JPH01116013A - Gaseous phase chemical reaction apparatus - Google Patents

Gaseous phase chemical reaction apparatus

Info

Publication number
JPH01116013A
JPH01116013A JP26945587A JP26945587A JPH01116013A JP H01116013 A JPH01116013 A JP H01116013A JP 26945587 A JP26945587 A JP 26945587A JP 26945587 A JP26945587 A JP 26945587A JP H01116013 A JPH01116013 A JP H01116013A
Authority
JP
Japan
Prior art keywords
reaction
gas
metal compound
easily vaporizable
vaporizable metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26945587A
Other languages
Japanese (ja)
Other versions
JP2598652B2 (en
Inventor
Kenichi Otsuka
大塚 研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62269455A priority Critical patent/JP2598652B2/en
Publication of JPH01116013A publication Critical patent/JPH01116013A/en
Application granted granted Critical
Publication of JP2598652B2 publication Critical patent/JP2598652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the contamination of a constituting material by the powder formed at the time of chemical reaction by constituting an evaporation section and reaction of specific materials. CONSTITUTION:An apparatus constituting body 22, gas introducing pipes 15, 17, an evaporation crucible 19, etc., are respectively formed of graphite or quartz which does not react with an easily evaporatable metal compd. or the same material as the material of the powder to be produced. The easily evaporatable metal compd. charged from an easily evaporatable metal compd. charging pipe 15 into the crucible 19 for evaporation is first fed to the evaporation section 11 and the reaction section 12 without reacting with the constituting materials. A reducing gas is then introduced from the reaction gas introducing pipe 17 to cause the gaseous phase chemical reaction. The reaction gas introducing pipe 17 is sheathed by the inert gas from a sheath introducing pipe 18 at this time. The contamination of the constituting materials by the powder formed of the easily evaporatable metal compd. at the time of the gaseous phase reaction is thereby prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は気相化学反応装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a gas phase chemical reaction device.

[従来の技術] 第4図は、特開昭511−170211号公報に記載さ
れる金属微粉製造用の気相化学反応装置を示す模式図で
ある。第4図において、lは易気化性金属化合物の気化
部、2は反応部、3は粉末捕集部、4は易気化性金属化
合物蒸気導入管、5は還元ガス導入管である。気化部1
は、易気化性金属化合物(例えばFeCl2)Hie交
2 、 WC文6等の金属ハロゲン化物)を蒸発気化さ
せ、反応部2は、該易気化性金属化合物の蒸気と還元ガ
スとを接触、混合し、気相化学反応の進行により金属の
微粉を生成する。
[Prior Art] FIG. 4 is a schematic diagram showing a gas phase chemical reaction apparatus for producing fine metal powder, which is described in Japanese Patent Application Laid-Open No. 511-170211. In FIG. 4, 1 is a vaporization section for an easily vaporizable metal compound, 2 is a reaction section, 3 is a powder collection section, 4 is an easily vaporizable metal compound vapor introduction tube, and 5 is a reducing gas introduction tube. Vaporization part 1
The reactor 2 evaporates an easily vaporizable metal compound (for example, a metal halide such as FeCl2, Hie 2, WC 6, etc.), and the reaction section 2 brings the vapor of the easily vaporizable metal compound into contact with a reducing gas and mixes it. Then, a fine metal powder is produced by the progress of a gas phase chemical reaction.

すなわち、上記気相化学反応装置にあっては、気化部1
で蒸発気化した金属化合物がキャリアガスにより反応部
2に導かれて別に導入された還元ガスと反応する。すな
わち、金属化合物が水素ガス等により還元されて金属の
a微粉、微粉を生じ、これらの超微粉、微粉は粉末捕集
部3において回収される。
That is, in the above gas phase chemical reaction device, the vaporization section 1
The evaporated metal compound is guided to the reaction section 2 by the carrier gas and reacts with a separately introduced reducing gas. That is, the metal compound is reduced by hydrogen gas or the like to produce metal a fine powder and fine powder, and these ultrafine powder and fine powder are collected in the powder collecting section 3.

[発明が解決しようとする問題点] 上記従来の気相化学反応装置にあっては、気化部lおよ
び反応部2を構成する装置構造体の内壁と易気化性金属
化合物蒸気とが直接的に接触する構造になっており、そ
の内壁材質と易気化性金属化合物蒸気との間に反応を生
じ、その内壁材質が製品粉末に混入し、製品粉末を汚染
するおそれがある。
[Problems to be Solved by the Invention] In the conventional gas-phase chemical reaction device described above, the inner wall of the device structure constituting the vaporizing section 1 and the reaction section 2 is directly connected to the easily vaporizable metal compound vapor. Since the inner wall material is in contact with the vapor of the easily vaporized metal compound, a reaction may occur between the inner wall material and the vaporized metal compound, and the inner wall material may mix into the product powder and contaminate the product powder.

気化部lおよび反応部2の設置構造体の少なくとも最外
壁部は、ガスの漏洩を防ぐため金属材料を用いざるを書
ない、そこで、上記装置構造体の内壁部をセラミックス
等の易気化性金属化合物蒸気と反応しにくい材質にて構
成することも考えられるが、この場合には金属とセラミ
ックスとの膨張のXう等からセラミックスに亀裂を生じ
、結果としてセラミックスのfα裂部分を介する金属と
易気化性金属化合物蒸気との接触を生じ、製品粉末の汚
染を避けることができない。
At least the outermost wall of the installation structure of the vaporization section 1 and the reaction section 2 must be made of a metal material to prevent gas leakage.Therefore, the inner wall of the device structure is made of an easily vaporizable metal such as ceramic It is also possible to use a material that does not easily react with compound vapor, but in this case, cracks will occur in the ceramic due to expansion between the metal and the ceramic, and as a result, the metal and the ceramic will easily form through the fα cracks in the ceramic. Contact with volatile metal compound vapors occurs and contamination of the product powder cannot be avoided.

