 12, wherein the casing is suitable for operating at a pressure higher than atmospheric pressure and is provided with a pressure regulating valve. 14. Claim 8, wherein said ignition means comprises a short circuit operated igniter slidably mounted in a sealing manner on the wall of the casing in facing relation to the downstream end of the torch. The reactor according to any one of Items 13 to 13. 15. Reactor according to any one of claims 8 to 14, wherein the casing is provided with means for injecting gas tangentially to its inner wall. 16. The torch is of dual-flow type and includes an annular passageway suitable for connection to a source of plasma-generating gas, which passageway is in a central passageway suitable for connection to a source of said reaction products. 16. A reactor according to any one of claims 8 to 15, surrounding a reactor. 17. a sealed reaction casing containing an inlet passage; a sealed auxiliary casing containing an outlet sleeve and a transverse orifice extending in a sealed manner into said inlet passage; and at least one gas supply tube extending coaxially through the sleeve, a T-fitting surrounding the tube, and a T-fitting disposed within the transverse orifice so as to be electrically connected to the handle of the T-fitting. 1. A sealed microwave plasma reactor, comprising an ultra-high frequency energy supply means including an end member for coupling with a waveguide. 18. The reactor of claim 17, wherein the auxiliary casing comprises an annular body coaxial with the outlet sleeve and with a transverse orifice. 19. Reactor according to claim 17 or 18, wherein the auxiliary casing is hermetically closed by a lid mounted on it, through which the gas supply pipe passes. 20. A reactor according to any one of claims 17 to 19, wherein the outlet sleeve comprises a gas inlet orifice.
JP61292634A 1985-12-10 1986-12-10 Method for producing powder and hermetically closed microwave plasma reactor Pending JPS62152532A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8518240A FR2591412A1 (en) 1985-12-10 1985-12-10 Method for the production of powders and a sealed microwave plasma reactor
FR8518240 1985-12-10

Publications (1)

Publication Number Publication Date
JPS62152532A true JPS62152532A (en) 1987-07-07

Family

ID=9325609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61292634A Pending JPS62152532A (en) 1985-12-10 1986-12-10 Method for producing powder and hermetically closed microwave plasma reactor

Country Status (2)

Country Link
JP (1) JPS62152532A (en)
FR (1) FR2591412A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187633A (en) * 1993-12-28 1995-07-25 Univ Nagoya Synthetic method of fullerenes by high frequency plasma
JP2006516104A (en) * 2002-06-26 2006-06-22 シーイーエム・コーポレーション Reaction and temperature control for high power microwave assisted chemical techniques
JP2010505721A (en) * 2006-10-02 2010-02-25 ソラリア・テクノロジェ・ソシエタ・ア・レスポンサビリタ・リミタータ Method and apparatus for producing high-purity silicon using a plurality of precursors
JP2010521393A (en) * 2007-03-15 2010-06-24 レヴ・リニューワブル・エナージー・ヴェンチャーズ・インコーポレーティッド Plasma assisted synthesis
CN102060298A (en) * 2010-11-23 2011-05-18 合肥飞帆等离子科技有限公司 Polycrystalline silicon production device and method
JP2012130825A (en) * 2010-12-20 2012-07-12 Kagawa Univ Nano-particle manufacturing method, nano-particles, and nano-particle manufacturing apparatus
JP2012130826A (en) * 2010-12-20 2012-07-12 Kagawa Univ Nano-particle manufacturing method, nano-particles, and nano-particle manufacturing apparatus
CN108723389A (en) * 2017-04-18 2018-11-02 台湾积体电路制造股份有限公司 The method for forming conductive powder

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891339A (en) * 1987-10-23 1990-01-02 Aerochem Research Laboratories, Inc. Process and apparatus for the flame preparation of ceramic powders
US5110565A (en) * 1988-02-05 1992-05-05 The Dow Chemical Company Apparatus for producing uniform, fine ceramic powder
ES2006119A6 (en) * 1988-03-24 1989-04-01 Union Explosivos Rio Tinto Process for the preparation of silicon nitride.
GB8809651D0 (en) * 1988-04-23 1988-05-25 Tioxide Group Plc Nitrogen compounds
US5165916A (en) * 1989-10-02 1992-11-24 Phillips Petroleum Company Method for producing carbide products
US5108729A (en) * 1989-10-02 1992-04-28 Phillips Petroleum Company Production of carbide products
US5348718A (en) * 1990-04-04 1994-09-20 Phillips Petroleum Company Method and apparatus for producing carbride products
US6362449B1 (en) 1998-08-12 2002-03-26 Massachusetts Institute Of Technology Very high power microwave-induced plasma
US20040250764A1 (en) * 2000-05-16 2004-12-16 Mitsugu Nagano Method and apparatus for production of high purity silicon
US6696662B2 (en) 2000-05-25 2004-02-24 Advanced Energy Industries, Inc. Methods and apparatus for plasma processing
WO2004030853A1 (en) 2002-09-30 2004-04-15 Toho Titanium Co., Ltd. Method and apparatus for producing metal powder
DE10353996A1 (en) * 2003-11-19 2005-06-09 Degussa Ag Nanoscale, crystalline silicon powder
NO329968B1 (en) 2007-08-17 2011-01-31 Silansil As Device and method for compacting silicon powder
PL3389862T3 (en) 2015-12-16 2024-03-04 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
DE102017125723A1 (en) * 2017-04-25 2018-10-25 Eeplasma Gmbh Method and apparatus for growing a single crystal
CN109121550B (en) * 2018-09-07 2021-02-05 山东省种子有限公司 Rice breeding method adopting microwave plasma treatment
WO2020223358A1 (en) 2019-04-30 2020-11-05 6K Inc. Mechanically alloyed powder feedstock
AU2020400980A1 (en) * 2019-11-18 2022-03-31 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN116034496A (en) 2020-06-25 2023-04-28 6K有限公司 Microcosmic composite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
CA3196653A1 (en) 2020-10-30 2022-05-05 Sunil Bhalchandra BADWE Systems and methods for synthesis of spheroidized metal powders