また、金属材料からなる装置構造体の内面へ易気化性金
属化合物蒸気と反応しにくい材W(セラミックス、貴金
属等)をコーティングすることも考えられるが、この場
合には、■セラミックスではこの装置に不可避な昇温、
降温の熱サイクルによる劣化、剥離を生じ、また■白金
等の貴金属では高温による金属の相互拡散を生じて外壁
全屈が表面に暴露される結果、製品粉末の汚染を避ける
ことができない。
It is also possible to coat the inner surface of the device structure made of metal material with a material W (ceramics, precious metals, etc.) that does not easily react with vapor of easily vaporized metal compounds, but in this case, unavoidable temperature rise,
Deterioration and peeling occur due to the thermal cycle of decreasing temperature. Also, in the case of noble metals such as platinum, interdiffusion of metals occurs due to high temperatures, and as a result, the entire outer wall is exposed to the surface, making it impossible to avoid contamination of the product powder.

本発明は、易気化性金属化合物より生成される粉末が装
置の構成材料(装置構造体、ガス導入管、気化用ルツボ
)にて汚染される可能性を確実に防止することを目的と
する。
An object of the present invention is to reliably prevent the possibility of contamination of powder produced from an easily vaporizable metal compound with the constituent materials of the device (device structure, gas introduction pipe, vaporization crucible).

[問題点を解決するための手段] 本発明は、易気化性金属化合物の投入管、キャリアガス
導入管を備え、気化用ルツボを内蔵してなる気化部と、
気化部に隣接して配設され、反応ガス導入管を備えてな
る反応部とを有してなり、易気化性金属化合物と、該易
気化性金属化合物に対する反応ガスとの間の気相化学反
応により、金属もしくはセラミックスの粉末を製造する
気相化学反応装置において、気化部および反応部を構成
する装置構造体の内側に易気化性金属化合物と反応しな
い材質の保護内筒を設け、装置構造体と保護内筒との間
隙に不活性ガスまたは反応ガスを流し、かつ、易気化性
金属化合物の投入管もしくはガス導入管のうちで装置内
高温部に存在して易気化性金属化合物と接触する可能性
のある部分、および気化用ルツボを易気化性金属化合物
と反応しない材質にて形成するようにしたものである。
[Means for Solving the Problems] The present invention provides a vaporizing section comprising an input tube for an easily vaporizable metal compound, a carrier gas introduction tube, and a built-in crucible for vaporization;
a reaction part disposed adjacent to the vaporization part and equipped with a reaction gas introduction pipe, the reaction part is arranged adjacent to the vaporization part, and the reaction part is provided with a reaction gas introduction pipe, and the reaction part is arranged adjacent to the vaporization part, and the reaction part is provided with a reaction gas introduction pipe, and the reaction part is arranged adjacent to the vaporization part, and the reaction part is provided with a reaction gas introduction pipe. In a gas-phase chemical reaction device that produces metal or ceramic powder by reaction, a protective inner cylinder made of a material that does not react with easily vaporizable metal compounds is provided inside the device structure that constitutes the vaporization section and the reaction section, and the device structure An inert gas or a reactive gas is passed through the gap between the body and the protective inner cylinder, and any of the easily vaporizable metal compound inlet pipes or gas inlet pipes is present in the high temperature part of the device and comes into contact with the easily vaporizable metal compound. The parts that are likely to be vaporized and the vaporizing crucible are made of a material that does not react with the easily vaporizable metal compound.

[作用] 本発明によれば、装置構造体の内側に不活性ガスまたは
反応ガス(例えばH2,02等)を介した状態で、易気
化性金属化合物と反応しない材質(例えば黒鉛、石英ガ
ラス等)の保護内筒が設けられ、装置構造体の構成材料
と易気化性金属化合物との直接的な接触を避けることが
できる。また、装置内に配置されるガス導入管、気化用
ルツボも易気化性金属化合物と反応しない材質(例えば
黒鉛、石英ガラス等)にて形成される。
[Function] According to the present invention, a material that does not react with an easily vaporizable metal compound (such as graphite, quartz glass, etc. ) is provided to avoid direct contact between the constituent materials of the device structure and the easily vaporizable metal compound. Further, the gas introduction pipe and vaporization crucible disposed within the apparatus are also made of a material (eg, graphite, quartz glass, etc.) that does not react with easily vaporizable metal compounds.

したがって、易気化性金属化合物の投入管から気化用ル
ツボに投入される易気化性金属化合物は、装置内の高温
部にて黒鉛1石英ガラス等の該易気化性金属化合物と反
応しない材質からなるもの以外と接触することなく、気
化部および反応部に送られることになる。これにより、
本発明は、易気化性金属化合物より生成される粉末が装
置の構成材料(装置構造体、ガス導入管、気化用ルツボ
)にて汚染される可能性を確実に防1トすることができ
る。
Therefore, the easily vaporizable metal compound charged into the vaporization crucible from the injection pipe for the easily vaporizable metal compound is made of a material that does not react with the easily vaporizable metal compound, such as graphite-1 quartz glass, in the high temperature section of the apparatus. It will be sent to the vaporization section and reaction section without coming into contact with anything other than that. This results in
The present invention can reliably prevent the possibility that powder produced from an easily vaporizable metal compound will be contaminated with the constituent materials of the device (device structure, gas introduction pipe, vaporization crucible).