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979500A (en) * 1973-05-02 1976-09-07 Ppg Industries, Inc. Preparation of finely-divided refractory powders of groups III-V metal borides, carbides, nitrides, silicides and sulfides
IT1055884B (en) * 1976-02-17 1982-01-11 Montedison Spa PLASMA ARC PROCEDURE OF METALLIC AND SIMILAR CERAMIC PRODUCTS
DE3134501A1 (en) * 1981-09-01 1983-08-11 Nikolaj Ivanovič Čebankov Ultra high frequency plasmatron and an installation for obtaining very finely divided powder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187633A (en) * 1993-12-28 1995-07-25 Univ Nagoya Synthetic method of fullerenes by high frequency plasma
JP2006516104A (en) * 2002-06-26 2006-06-22 シーイーエム・コーポレーション Reaction and temperature control for high power microwave assisted chemical techniques
JP2010505721A (en) * 2006-10-02 2010-02-25 ソラリア・テクノロジェ・ソシエタ・ア・レスポンサビリタ・リミタータ Method and apparatus for producing high-purity silicon using a plurality of precursors
JP2010521393A (en) * 2007-03-15 2010-06-24 レヴ・リニューワブル・エナージー・ヴェンチャーズ・インコーポレーティッド Plasma assisted synthesis
CN102060298A (en) * 2010-11-23 2011-05-18 合肥飞帆等离子科技有限公司 Polycrystalline silicon production device and method
JP2012130825A (en) * 2010-12-20 2012-07-12 Kagawa Univ Nano-particle manufacturing method, nano-particles, and nano-particle manufacturing apparatus
JP2012130826A (en) * 2010-12-20 2012-07-12 Kagawa Univ Nano-particle manufacturing method, nano-particles, and nano-particle manufacturing apparatus
CN108723389A (en) * 2017-04-18 2018-11-02 台湾积体电路制造股份有限公司 The method for forming conductive powder
US11819923B2 (en) 2017-04-18 2023-11-21 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive powder formation method and device for forming conductive powder

Also Published As

Publication number Publication date
FR2591412A1 (en) 1987-06-12

Similar Documents

Publication Publication Date Title
JPS62152532A (en) Method for producing powder and hermetically closed microwave plasma reactor
JPS63312907A (en) Microwave plazma torch, powder manufacturing equipment and manufacture of same
US4386258A (en) High frequency magnetic field coupling arc plasma reactor
EP3077099B1 (en) Plasma reactor and method for decomposing a hydrocarbon fluid
EP0039517A1 (en) Apparatus for treating powdery materials utilizing microwave plasma
US4090976A (en) Process for producing uranium oxide rich compositions from uranium hexafluoride
CA2507992A1 (en) Plasma synthesis of metal oxide nanopowder and apparatus therefor
JP2001526320A (en) Method and blowing lance for blowing gas into metallurgical vessel
JPS5963732A (en) Thin film forming device
JP2644620B2 (en) Method and apparatus for producing nitride compound
US3311451A (en) Production of finely divided amorphous silica
US4719095A (en) Production of silicon ceramic powders
JPS5939708A (en) Manufacture of fine silicon carbide powder
JPH0359006B2 (en)
US2823979A (en) Method of making pigment
JPH01116013A (en) Gaseous phase chemical reaction apparatus
JPS5941772B2 (en) Ultrafine powder synthesis furnace
KR20090103530A (en) Synthesis system for silicon carbide nanopowders
JPS6234416B2 (en)
JPS5950014A (en) Manufacture of silicon powder
Bauer et al. Laser vapor phase synthesis of submicron silicon and silicon nitride powders from halogenated silanes
JPH04198483A (en) Thin film forming device
US3460902A (en) Process for hydrogen cyanide and acetylene production in an arc heater having a rotating arc
JPS616113A (en) Manufacture of metallic silicon
JPH01176440A (en) Vapor phase synthesizing apparatus for producing powdery compound