また、装置構造体の構成材料として易気化性金属化合物
と反応し易い金属材料を用いながら、それらの反応を避
けることができる。これにより、完全に気密で強度的に
安全性の高い装置構造体を形成し、かつ装置構造体の構
成金属材料の溶出による汚染のない製品粉末を製造でき
る。
Further, while using a metal material that easily reacts with easily vaporizable metal compounds as the constituent material of the device structure, such reactions can be avoided. As a result, it is possible to form a device structure that is completely airtight and highly safe in terms of strength, and to produce product powder that is free from contamination due to elution of the metal materials that constitute the device structure.

なお、本発明の好適な実施態様として、保護内筒の長手
方向の一部(例えば一端部)のみを装置構造体に固定す
るものとすれば、装置の熱サイクルに対して保護内筒を
自在に伸縮させることができ、保護内筒の亀裂を防+h
 L、装置を長時間安定して稼動させることができる。
In addition, as a preferred embodiment of the present invention, if only a portion (for example, one end) in the longitudinal direction of the protective inner cylinder is fixed to the device structure, the protective inner cylinder can be freely moved against the thermal cycle of the device. It can be expanded and contracted to prevent cracks in the protective inner cylinder.
L. The device can be operated stably for a long time.

この時、装置構造体と保護内筒との間隙に供給される不
活性ガスまたは反応ガスは、保護内筒の固定部から自由
端側へと流され、易気化性金属化合物蒸気が上記自由端
から上記間隙内に侵入することを防止できる。
At this time, the inert gas or reactive gas supplied to the gap between the device structure and the protective inner cylinder is flowed from the fixed part of the protective inner cylinder to the free end side, and the easily vaporized metal compound vapor is transferred to the free end side. can be prevented from entering the above-mentioned gap.

また、本発明の実施において、装置の使用温度によって
は、保護内筒、ガス導入管、気化用ルツボを、装置が製
造しようとする粉末と同一材質にて形成することもでき
る。
Furthermore, in carrying out the present invention, depending on the operating temperature of the apparatus, the protective inner cylinder, gas introduction pipe, and vaporizing crucible may be made of the same material as the powder to be produced by the apparatus.

[実施例] 第1図は本発明の第1実施例を示す模式図である。[Example] FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

気相化学反応装置10は、竪型をなしており、気化部1
1、反応部12)加熱装置13、冷却部14によって構
成され、気体の流れを下向きに設定している。
The gas phase chemical reaction device 10 has a vertical shape, and has a vaporization section 1.
1. Reaction section 12) It is composed of a heating device 13 and a cooling section 14, and the flow of gas is set downward.

気化部11は、易気化性金属化合物投入管15、易気化
性金属化合物を反応部12へ送るキャリアガス導入口1
6、反応ガス導入管17、シースガス導入管18を備え
、気化用ルツボ19を内蔵している0反応ガス導入管1
7は2重円筒状の気化部ルツボ19の中心に貫通配置し
、着脱可能である。また、気相化学反応では反応部内壁
やガス導入管外壁に析出を生ずることが不可避であるが
、この反応部2110にあっては、シースガス導入管1
8により、反応ガス導入管17を不活性ガスによってシ
ースし、操業後に取り外して清掃することを可能として
いる。キャリアガス導入口16、反応ガス導入管17、
シースガス導入管18は3重管となっている。
The vaporization section 11 includes an easily vaporizable metal compound input pipe 15 and a carrier gas inlet 1 for feeding the easily vaporizable metal compound to the reaction section 12.
6. Reaction gas introduction pipe 1, which is equipped with a reaction gas introduction pipe 17, a sheath gas introduction pipe 18, and has a built-in vaporization crucible 19.
7 is disposed penetrating through the center of the double cylindrical vaporizer crucible 19 and is removable. In addition, in a gas phase chemical reaction, it is inevitable that precipitation occurs on the inner wall of the reaction section and the outer wall of the gas introduction tube, but in this reaction section 2110, the sheath gas introduction tube 1
8 makes it possible to sheath the reaction gas introduction pipe 17 with an inert gas and remove it for cleaning after operation. carrier gas inlet 16, reaction gas inlet pipe 17,
The sheath gas introduction pipe 18 is a triple pipe.

反応部12は、気化部11の下部に接続され、気化用ル
ツボ19の中心を貫通した反応ガス導入管17、シース
ガス導入管18の開口端を配置せしめている。なお、気
化部11は大径の円筒状、反応部12は小径の円筒状と
されている。
The reaction section 12 is connected to the lower part of the vaporization section 11, and has open ends of a reaction gas introduction pipe 17 and a sheath gas introduction pipe 18, which pass through the center of the vaporization crucible 19, arranged therein. Note that the vaporizing section 11 has a cylindrical shape with a large diameter, and the reaction section 12 has a cylindrical shape with a small diameter.

加熱型5!13は、気化部加熱炉20と反応部加熱炉2
1とを接続して構成されており、気化部加熱炉20は気
化部11に対応配置され、反応部加熱炉21は反応部1
2に対応配置されている0両加熱炉20.21は、それ
らの発熱体と制御系とな相互に別個としており、相互に
独立に温度制御できるようになっている。気化部11の
気化温度と反応部12の反応温度とが同一であるときに
は、両顎熱炉20.21の発熱体、制御系を単一化して
もよい。
The heating type 5!13 has a vaporization section heating furnace 20 and a reaction section heating furnace 2.
1, the vaporizing section heating furnace 20 is arranged corresponding to the vaporizing section 11, and the reaction section heating furnace 21 is connected to the reaction section 1.
The two heating furnaces 20 and 21 arranged corresponding to the heating elements 2 and 2 have separate heating elements and control systems, so that their temperatures can be controlled independently of each other. When the vaporization temperature of the vaporization section 11 and the reaction temperature of the reaction section 12 are the same, the heating element and control system of the double-jaw thermal furnace 20 and 21 may be unified.

冷却部14は1反応部12の下部に配設され、水ジャケ
ットを備えるとともに、その出口は粉末回収装置へ連な
る。
The cooling section 14 is disposed below one reaction section 12, is equipped with a water jacket, and has an outlet connected to a powder recovery device.

上記気相化学反応装置10は、易気化性金属化合物投入
管15から投入される易気化性金属化合物と、反応ガス
導入管17から導入される還元ガスとの間の気相化学反
応により、金属の超微粉・微粉の粉末を製造することが
できる。ここで、易気化性金属化合物を連続的に投入す
れば、連続的な粉末の製造が可能となる。
The gas phase chemical reaction apparatus 10 is configured to react with metals by a gas phase chemical reaction between an easily vaporizable metal compound introduced from an easily vaporizable metal compound input pipe 15 and a reducing gas introduced from a reaction gas introduction pipe 17. It is possible to produce ultra-fine powder and fine powder. Here, if the easily vaporizable metal compound is continuously added, continuous production of powder becomes possible.

しかして、−上記気相化学反応装置10にあっては、気
化部11と反応部12を構成する金属材料V装置構造体
22の内側に、易気化性金属化合物と反応しない材質と
しての黒鉛または石英ガラス等にて形成される保護内筒
23を設けている。保護内筒23は気化部11に対応す
る部分を大径、反応部12に対応する部分を小径として
いる。保護内筒23は、上端部を反応部22の上端フラ
ンジ部22Aにシールされて挟着固定されており、下端
部を反応部12の下端側にて解放自由端としている。
Therefore, in the above-mentioned gas phase chemical reaction device 10, graphite or A protective inner cylinder 23 made of quartz glass or the like is provided. The protective inner cylinder 23 has a large diameter in a portion corresponding to the vaporization section 11 and a small diameter in a portion corresponding to the reaction section 12. The protective inner cylinder 23 has an upper end portion sealed and clamped to the upper end flange portion 22A of the reaction portion 22, and a lower end portion that is free to be released on the lower end side of the reaction portion 12.

また、装置構造体22の上端側外周部にはシールガス導
入管24が接続され、装置構造体22と保護内筒23の
間隙25にシールガスとしての、不活性ガスまたは反応
ガスを供給するようになっている0間隙25に供給され
た上記シールガスは保護内筒23の自由端側から反応部
12の内部に流出する。
Further, a seal gas introduction pipe 24 is connected to the outer circumference of the upper end of the device structure 22, and is configured to supply inert gas or reactive gas as a seal gas to the gap 25 between the device structure 22 and the protective inner cylinder 23. The sealing gas supplied to the zero gap 25, which is 0, flows out from the free end side of the protective inner cylinder 23 into the reaction section 12.

また、易気化性金属化合物投入管15、キャリアガス導
入口16、シースガス導入管18のうちで装置内高温部
に存在して易気化性金属化合物と接触する可能性のある
部分は、それらの装置内低温部側部分と切り離し、易気
化性金属化合物と反応しない材質としての黒鉛または石
英ガラス等にて形成される。それらの管の高温部側部分
は低温部側部分に螺着される。この時、螺着部の機密は
完全である必要がない。
In addition, among the easily vaporizable metal compound input pipe 15, carrier gas inlet 16, and sheath gas inlet pipe 18, the parts that exist in the high temperature part of the device and may come into contact with the easily vaporizable metal compound are It is separated from the internal low-temperature side part and is made of graphite, quartz glass, or the like as a material that does not react with easily vaporizable metal compounds. The hot end portions of the tubes are threaded onto the cold end portions. At this time, the threaded portion does not need to be completely confidential.

また、気化用ルツボ19も易気化性金属化合物と反応し
ない材質としての黒鉛または石英ガラス等にて形成され
る。
Further, the vaporization crucible 19 is also made of graphite, quartz glass, or the like as a material that does not react with the easily vaporizable metal compound.

次に、上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

上記実施例によれば、装置構造体22の内側に不活性ガ
スまたは反応ガスを介した状態で、易気化性金属化合物
と反応しない材質(例えば黒鉛、石英ガラス等)の保護
内筒23が設けられ、装置構造体22の構成材料と易気
化性金属化合物との直接的な接触を避けることができる
。また、装置内に配置される易気化性金属化合物投入管
15、ガス導入管16.18.気化用ルツボ19も易気
化性金属化合物と反応しない材質(例えば黒鉛、石英ガ
ラス等)にて形成される。
According to the above embodiment, the protective inner cylinder 23 made of a material that does not react with easily vaporizable metal compounds (e.g., graphite, quartz glass, etc.) is provided inside the device structure 22 through an inert gas or a reactive gas. Therefore, direct contact between the constituent material of the device structure 22 and the easily vaporizable metal compound can be avoided. In addition, an easily vaporizable metal compound input pipe 15, gas introduction pipes 16, 18, . The vaporizing crucible 19 is also made of a material that does not react with the easily vaporizable metal compound (eg, graphite, quartz glass, etc.).

したがって、易気化性金属化合物の投入管15から気化
用ルツボ19に投入される易気化性金属化合物は、装置
内の高温部にて黒鉛1石英ガラス等の該易気化性金属化
合物と反応しない材質からなるもの以外と接触すること
なく、気化部11および反応部12に送られることにな
る。これにより、易気化性金属化合物より生成される粉
末が装置の構成材料(装を構造体22)投入管15、ガ
ス導入管16.18、気化用ルツボ19)にて汚染され
る可能性を確実に防止することができる。
Therefore, the easily vaporizable metal compound introduced into the vaporizing crucible 19 from the easily vaporizable metal compound input pipe 15 is made of a material that does not react with the easily vaporizable metal compound, such as graphite-1 quartz glass, in the high temperature section of the apparatus. It is sent to the vaporization section 11 and the reaction section 12 without coming into contact with anything other than the above. This ensures that there is no possibility that the powder produced from the easily vaporizable metal compound will contaminate the equipment's constituent materials (package structure 22) input pipe 15, gas introduction pipe 16, 18, and vaporization crucible 19). can be prevented.

また、装置構造体22の構成材料として易気化性金属化
合物と反応し易い金属材料を用いながら、それらの反応
を避けることができる。これにより、完全に気密で強度
的に安全性の高い装置構造体22を形成し、かつ装置構
造体22の構成金属材料の溶出による汚染のない製品粉
末を製造できる。
Further, while using a metal material that easily reacts with easily vaporizable metal compounds as the constituent material of the device structure 22, such reactions can be avoided. As a result, it is possible to form a device structure 22 that is completely airtight and highly safe in terms of strength, and to produce product powder that is free from contamination due to elution of the metal materials that constitute the device structure 22.

なお、上記実施例においては、保護内筒23の一端部の
みを装置構造体22に固定するものとした。したがって
、装置の熱サイクルに対して保護内筒を自在に伸縮させ
ることができ、保護内筒23の亀裂等を防+L L、装
置を長時間安定して稼動させることができる。この時、
装置構造体体22と保護内筒23との間隙25に供給さ
れる不活性ガスまたは反応ガスは保護内筒23の固定部
から自由端側へと流され、易気化性金属化合物蒸気が上
記自由端から上記間隙内に侵入することを防止できる。
In the above embodiment, only one end of the protective inner cylinder 23 is fixed to the device structure 22. Therefore, the protective inner cylinder can be freely expanded and contracted in response to the thermal cycle of the device, preventing cracks and the like in the protective inner cylinder 23, and allowing the device to operate stably for a long time. At this time,
The inert gas or reactive gas supplied to the gap 25 between the device structure body 22 and the protective inner cylinder 23 is caused to flow from the fixed part of the protective inner cylinder 23 to the free end side, and the easily vaporized metal compound vapor is transferred to the free end side. Intrusion into the gap from the end can be prevented.

第2図は本発明の第2実施例を示す模式図である。FIG. 2 is a schematic diagram showing a second embodiment of the present invention.

この気相化学反応装置30が前記気相化学反応装置lO
と異なる点は、気体の流れを上向きに設定した竪型であ
ることにある。
This gas phase chemical reaction device 30 is the gas phase chemical reaction device lO
The difference is that it is vertical with the gas flowing upward.

気相化学反応装置30は、装置lOと同様に、気化部3
1、反応部32)加熱装置33、冷却部34を有してい
る。また、気化部31は易気化性金属化合物投入管35
、キャリアガス導入管36、気化用ルツボ37を備えて
いる。また、反応部32は反応ガス導入管38、シース
ガス導入管39を備えている。
The gas phase chemical reaction device 30 has a vaporization section 3 similar to the device IO.
1. Reaction section 32) It has a heating device 33 and a cooling section 34. In addition, the vaporization section 31 includes an easily vaporizable metal compound input pipe 35.
, a carrier gas introduction pipe 36, and a vaporization crucible 37. Further, the reaction section 32 includes a reaction gas introduction pipe 38 and a sheath gas introduction pipe 39.

また、気相化学反応装置30は、装置10と同様に、装
置構造体40の内側に易気化性金属化合物と反応しない
材質の保護内筒41を設け、シールガス導入管42によ
り装置構造体40と保護内筒41との間隙43・に不活
性ガスまたは反応ガスを渣すこととしている。また、気
相化学反応装置30は、装2110と同様に、投入管3
5、ガス導入管36.39のうちで装置内高温部に存在
して易気化性金属化合物と接触する可能性のある部分、
および気化用ルツボ37を易気化性金属化合物と反応し
ない材質にて形成している。
In addition, similar to the device 10, the gas phase chemical reaction device 30 is provided with a protective inner cylinder 41 made of a material that does not react with easily vaporizable metal compounds inside the device structure 40, and a seal gas introduction pipe 42 is connected to the device structure 40. An inert gas or a reactive gas is allowed to accumulate in the gap 43 between the protective inner cylinder 41 and the protective inner cylinder 41. Further, the gas phase chemical reaction device 30 has an input pipe 3 similar to the device 2110.
5. The part of the gas introduction pipe 36.39 that exists in the high temperature part of the device and may come into contact with easily vaporizable metal compounds;
The vaporizing crucible 37 is made of a material that does not react with easily vaporizable metal compounds.

したがって、この気相化学反応装置30にあっても、易
気化性金属化合物より生成される粉末が装置の構成材料
(装置構造体40.投入管35゜ガス導入管36.39
、気化用ルツボ37)にて汚染される可能性を確実に防
止できる。
Therefore, even in this gas phase chemical reaction apparatus 30, the powder produced from the easily vaporizable metal compound is used as the constituent material of the apparatus (apparatus structure 40, input pipe 35, gas introduction pipe 36, 39).
, the possibility of contamination of the vaporization crucible 37) can be reliably prevented.

第3図は本発明の第3実施例を示す模式図である。FIG. 3 is a schematic diagram showing a third embodiment of the present invention.

この気相化学反応装置50が前記気相化学反応部ff1
lOと異なる点は、気体の流れを横向きに設定した横壓
であることにある。
This gas phase chemical reaction device 50 is the gas phase chemical reaction section ff1.
The difference from IO is that it is a horizontal bottle in which the gas flow is set horizontally.

気相化学反応装置50は、装置10と同様に。The gas phase chemical reaction device 50 is similar to the device 10.

気化部51、反応部52)加熱装置53.冷却部54を
有している。また、気化部51は易気化性金属化合物投
入管55、キャリアガス導入管56、気化用ルツボ57
を備えている。また、反応部52は反応ガス導入管58
.シースガス導入管59を備えている。
Vaporization section 51, reaction section 52) heating device 53. It has a cooling section 54. The vaporization section 51 also includes an easily vaporizable metal compound input pipe 55, a carrier gas introduction pipe 56, and a vaporization crucible 57.
It is equipped with The reaction section 52 also has a reaction gas introduction pipe 58.
.. A sheath gas introduction pipe 59 is provided.

また、気相化学反応装置50は、装置10と同様に、装
置構造体60の内側に易気化性金属化合物と反応しない
材質の保護内筒61を設け、シールガス導入管62によ
り装置構造体60と保護内筒61との間隙63に不活性
ガスまたは還元ガスを流すこととしている。また、気相
化学反応装置50は、装2f10と同様に、易気化性金
属化合物投入管55、キャリアガス導入管56.シース
ガス導入管59のうちで装置内高温部に存在して易気化
性金属化合物と接触する可能性のある部分、および気化
部ルツボ57を易気化性金属化合物と反応しない材質に
て形成している。
Further, similar to the device 10, the gas phase chemical reaction device 50 is provided with a protective inner cylinder 61 made of a material that does not react with easily vaporizable metal compounds inside the device structure 60, and a seal gas introduction pipe 62 is connected to the device structure 60. Inert gas or reducing gas is allowed to flow into the gap 63 between the protective inner cylinder 61 and the protective inner cylinder 61. In addition, the gas phase chemical reaction apparatus 50 includes an easily vaporizable metal compound input pipe 55, a carrier gas introduction pipe 56, and the like in the device 2f10. The part of the sheath gas introduction pipe 59 that exists in a high temperature part of the apparatus and may come into contact with the easily vaporizable metal compound, and the vaporizer crucible 57 are made of a material that does not react with the easily vaporizable metal compound. .

したがって、この気相化学反応装置50にあっても、易
気化性金属化合物より生成される粉末が装置の構成材料
(装置構造体60、投入管55、ガス導入管56.59
、気化用ルツボ57)にて汚染される可能性を確実に防
1Fできる。
Therefore, even in this gas phase chemical reaction apparatus 50, the powder produced from the easily vaporizable metal compound is used as the constituent material of the apparatus (device structure 60, input pipe 55, gas introduction pipe 56, 59).
, the possibility of contamination in the vaporization crucible 57) can be reliably prevented.

以下1本発明の具体的実施結果について説明する。Hereinafter, specific implementation results of the present invention will be explained.

(実施例1) 第1図に示した装置10を用い、銅a微粉を作成した。(Example 1) Copper a fine powder was prepared using the apparatus 10 shown in FIG.

易気化性金属化合物として塩化第一銅、還元ガスとして
水素を使用した0反応条件は、気化温度1000℃、反
応温度4000℃、キャリアガス(アルゴン)流用8交
/分、水素ガス1i、量5立/分、シールガス(アルゴ
ン)流111/分、シースガス(アルゴン)流311/
分である。+11化第−銅は2グラム/分の速度で層発
し、反応率86%で約0.2 p、 mの銅粉が得られ
た0反応装置構造体の外壁構成部にはステンレス鋼を用
い、保護内筒としでは黒鉛を用いた。得られた銅粉中に
は未反応の塩化銅の混入による塩素と、空気との接触に
よる酸素以外の不純物は検出されず、汚染が存在しない
ことが認められた。
The reaction conditions using cuprous chloride as an easily vaporizable metal compound and hydrogen as a reducing gas were as follows: vaporization temperature 1000°C, reaction temperature 4000°C, carrier gas (argon) flow rate 8 exchanges/min, hydrogen gas 1i, amount 5 per minute, seal gas (argon) flow 111/min, sheath gas (argon) flow 311/min
It's a minute. Cupric +11 oxide was stratified at a rate of 2 g/min, and copper powder of approximately 0.2 p, m was obtained at a reaction rate of 86%. Stainless steel was used for the outer wall components of the reactor structure. Graphite was used for the protective inner cylinder. No impurities other than chlorine due to unreacted copper chloride mixed in and oxygen due to contact with air were detected in the obtained copper powder, indicating that there was no contamination.

(実施例2) 一上記実施例1における保護内筒の構成材料を石英ガラ
スに代え、他の装置構成、反応条件については実施例1
におけると全く同様とした実験を行なった。その結果、
銅粉の特性も実施例1の結果と全く変わらず、汚染が存
在しないことが認められた。
(Example 2) - The constituent material of the protective inner cylinder in Example 1 was replaced with quartz glass, and the other apparatus configuration and reaction conditions were as described in Example 1.
We conducted an experiment exactly the same as in . the result,
The properties of the copper powder were also completely unchanged from the results of Example 1, and no contamination was observed.

(比較例1) 上記実施例1における保護内筒を設けず、他の装置構成
については実施例1におけると全く同一の装置を用いて
、同一反応条件で銅粉を作成した。その結果、銅粉中に
は銅、塩素、酸素以外に、Fe 2.34%、Cr 0
.32%、Ni O,28%、Mn0.08%のステン
レス鋼に起因する金属成分が含まれた0反応後の装置構
造体内壁の調査によってもその腐食が確認された。
(Comparative Example 1) Copper powder was produced under the same reaction conditions using the same apparatus as in Example 1 except for the protective inner cylinder provided in Example 1. As a result, in addition to copper, chlorine, and oxygen, the copper powder contained 2.34% Fe, Cr 0
.. Corrosion was also confirmed by examining the inner wall of the device structure after the zero reaction, which contained metal components originating from stainless steel of 32% NiO, 28% Mn, and 0.08% Mn.

(比較例2) 1−記実施例1における保護内筒を設けず、装置構造体
を純ニッケルにて形成した反応装置により、実施例1と
同一反応条件で銅粉を作成した。
(Comparative Example 2) 1- Copper powder was produced under the same reaction conditions as in Example 1 using a reaction apparatus in which the protective inner cylinder in Example 1 was not provided and the apparatus structure was made of pure nickel.

その結果、銅粉中には、銅、塩素、酸素以外に、Ni 
0.54%が含まれた。
As a result, in addition to copper, chlorine, and oxygen, the copper powder contains Ni.
It contained 0.54%.

[発明の効果] 以トのように、本発明によれば、易気化性金属化合物よ
り生成される粉末が装置の構成材料(装置構造体、ガス
導入管、気化用ルツボ)にて汚染される可f@性を確実
に防止することができる。
[Effects of the Invention] As described above, according to the present invention, the powder produced from the easily vaporizable metal compound is not contaminated by the constituent materials of the device (device structure, gas introduction pipe, vaporization crucible). f@ characteristics can be reliably prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す模式図、第2図は本
発明の第2実施例を示す模式図、第3図は本発明の第3
実施例を示す模式図、第4図は従来例を示す模式図であ
る。 1O130,50・・・気相化学反応装置、11.31
.51・・・気化部、 12.32.52・・・反応部、 15.35.55・・・易気化性金属化合物投入管、1
6.36.56・・・キャリアガス導入管、17.38
.58・・・反応ガス導入管、18.39.59・・・
シースガス導入管、19.37.57・・・気化用ルツ
ボ。 22.40.60・・・装置構造体、 23.41.61・・・保護内筒、 24.42.62・・・シールガス導入管、25.43
.63・・・間隙。 代理人 弁理士  塩 川 修 治 図面のγTIご(重言に変更なし)    第 1  
間第2 図 第4 図 (irti”a’r1         4nη手続補
正書 平成元年 1月2ケ日
FIG. 1 is a schematic diagram showing a first embodiment of the present invention, FIG. 2 is a schematic diagram showing a second embodiment of the present invention, and FIG. 3 is a schematic diagram showing a third embodiment of the present invention.
A schematic diagram showing an embodiment, and FIG. 4 is a schematic diagram showing a conventional example. 1O130,50... Gas phase chemical reaction device, 11.31
.. 51... Vaporization section, 12.32.52... Reaction section, 15.35.55... Easily vaporizable metal compound input pipe, 1
6.36.56...Carrier gas introduction pipe, 17.38
.. 58...Reaction gas introduction pipe, 18.39.59...
Sheath gas introduction pipe, 19.37.57... Crucible for vaporization. 22.40.60...Device structure, 23.41.61...Protection inner cylinder, 24.42.62...Seal gas introduction pipe, 25.43
.. 63... Gap. Agent Patent Attorney Shuji Shiokawa γTI drawing (no changes to the text) Part 1
Diagram 2 Diagram 4 (irti"a'r1 4nη Procedural amendment dated January 2, 1989)

Claims (2)

【特許請求の範囲】[Claims] (1)易気化性金属化合物の投入管、キャリアガス導入
管を備え、気化用ルツボを内蔵してなる気化部と、気化
部に隣接して配設され、反応ガス導入管を備えてなる反
応部とを有してなり、易気化性金属化合物と、該易気化
性金属化合物に対する反応ガスとの間の気相化学反応に
より、金属もしくはセラミックスの粉末を製造する気相
化学反応装置において、気化部および反応部を構成する
装置構造体の内側に易気化性金属化合物と反応しない材
質の保護内筒を設け、装置構造体と保護内筒との間隙に
不活性ガスまたは反応ガスを流し、かつ、易気化性金属
化合物の投入管もしくはガス導入管のうちで装置内高温
部に存在して易気化性金属化合物と接触する可能性のあ
る部分、および気化用ルツボを易気化性金属化合物と反
応しない材質にて形成することを特徴とする気相化学反
応装置。
(1) A reaction comprising a vaporization section that is equipped with an input tube for easily vaporizable metal compounds, a carrier gas introduction tube, and a built-in crucible for vaporization, and a reaction gas introduction tube that is disposed adjacent to the vaporization section. In a gas phase chemical reaction apparatus for producing metal or ceramic powder by a gas phase chemical reaction between an easily vaporizable metal compound and a reaction gas for the easily vaporizable metal compound, A protective inner cylinder made of a material that does not react with the easily vaporizable metal compound is provided inside the apparatus structure constituting the reaction part and the reaction part, and an inert gas or reactive gas is flowed into the gap between the apparatus structure and the protective inner cylinder, and , parts of the easily vaporizable metal compound input pipe or gas inlet pipe that exist in the high temperature part of the device and may come into contact with the easily vaporizable metal compound, and the vaporization crucible that react with the easily vaporizable metal compound. A gas phase chemical reaction device characterized in that it is formed of a material that does not contain
(2)特許請求の範囲第1項において、保護内筒はその
長手方向の一部のみを装置構造体に固定されてなる気相
化学反応装置。
(2) The gas phase chemical reaction device according to claim 1, wherein the protective inner cylinder is fixed only partially to the device structure in the longitudinal direction.
JP62269455A 1987-10-27 1987-10-27 Gas phase chemical reactor Expired - Fee Related JP2598652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62269455A JP2598652B2 (en) 1987-10-27 1987-10-27 Gas phase chemical reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62269455A JP2598652B2 (en) 1987-10-27 1987-10-27 Gas phase chemical reactor

Publications (2)

Publication Number Publication Date
JPH01116013A true JPH01116013A (en) 1989-05-09
JP2598652B2 JP2598652B2 (en) 1997-04-09

Family

ID=17472674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62269455A Expired - Fee Related JP2598652B2 (en) 1987-10-27 1987-10-27 Gas phase chemical reactor

Country Status (1)

Country Link
JP (1) JP2598652B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473939U (en) * 1990-11-09 1992-06-29
WO1999042237A1 (en) * 1998-02-20 1999-08-26 Toho Titanium Co., Ltd. Process for the production of powdered nickel
WO2000063466A1 (en) * 1999-04-16 2000-10-26 Cbl Technologies, Inc. Compound gas injection system and methods
WO2005080648A1 (en) * 2004-02-19 2005-09-01 Matsushita Electric Industrial Co., Ltd. Method for producing compound single crystal and production apparatus for use therein
WO2007144455A1 (en) * 2006-06-14 2007-12-21 Omg Finland Oy Preparation of nanoparticles
JP2010500166A (en) * 2006-08-10 2010-01-07 コーニング インコーポレイテッド Particle synthesis equipment
WO2019189411A1 (en) * 2018-03-30 2019-10-03 東邦チタニウム株式会社 Metal chloride generator, and method for manufacturing metal powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103857A (en) * 1975-02-07 1976-09-14 Anvar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103857A (en) * 1975-02-07 1976-09-14 Anvar

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473939U (en) * 1990-11-09 1992-06-29
WO1999042237A1 (en) * 1998-02-20 1999-08-26 Toho Titanium Co., Ltd. Process for the production of powdered nickel
US6235077B1 (en) 1998-02-20 2001-05-22 Toho Titanium Co., Ltd. Process for production of nickel powder
WO2000063466A1 (en) * 1999-04-16 2000-10-26 Cbl Technologies, Inc. Compound gas injection system and methods
WO2005080648A1 (en) * 2004-02-19 2005-09-01 Matsushita Electric Industrial Co., Ltd. Method for producing compound single crystal and production apparatus for use therein
US7435295B2 (en) 2004-02-19 2008-10-14 Matsushita Electric Industrial Co., Ltd. Method for producing compound single crystal and production apparatus for use therein
WO2007144455A1 (en) * 2006-06-14 2007-12-21 Omg Finland Oy Preparation of nanoparticles
JP2010500166A (en) * 2006-08-10 2010-01-07 コーニング インコーポレイテッド Particle synthesis equipment
WO2019189411A1 (en) * 2018-03-30 2019-10-03 東邦チタニウム株式会社 Metal chloride generator, and method for manufacturing metal powder
JP6591129B1 (en) * 2018-03-30 2019-10-16 東邦チタニウム株式会社 Metal chloride generator and method for producing metal powder

Also Published As

Publication number Publication date
JP2598652B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
JP3356325B2 (en) Fine metal powder
US5403375A (en) Fine-particle metal powders
US5073193A (en) Method of collecting plasma synthesize ceramic powders
Young et al. Generation and behavior of fine particles in thermal plasmas—A review
JP3274740B2 (en) Apparatus and method for producing fine metal and ceramic powders
JP5241984B2 (en) Twin plasma torch device
US2768061A (en) Hydrogen reduction method and apparatus
JP5425196B2 (en) Method for producing titanium metal
JPH01116013A (en) Gaseous phase chemical reaction apparatus
EA035229B1 (en) Corrosion-protected reformer tube with internal heat exchange
US3399980A (en) Metallic carbides and a process of producing the same
EP1400490B1 (en) Deposition of a solid by thermal decomposition of a gaseous substance in a bowl reactor
US3230077A (en) Production of refractory metals
US3730748A (en) Production of mixed oxides containing aluminum oxide
Lindemer et al. Experimental investigation of heterogeneous hydrolysis with Zn vapor under a temperature gradient
TWI454309B (en) Methods and system for cooling a reaction effluent gas
US3464792A (en) Method for the production of metal oxide particles by vapor phase oxidation
RU2434807C1 (en) Method of producing nanopowder of carbon-element systems
JPS63156532A (en) Vertical vapor-phase chemical reactor
US2788260A (en) Heating oxygen-contaminated halogencontaining vapors
US3151852A (en) Process for obtaining metal carbide coatings on base materials and metal carbide structures produced thereby
US5261943A (en) Method and apparatus for the extraction of metals from metal-containing raw materials
US3124425A (en) Richelsen
US3796545A (en) Device for preparing elemental carbon enriched in carbon-13
Taylor et al. Ceramic carbide powder synthesis in a non-transferred arc plasma flow reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees