FR2591412A1 - Method for the production of powders and a sealed microwave plasma reactor - Google Patents

Method for the production of powders and a sealed microwave plasma reactor Download PDF

Info

Publication number
FR2591412A1
FR2591412A1 FR8518240A FR8518240A FR2591412A1 FR 2591412 A1 FR2591412 A1 FR 2591412A1 FR 8518240 A FR8518240 A FR 8518240A FR 8518240 A FR8518240 A FR 8518240A FR 2591412 A1 FR2591412 A1 FR 2591412A1
Authority
FR
France
Prior art keywords
torch
gas
enclosure
plasma
reactor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR8518240A
Other languages
French (fr)
Inventor
Benoit D Armancourt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
Original Assignee
Air Liquide SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA filed Critical Air Liquide SA
Priority to FR8518240A priority Critical patent/FR2591412A1/en
Priority to JP61292634A priority patent/JPS62152532A/en
Publication of FR2591412A1 publication Critical patent/FR2591412A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/002Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out in the plasma state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/20Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
    • C01B13/22Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides
    • C01B13/28Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides using a plasma or an electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0643Preparation from boron halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • C01B21/0763Preparation from titanium, zirconium or hafnium halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/029Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • C01B33/183Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process by oxidation or hydrolysis in the vapour phase of silicon compounds such as halides, trichlorosilane, monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/212Scandium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/07Producing by vapour phase processes, e.g. halide oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/004Oxides; Hydroxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Plasma Technology (AREA)

Abstract

In a sealed enclosure 2, previously purged and kept at a slight overpressure, a reactive gas is passed through an annular plasma produced by a microwave torch 1; then, by means of gas jets 39, the reaction products are cooled on leaving this plasma so as to obtain a fine powder collected by a filter 3. Application to the production of powders of refractory materials, metallic oxides or metals.

Description

DESCRLPTION
La présente invention est relative à un procédé de fabrication de poudre et à un réacteur étanche à plasma micro-onde pouvant servir à la mise en oeuvre de ce procédé.
DESCRLPTION
The present invention relates to a powder manufacturing process and to a sealed microwave plasma reactor that can be used to carry out this process.

L'invention a pour but de fournir une technique permettant d'obtenir des poudres de haute qualité à fine granulométrie (inférieure à un micron). The invention aims to provide a technique for obtaining high quality powders fine particle size (less than one micron).

A cet effet, l'invention a pour objet un procédé de fabrication de poudre, caractérisé en ce qu'on envoie un gaz réactif à travers un jet de plasma micro-onde, notamnent annulaire, puis on refroidit les produits de la réaction à leur sortie du jet de plasma. For this purpose, the subject of the invention is a process for the manufacture of powder, characterized in that a reactive gas is sent through a jet of microwave plasma, in particular annular plasma, and then the reaction products are cooled to their temperature. output of the plasma jet.

L'invention a également pour objet un réacteur étanche à plasma micro-onde, caractérisé en ce qu'il comprend: une torche à plasma micro-onde adaptée pour être reliée à une source de gaz plasmagène et pour créer un jet de plasma micro-onde ; des moyens pour faire passer un produit réactif à travers le jet de plasma ; une enceinte réactionnelle pourvue de moyens de refroidissement et dans laquelle débouche la torche; et des moyens d'allumage de la torche traversant à joint étanche la paroi de l'enceinte. The subject of the invention is also a sealed microwave plasma reactor, characterized in that it comprises: a microwave plasma torch adapted to be connected to a source of plasma gas and to create a micro-plasma jet wave ; means for passing a reagent product through the plasma jet; a reaction chamber provided with cooling means and into which the torch opens; and ignition means of the torch passing through tight seal the wall of the enclosure.

Suivant des caractéristiques avantageuses
- l'enceinte comprend une cloche en matière isolante reliée à la partie aval de la torche, et une enveloppe métallique prolongeant la cloche et pourvue de passages de circulation d'un fluide de refroidissement ;;
- les moyens de refroidissement de 1 'enceinte canprennent des moyens d'injection de jets de gaz de refroidissement convergeant vers un point de l'axe de la torche situé près de l'extrémité aval de celle-ci
- le réacteur ccrnprend un allumeur par court-circuit monté à coulissement étanche dans la paroi de 1 'enoeinte en regard de l'extrémité aval de la torche
- 1 'enoeinte comprend des moyens pour injecter un gaz de confulement tangentiellement à sa paroi interne
- la torche est du type double flux et comporte un conduit annulaire adapté pour être relié à la source de gaz plasmagène et entourant un canal central adapté pour être relié à une source dudit produit réactif.
Following advantageous characteristics
- The enclosure comprises a bell made of insulating material connected to the downstream portion of the torch, and a metal casing extending the bell and provided with circulation passages of a cooling fluid;
the cooling means of the chamber can take means for injecting jets of cooling gas converging towards a point on the axis of the torch located near the downstream end thereof
the reactor comprises a short-circuit igniter mounted to slide tightly in the wall of the enclosure opposite the downstream end of the torch;
The enoeinte comprises means for injecting a conflation gas tangentially to its internal wall;
the torch is of the double flux type and comprises an annular duct adapted to be connected to the plasma gas source and surrounding a central channel adapted to be connected to a source of said reactive product.

Quelques exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard des dessins annexés, sur lesquels
- la figure 1 est une vue schématique, partiellement en coupe longitudinale, d'un réacteur conforme à 1' invention
- la figure 2 représente en coupe longitudinale, à plus grande échelle, la région II de la figure 1 ; et
- la figure 3 est une vue analogue de la région III de la figure 1.
Some examples of implementation of the invention will now be described with reference to the accompanying drawings, in which:
FIG. 1 is a schematic view, partly in longitudinal section, of a reactor according to the invention;
- Figure 2 shows in longitudinal section, on a larger scale, the region II of Figure 1; and
FIG. 3 is a similar view of region III of FIG.

te réacteur représenté dans son ensemble à la figure 1, d'axe général X-X vertical, est essentiellement constitué d'une torche à plasma micro-onde double flux 1, d'une enceinte réactionnelle 2 et d'un dispositif de collection de poudre 3. Tous les éléments du réacteur sont reliés de façon étanche les uns aux autres pour en isoler ccmplètement 1 'espace intérieur de 1' atmosphère environnante. La torche 1 et 1 'enceinte 2 sont fixées à un bâti-support non représenté. the reactor shown as a whole in FIG. 1, of general vertical axis XX, essentially consists of a double flux microwave plasma torch 1, a reaction chamber 2 and a powder collection device 3 All elements of the reactor are sealed to each other to completely isolate the interior space of the surrounding atmosphere. The torch 1 and 1 'enclosure 2 are fixed to a not shown support frame.

La torche 1, que l'on voit mieux à la figure 2, c'prend un corps annulaire 4 relié à un guide d'onde 5 à section rectangulaire (non représenté sur la figure 2) par l'intesddiaire d'un orifice dans lequel est disposé un embout de couplage électrique 6. Ce corps est traversé coaxialement avec un large jeu par deux tubes concentriques 7 et 8 d'axe
X-X, dont un tube extérieur 7 métallique et un tube intérieur 8 qui peut être métallique ou en une matière électriquement isolante et résistante à la chaleur telle que du quartz. Au-dessus du corps 4, le tube 8 est relié à une source d'un gaz réactif (non représentée), et le tube 7, par l'intermédiaire d'un raccord lateral 9, à une source d'un gaz plasmagène (non représentée).L'espace annulaire délimité entre les deux tubes est ferS par une soudure au-dessus du raccord 9 et est ouvert vers le bas. A l'intérieur du corps 4, un té de jonction 10 enserre le tube 7, et sa harpe est reliée électriquement à l'embout 6. Un couvercle supérieur 11 ferme le corps 4 et entoure le tube 7 à joint étanche. Un manchon 12 pourvu d'orifices 13 d'admission d'un gaz de gainage est fixé autour de l'ouverture inférieure du corps 4 et entoure coaxialement les tubes 7 et 8 avec un large jeu. tes tranches d'extrémité inférieure des deux tubes 7 et 8 et du manchon 12 se trouvent à peu près dans le même plan horizontal.
The torch 1, which is better seen in FIG. 2, comprises an annular body 4 connected to a rectangular section waveguide 5 (not shown in FIG. 2) through the interior of an orifice in FIG. which is arranged an electrical coupling tip 6. This body is coaxially traversed with a wide clearance by two concentric tubes 7 and 8 axis
XX, including an outer tube 7 metal and an inner tube 8 which may be metallic or an electrically insulating material and resistant to heat such as quartz. Above the body 4, the tube 8 is connected to a source of a reactive gas (not shown), and the tube 7, via a lateral connection 9, to a source of a plasmagenic gas ( not shown) .The annular space delimited between the two tubes is ferS by a weld above the connector 9 and is open downwards. Inside the body 4, a joining tee 10 surrounds the tube 7, and its harp is electrically connected to the tip 6. An upper lid 11 closes the body 4 and surrounds the tube 7 with a seal. A sleeve 12 provided with openings 13 for admitting a cladding gas is fixed around the lower opening of the body 4 and coaxially surrounds the tubes 7 and 8 with a wide clearance. The lower end slices of the two tubes 7 and 8 and the sleeve 12 are approximately in the same horizontal plane.

L'enceinte 2 est constituée d'une cloche en verre 14 équipée d'un dispositif d'allumage 15 et prolongée vers le bas par une enveloppe 16 en acier inoxydable.  The chamber 2 consists of a glass bell 14 equipped with an ignition device 15 and extended downwards by a casing 16 of stainless steel.

La cloche 14 se termine vers le haut par un col 17 présentant un bourrelet d'extrémité 18. Ce col entoure la partie courante du manchon 12, et une paire de brides horizontales 19, 20, prenant appui sur le bourrelet 18, écrase un joint torique 21 entre la tranche d'extrémité du col 17 et la surface extérieure du manchon 12, au moyen de boulons non représentés, pour assurer l'étanchéité. The bell 14 ends upwards by a neck 17 having an end bead 18. This neck surrounds the running portion of the sleeve 12, and a pair of horizontal flanges 19, 20, bearing on the bead 18, crushes a joint ring 21 between the end edge of the neck 17 and the outer surface of the sleeve 12, by means of not shown bolts, to seal.

La cloche 14 (figure 3) comporte une tubulure laterale 22 traversée par le dispositif d'allumage 15, lequel est monté de façon amovible. Ce dispositif caqprend une plaque-support 23 présentant un orifice central et plaqué contre la tranche d'extremite de la tubulure 22, avec interposition d'un joint torique 24, par serrage de cette plaque, au moyen de boulons non représentés, vers une bride 25 qui prend appui sur un bourrelet d' extrémité 27 de la tubulure 22. Sur la face extérieure de la plaque 23 est fixée une rondelle dans laquelle se visse radialement une vis de guidage 28. The bell 14 (Figure 3) has a side pipe 22 through which the ignition device 15, which is removably mounted. This device comprises a support plate 23 having a central orifice and pressed against the end edge of the pipe 22, with the interposition of an O-ring 24, by clamping this plate, by means of bolts (not shown), towards a flange. 25 which is supported on an end bead 27 of the tubing 22. On the outer face of the plate 23 is fixed a washer in which is screwed radially a guide screw 28.

Du côté intérieur, un manchon de guidage 29 est fixé dans l'orifice de la plaque 23. Une tige 30 traverse avec un petit jeu la plaque 23 et le manchon 29. Cette tige porte à son extrémité extérieure un bouton de manoeuvre 31, présente dans sa partie médiane une rainure 32 coopérant avec -la pointe de la vis 28, et porte à son extrémité intérieure un embout isolant 33 équipé d'un pontet métallique 34 en forme de S. Un soufflet d'étanchéité 35 est fixé par une extrEnite à l'embout 33 et par son autre extrémité au manchon 29. Une butée réglable 36 est fixée sur la tige 30, à l'extérieur par rapport à la plaque 23. On the inner side, a guide sleeve 29 is fixed in the orifice of the plate 23. A rod 30 passes through a small clearance plate 23 and the sleeve 29. This rod carries at its outer end an operating knob 31, present in its middle part a groove 32 cooperating with -the tip of the screw 28, and carries at its inner end an insulating tip 33 equipped with a metal bridge 34 S-shaped. A sealing bellows 35 is fixed by an extrEnite at the tip 33 and at its other end to the sleeve 29. An adjustable stop 36 is fixed on the rod 30, outside with respect to the plate 23.

On comprend que la tige 30 peut être déplacée entre deux positions, représentées toutes deux sur la figure 3 : une position de repos, dans laquelle elle est tirée vers l'intérieur de la cloche et le pontet 34 est escamoté dans la tubulure 22, et une position active d'allumage du plasma. Dans cette position active, on a poussé la tige 30 vers l'intérieur de la cloche jusqu'à ce que la butée 36 soit arrêtée par la rondelle pourvue de la vis 28. Ce mouvement est guidé à peu près en translation par la vis 28 et la rainure 32, mais un jeu angulaire entre ces deux éléments, de l'ordre de 10 , ainsi que le petit jeu circonférentiel entre la tige 30 d'une part et le manchon 29 et l'orifice de la plaque 23 d'autre part, permettent d'amener l'extrémité du pontet 34 sous 1' extrémité des tubes 7 et 8, puis simultanément contre les tranches d'extrémité de ces deux tubes ; on crée ainsi un court-circuit provoquant 1 'allumage du plasma micro-onde, pourvu bien entendu que la torche soit à ce minent alimentée en gaz plasmagène et en énergie micro-onde (ou hyperfrequence).  It is understood that the rod 30 can be moved between two positions, both shown in Figure 3: a rest position, in which it is pulled inwardly of the bell and the bridge 34 is retracted into the tubing 22, and an active ignition position of the plasma. In this active position, the rod 30 is pushed towards the inside of the bell until the stop 36 is stopped by the washer provided with the screw 28. This movement is guided approximately in translation by the screw 28. and the groove 32, but an angular clearance between these two elements, of the order of 10, and the small circumferential clearance between the rod 30 on the one hand and the sleeve 29 and the orifice of the plate 23 on the other part, allow to bring the end of the bridge 34 under one end of the tubes 7 and 8, and simultaneously against the end slices of these two tubes; a short-circuit is thus created causing the microwave plasma to ignite, provided of course that the torch is at this minute supplied with plasma gas and with microwave energy (or microwave).

La double enveloppe 16 comprend une partie supérieure cylindrique, une partie intermédiaire cylindrique de même diamètre et une partie inférieure conique convergente vers le bas et débouchant dans le dispositif collecteur 3. Son extrémité supérieure est appliquée contre la tranche d'extrémité inférieure de la cloche 14, qui présente le même diamètre intérieur, au moyen d'un serrage par brides et d'un joint d'étanchéité torique, de la même manière que la plaque 23 est fixée sur la tubulure 22. La double enveloppe 16 est pourvue, dans sa partie supérieure, d'orifices 37 d'injection d'un gaz de confinement, orientés tangentiellement, et d'orifices 38 d'injection d'un gaz de refroidissement.De chacun de ces derniers part une crosse 39 dont la partie courante monte le long de la paroi interne de l'enveloppe et pénètre dans la cloche 14 et dont la sortie, orientée vers le bas et légèrement inclinée vers l'axe X-X, débouche à une petite distance au-dessous de l'extrémite inférieure de la torche 1. De plus, la double enveloppe 16 comprend des moyens de refroidissement à l'eau, lesquels permettent à de l'eau de circuler en série de haut en bas dans les trois parties de cette enveloppe, entre une entre supérieure 40 et une sortie inférieure 41. En variante, l'eau pourrait circuler de bas en haut dans l'enveloppe 16. Dans cette dernière débouche encore une conduite latérale 42 équipée d'une page à vide 33 et d'une soupape 44 de régulation de pression. The jacket 16 comprises a cylindrical upper portion, a cylindrical intermediate portion of the same diameter and a lower conical bottom portion converging downwards and opening into the collecting device 3. Its upper end is applied against the lower end edge of the bell 14 , which has the same internal diameter, by means of a clamping flange and an O-ring seal, in the same way that the plate 23 is fixed on the tubing 22. The casing 16 is provided, in its upper part, orifices 37 for injecting a confinement gas, oriented tangentially, and orifices 38 for injecting a cooling gas. From each of these parts a butt 39, the current portion of which along the inner wall of the envelope and enters the bell 14 and whose outlet, oriented downwards and slightly inclined towards the axis XX, opens at a small distance below the lower end of the torch 1. In addition, the jacket 16 comprises water cooling means, which allow water to circulate in series from top to bottom in the three parts of this envelope, between an upper inlet 40 and a lower outlet 41. In a variant, the water could circulate upwardly in the enclosure 16. In the latter, a lateral pipe 42 equipped with a vacuum page 33 and a valve 44 of pressure regulation.

Le dispositif 3 peut être tout dispositif approprié de collection de poudre, par exemple un filtre. Une conduite 45 d'évacuation de l'effluent gazeux du réacteur mène de la sortie du dispositif 3 à une station non représentée de traitement de cet effluent. Les gaz de gainage, de confinement et de refroidissement sont des gaz inertes, de préférence de l'azote pour des raisons éconcmiques. Le gaz de refroidissement peut contenir une certaine proportion d'hélium pour en arrliorer la conductivité thermique. Le gaz plasmagène est de préférence de l'argon. The device 3 may be any appropriate powder collection device, for example a filter. A pipe 45 for evacuating the gaseous effluent from the reactor leads from the outlet of the device 3 to a not shown station for treating this effluent. Cladding, containment and cooling gases are inert gases, preferably nitrogen for economic reasons. The cooling gas may contain a certain proportion of helium to improve the thermal conductivity. The plasma gas is preferably argon.

L'appareil ainsi décrit fonctionne de la manière suivante. The apparatus thus described operates in the following manner.

On évacue d'abord de l'appareil l'air qu'il contient, au moyen de la pcmpe à vide 43, par exemple jusqu'à une pression de 11 ordre de 10 itrn Hg, puis on introduit de l'azote ou de l'argon jusqu'à obtenir une pression de l'ordre de 1,3 bar absolu. Après avoir éventuellement répété ces opérations préliminaires plusieurs fois, l'appareil se trouve sous atmosphère inerte, sous 1,3 bar, et ne contient plus ni oxygène ni eau. Pendant toute la suite du fonctionnement, la pression reste régulée à 1,3 bar dans l'enceinte 2 par la soupape 44, ce qui garantit l'absence de pénétration d'oxygène et d'humidité dans l'appareil. The air which it contains is first discharged from the apparatus by means of the vacuum pump 43, for example up to a pressure of 10 μm Hg, and then nitrogen or nitrogen is introduced. argon until a pressure of the order of 1.3 bar absolute. After possibly repeated these preliminary operations several times, the apparatus is under an inert atmosphere, under 1.3 bar, and contains no oxygen or water. Throughout the rest of the operation, the pressure remains regulated at 1.3 bar in the chamber 2 by the valve 44, which ensures the absence of oxygen and moisture penetration into the apparatus.

On envoie ensuite le gaz plasmagène et le gaz de gainage par les tubes 7 et 12, les gaz de confinement et de refroidissement par les orifices 37 et les crosses 39, l'énergie hyperfréquence par le guide d'onde 5 et l'embout 6, et on allume le plasma à l'extrémité aval de la torche au moyen du dispositif d'allumage 15 de la manière décrite plus haut. On obtient ainsi un jet de plasma annulaire à la sortie de la torche 1. On envoie alors le gaz réactif par le tube central 8. Ce gaz est traité thermiquement par le plasma en traversant celui-ci, et les produits de la réaction sont trempés par les jets de gaz de refroidissement sortant des crosses 39.Il se forme ainsi une poudre à fine granularétrie, que les jets tangentiels de gaz de confinement, qui décrivent des trajets hélicoidaux descendants, eschent de se déposer sur la paroi interne de 1 1enveloppe 16. La poudre est recueillie par le dispositif 3 et évacuée, en continu ou périodiquement suivant la nature de ce dispositif. The plasmagene gas and the cladding gas are then sent through the tubes 7 and 12, the confinement and cooling gases through the orifices 37 and the butts 39, the microwave energy through the waveguide 5 and the tip 6 and the plasma is turned on at the downstream end of the torch by means of the ignition device 15 in the manner described above. An annular plasma jet is thus obtained at the outlet of the torch 1. The reactive gas is then sent through the central tube 8. This gas is thermally treated by the plasma while passing through it, and the products of the reaction are quenched. by the jets of cooling gas leaving the sticks 39. A fine granularity powder is thus formed, that the tangential jets of confining gas, which describe descending helical paths, are intended to be deposited on the inner wall of the casing 16 The powder is collected by the device 3 and discharged, continuously or periodically according to the nature of this device.

A titre d'exemples d'utilisation de l'appareil, on peut citer
(a) des réactions de double décoposition en phase gazeuse, particulièrement intéressantes pour la fabrication de composés ou de revêtements réfractaires

Figure img00050001
As examples of use of the apparatus, mention may be made of
(a) Double-decoding reactions in the gas phase, of particular interest for the manufacture of refractory compounds or coatings
Figure img00050001

<tb> 3SiH4 <SEP> (silane) <SEP> + <SEP> 2N2 <SEP> ySi3N4 <SEP> (nitrure <SEP> de <SEP> silicium) <SEP> + <SEP> 6H2,
<tb>
une réaction analogue pouvant être cbtenue en revlaçant N2 par NH3 et/ou SiH4 par SiCl4.

Figure img00050002
<tb> 3SiH4 <SEP> (silane) <SEP> + <SEP> 2N2 <SEP> ySi3N4 <SEP> (nitride <SEP> from <SEP> silicon) <SEP> + <SEP> 6H2,
<Tb>
a similar reaction can be carried out by revolving N 2 with NH 3 and / or SiH 4 by SiCl 4.
Figure img00050002

<tb> SiH4 <SEP> + <SEP> CH4 <SEP> H <SEP> SiC <SEP> (carbure <SEP> de <SEP> silicium) <SEP> + <SEP> 4H2
<tb> B2H6 <SEP> + <SEP> N2 <SEP> > <SEP> 2BN <SEP> (nitrure <SEP> de <SEP> bore) <SEP> + <SEP> 3H2,
<tb>
une réaction analogue pouvant être obtenue en remplaçant N2 par
NH3 et/ou B2H6 par un autre composé du bore du type BX3.

Figure img00050003

(carbure de bore)
Figure img00050004

(borure de titane)
Figure img00050005

(nitrure de titane)
Figure img00050006

(carbure de titane),
ces dernières réactions n'étant bien entendu pas écrites sous forme équilibrée.<tb> SiH4 <SEP> + <SEP> CH4 <SEP> H <SEP> SiC <SEP> (carbide <SEP> of <SEP> silicon) <SEP> + <SEP> 4H2
<tb> B2H6 <SEP> + <SEP> N2 <SEP>><SEP> 2BN <SEP> (nitride <SEP> of <SEP> boron) <SEP> + <SEP> 3H2,
<Tb>
a similar reaction can be obtained by replacing N2 with
NH3 and / or B2H6 by another boron compound of the BX3 type.
Figure img00050003

(boron carbide)
Figure img00050004

(titanium boride)
Figure img00050005

(titanium nitride)
Figure img00050006

(titanium carbide),
these latter reactions are of course not written in balanced form.

(b) des réactions d'oxydation en phase gazeuse, destinées par exemple à la production de poudres d'oxydes de métaux rares tels que yttrium, scandium, vanadium, ruthénium. Ces oxydes, obtenus par oxydation des halogénures des marnes mstaux, servent notamnent de photo-émetteurs pour les écrans de télévision couleur. Les réactions sont du type

Figure img00060001
(b) gas phase oxidation reactions, for example for the production of rare metal oxide powders such as yttrium, scandium, vanadium, ruthenium. These oxides, obtained by oxidation of metal halide halides, serve in particular as photo-emitters for color television screens. The reactions are of the type
Figure img00060001

X désignant un atome d'halogène.X denotes a halogen atom.

De marne, on peut fabriquer de la poudre de silice amorphe submicronique, entrant dans la préparation des pâtes gingivales, par la réaction

Figure img00060002
From marl, we can manufacture submicron amorphous silica powder, used in the preparation of gum pasta, by the reaction
Figure img00060002

(c) des réactions de réduction, permettant par exemple de produire des poudres de métaux, par exenple

Figure img00060003
(c) reduction reactions, for example making it possible to produce metal powders, for example
Figure img00060003

Dans ce cas, on peut faire intervenir l'hydrogêne en mélange avec TiCl4 ou SiCl4, dans le tube central 8, et/ou carme composant d'un mélange gazeux plasmagène tel que argon-hydrogène. In this case, the hydrogen may be used in admixture with TiCl 4 or SiCl 4, in the central tube 8, and / or as a component of a plasmagene gas mixture such as argon-hydrogen.

(d) des réactions de simple déocoosition, conduisant par exemple à la production de poudres métalliques, par exemple
SiH4 > Si + 2H2.
(d) reactions of simple deocoosition, leading for example to the production of metal powders, for example
SiH4> Si + 2H2.

Dans ce cas, le gaz réactif n'est pas un mélange canne dans les exemples précédents, mais est constitué par le corps decomposé thermiquement (SiH4 dans cet exemple).In this case, the reactive gas is not a cane mixture in the previous examples, but is constituted by the thermally decomposed body (SiH4 in this example).

Plus généralement, l'invention s'applique à la fabrication de poudres suumicroniques de nanbreux matériaux tels que des métaux, des céramiques ou des oxydes, à partir d'un corps ou de plusieurs corps gazeux à une température peu éloignée de la température arrbiante par rapport aux temperatures atteintes dans un plasma micro-onde, c'est-à-dire comprise entre la température ambiante et quelques centaines de degrés Celsius. More generally, the invention is applicable to the manufacture of suumicron powders of many materials such as metals, ceramics or oxides, from a body or of several gaseous bodies at a temperature not far from the bending temperature by relative to the temperatures reached in a microwave plasma, that is to say between room temperature and a few hundred degrees Celsius.

La haute qualité des poudres ainsi cbtenues permet de les utiliser pour fabriquer des pièces ayant des structures métalliques à grains très fins, et donc possédant d'exellentes propriétés irecaniques, ou encore pour réaliser des revêtements de surface d'épaisseur très faible par dépôt ou projection. On remarque que la pureté des corps obtenus depend uniquement de celle des gaz utilisés, puisque l'appareil est entièrement isolé de l'atmosphère environnante. The high quality of the powders thus obtained makes it possible to use them to manufacture parts having very fine-grained metal structures, and therefore possessing excellent irecanic properties, or even for producing surface coatings of very small thickness by deposition or spraying. . It is noted that the purity of the bodies obtained depends solely on that of the gases used, since the apparatus is entirely isolated from the surrounding atmosphere.

Dans une variante non représentée, le tube 7 de la torche 1 est supprimé, et l'on envoie dans l'unique tube 8 à la fois le gaz plasmagène et le gaz réactif. On peut également envisager d'envoyer le gaz réactif à travers le plasma à partir d'un emplacement de 1 'enceinte 2 extérieur à la torche.  In a variant not shown, the tube 7 of the torch 1 is removed, and is sent into the single tube 8 at a time the plasma gas and the reactive gas. It is also conceivable to send the reactive gas through the plasma from a location of the enclosure 2 outside the torch.

Claims (15)

REBENDICATIONSREBENDICATIONS 1. Procédé de fabrication de poudre, caractérisé en ce qu'on envoie un gaz réactif à travers un jet de plasma micro-onde, notairment annulaire, puis on refroidit les produits de la réaction à leur sortie du jet de plasma. 1. Process for the manufacture of powder, characterized in that a reactive gas is sent through a jet of microwave plasma, notably annular, and then the products of the reaction are cooled at their exit from the plasma jet. 2. Procédé suivant la revendication 1, pour la fabrication d'une poudre d'une matière réfractaire telle qu'un nitrure ou un carbure de silicium, de bore ou de titane, ou bien un borure de titane, caractérisé en ce qu'on utilise carme gaz réactif un mélange gazeux choisi parmi : SiH4 ou SiCl4 et N2 ou NH3, B2H; ou BX3 (X désignant un élément cantiné au bore) et N2 ou NH3 ou C H ou TiCl4 ; TiC14 et N2 ou 2. Method according to claim 1, for the manufacture of a powder of a refractory material such as a nitride or a silicon carbide, boron or titanium, or a titanium boride, characterized in that uses as reactive gas a gaseous mixture chosen from: SiH4 or SiCl4 and N2 or NH3, B2H; or BX3 (X denotes a boron element) and N2 or NH3 or C H or TiCl4; TiC14 and N2 or NH3 ou CH4. NH3 or CH4. 3. Procédé suivant la revendication 1, pour la fabrication d'une poudre d'un oxyde métallique, caractérisé en ce qu'on utilise carne gaz réactif un melange d'oxygène et d'un halogénure dudit métal, par exemple SiC 14  3. Process according to claim 1, for the manufacture of a powder of a metal oxide, characterized in that a mixture of oxygen and a halide of said metal, for example SiC 14, is used as a reactive gas. 4. Procédé suivant la revendication 1, pour la fabrication d'une poudre de métal, caractérisé en ce qu'on utilise carme gaz réactif un mélange d'hydrogène avec un composé dudit metal, par exemple siCl4 ou 4. Process according to claim 1, for the manufacture of a metal powder, characterized in that a reactive gas is a mixture of hydrogen with a compound of said metal, for example siCl 4 or TiCl4.TiCl4. 5. Procédé suivant la revendication 1, pour la fabrication d'une poudre de métal, caractérisé en ce qu'on utilise carme gaz réactif un composé dudit mental, par exemple SiCi4 ou TiCl4, et caste gaz plasmagène un gaz contenant de l'hydrogène, par exemple un mélange argon-hydrogène. 5. Process according to claim 1, for the manufacture of a metal powder, characterized in that a reagent gas is a compound of said mind, for example SiCi4 or TiCl4, and caste plasma gas a gas containing hydrogen. for example an argon-hydrogen mixture. 6. Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on travaille à une pression légèrement supérieure à la pression atmospherique;  6. Process according to any one of claims 1 to 5, characterized in that one operates at a pressure slightly higher than the atmospheric pressure; 7. Réacteur étanche à plasma micro-onde, caractérisé en ce qu'il comprend : une torche à plasma micro-onde (1) adaptée pour être reliée à une source de gaz plasmagène et pour créer un jet de plasma micro-onde ; des moyens (8) pour faire passer un produit réactif à travers le jet de plasma ; une enceinte réactionnelle (2) pourvue de moyens de refroidissement (38-39, 40-41) et dans laquelle débouche la torche ; et des moyens (15) d'allumage de la torche traversant à joint étanche la paroi de l'enceinte (2).  7. Microwave plasma tight reactor, characterized in that it comprises: a microwave plasma torch (1) adapted to be connected to a source of plasma gas and to create a microwave plasma jet; means (8) for passing a reagent product through the plasma jet; a reaction chamber (2) provided with cooling means (38-39, 40-41) and into which the torch opens; and means (15) for igniting the torch passing through a sealed seal the wall of the enclosure (2). 8. Réacteur suivant la revendication 7, caractérisé en ce qu'au moins la partie (14) de l'enceinte (2) reliée à la torche (1) est constituée d'une matière électriquement isolante. 8. Reactor according to claim 7, characterized in that at least the portion (14) of the enclosure (2) connected to the torch (1) consists of an electrically insulating material. 9. Réacteur suivant la revendication 8, caractérisé en ce 1 'enceinte (2) ccînprend une cloche (14) en matière isolante reliée à la partie aval de la torche (1), une enveloppe métallique (16) prolongeant la cloche et pourvue de passages de circulation d'un fluide de refroidissement (40, 41). 9. Reactor according to claim 8, characterized in 1 'enclosure (2) ccînprend a bell (14) of insulating material connected to the downstream portion of the torch (1), a metal casing (16) extending the bell and provided with circulation passages of a cooling fluid (40, 41). 10. Reacteur suivant l'une quelconque des revendications 7 à 9, caractérisé en ce que les moyens de refroidissement de 1 'enceinte canprennent des moyens (39) d'injection de jets de gaz de refroidissement convergeant vers un point de l'axe (X-X) de la torche (1) situé près de l'extrémité aval de celle-ci. 10. Reactor according to any one of claims 7 to 9, characterized in that the cooling means of the chamber canprite means (39) for injecting jets of cooling gas converging towards a point of the axis ( XX) of the torch (1) located near the downstream end thereof. 11. Réacteur suivant l'une quelconque des revendications 7 à 10, caractérisé en ce que l'enceinte (2) est reliée à une coupe à vide (43). 11. Reactor according to any one of claims 7 to 10, characterized in that the enclosure (2) is connected to a vacuum cup (43). 12. Réacteur suivant l'une quelconque des revendications 7 à 11, caractérisé en ce que l'enceinte (2) est adaptée pour fonctionner à une pression supérieure à la pression atmosphérique et est pourvue d'une soupape de régulation de pression (44). 12. Reactor according to any one of claims 7 to 11, characterized in that the enclosure (2) is adapted to operate at a pressure greater than atmospheric pressure and is provided with a pressure regulating valve (44). . 13. Réacteur suivant l'une quelconque des revendications 7 à 12, caractérisé en ce que lesdits moyens d'allumage canprenent un allumeur par court-circuit (30, 34) monté à coulissement étanche dans la paroi de l'enceinte (2) en regard de l'extrémité aval de la torche (1). 13. Reactor according to any one of claims 7 to 12, characterized in that said ignition means canprenent a short-circuit igniter (30, 34) sealingly mounted in the wall of the enclosure (2) in look at the downstream end of the torch (1). 14. Réacteur suivant l'une quelconque des revendications 7 à 13, caractérisé en ce que l'enceinte comprend des moyens (37) pour injecter un gaz de confinement tangentiellement à sa paroi interne. 14. Reactor according to any one of claims 7 to 13, characterized in that the enclosure comprises means (37) for injecting a confining gas tangentially to its inner wall. 15. Réacteur suivant l'une quelconque des revendications 7 à 14, caractérisé en ce que la torche (1) est du type double flux et colporte un conduit annulaire (7) adapté pour être relié à la source de gaz plasmagène et entourant un canal central (8) adapté pour être relié à une source dudit produit réactif.  15. Reactor according to any one of claims 7 to 14, characterized in that the torch (1) is of the double flow type and colporte an annular conduit (7) adapted to be connected to the plasma gas source and surrounding a channel central (8) adapted to be connected to a source of said reactive product.
FR8518240A 1985-12-10 1985-12-10 Method for the production of powders and a sealed microwave plasma reactor Withdrawn FR2591412A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR8518240A FR2591412A1 (en) 1985-12-10 1985-12-10 Method for the production of powders and a sealed microwave plasma reactor
JP61292634A JPS62152532A (en) 1985-12-10 1986-12-10 Method for producing powder and hermetically closed microwave plasma reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8518240A FR2591412A1 (en) 1985-12-10 1985-12-10 Method for the production of powders and a sealed microwave plasma reactor

Publications (1)

Publication Number Publication Date
FR2591412A1 true FR2591412A1 (en) 1987-06-12

Family

ID=9325609

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8518240A Withdrawn FR2591412A1 (en) 1985-12-10 1985-12-10 Method for the production of powders and a sealed microwave plasma reactor

Country Status (2)

Country Link
JP (1) JPS62152532A (en)
FR (1) FR2591412A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313980A1 (en) * 1987-10-23 1989-05-03 AeroChem Research Laboratories, Inc. Process and apparatus for the preparation of ceramic powders
EP0327401A2 (en) * 1988-02-05 1989-08-09 The Dow Chemical Company Apparatus and method for producing uniform, fine ceramic powders
EP0334791A1 (en) * 1988-03-24 1989-09-27 Union Explosivos Rio Tinto, S.A. Process for the preparation of silicon nitride
FR2630427A1 (en) * 1988-04-23 1989-10-27 Tioxide Group Plc BLACK POWDER OF TITANIUM NITRIDE AND METHOD OF MANUFACTURING THE SAME
EP0421314A1 (en) * 1989-10-02 1991-04-10 Phillips Petroleum Company Carbide products and method and apparatus for their production
EP0421313A1 (en) * 1989-10-02 1991-04-10 Phillips Petroleum Company Method for producing carbide products
EP0450593A2 (en) * 1990-04-04 1991-10-09 Phillips Petroleum Company Method and apparatus for producing carbide products
WO2001093315A2 (en) * 2000-05-25 2001-12-06 Jewett Russell F Methods and apparatus for plasma processing
US6362449B1 (en) 1998-08-12 2002-03-26 Massachusetts Institute Of Technology Very high power microwave-induced plasma
EP1294640A1 (en) * 2000-05-16 2003-03-26 Tohoku Electric Power Co., Inc. Method and apparatus for production of high purity silicon
WO2005049491A1 (en) * 2003-11-19 2005-06-02 Degussa Ag Nanoscale, crystalline silicon powder
EP1579936A1 (en) * 2002-09-30 2005-09-28 Toho Titanium Co., Ltd. Method and apparatus for producing metal powder
WO2008041261A2 (en) * 2006-10-02 2008-04-10 Solaria Tecnologie S.R.L. Process and device for the production of high-purity silicon using multiple precursors
WO2009025559A1 (en) 2007-08-17 2009-02-26 Silansil As Apparatus and method for compaction of silicon powder
DE102017125723A1 (en) * 2017-04-25 2018-10-25 Eeplasma Gmbh Method and apparatus for growing a single crystal
CN109121550A (en) * 2018-09-07 2019-01-04 山东省种子有限公司 A kind of rice breeding method of Microwave plasma treatment
US20210146432A1 (en) * 2019-11-18 2021-05-20 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187633A (en) * 1993-12-28 1995-07-25 Univ Nagoya Synthetic method of fullerenes by high frequency plasma
US6744024B1 (en) * 2002-06-26 2004-06-01 Cem Corporation Reaction and temperature control for high power microwave-assisted chemistry techniques
DE102007013219A1 (en) * 2007-03-15 2008-09-18 Rev Renewable Energy Ventures, Inc. Plasma-assisted synthesis
CN102060298B (en) * 2010-11-23 2013-01-09 合肥飞帆等离子科技有限公司 Polycrystalline silicon production device and method
JP2012130825A (en) * 2010-12-20 2012-07-12 Kagawa Univ Nano-particle manufacturing method, nano-particles, and nano-particle manufacturing apparatus
JP2012130826A (en) * 2010-12-20 2012-07-12 Kagawa Univ Nano-particle manufacturing method, nano-particles, and nano-particle manufacturing apparatus
US10763165B2 (en) * 2017-04-18 2020-09-01 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive powder formation method, device for forming conductive powder, and method of forming semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979500A (en) * 1973-05-02 1976-09-07 Ppg Industries, Inc. Preparation of finely-divided refractory powders of groups III-V metal borides, carbides, nitrides, silicides and sulfides
FR2341389A1 (en) * 1976-02-17 1977-09-16 Montedison Spa PROCESS FOR THE PRODUCTION OF POWDERS OF CERAMIC, METALLIC OR SIMILAR PRODUCTS BY PLASMA ARC
DE3134501A1 (en) * 1981-09-01 1983-08-11 Nikolaj Ivanovi&ccaron; &Ccaron;ebankov Ultra high frequency plasmatron and an installation for obtaining very finely divided powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979500A (en) * 1973-05-02 1976-09-07 Ppg Industries, Inc. Preparation of finely-divided refractory powders of groups III-V metal borides, carbides, nitrides, silicides and sulfides
FR2341389A1 (en) * 1976-02-17 1977-09-16 Montedison Spa PROCESS FOR THE PRODUCTION OF POWDERS OF CERAMIC, METALLIC OR SIMILAR PRODUCTS BY PLASMA ARC
DE3134501A1 (en) * 1981-09-01 1983-08-11 Nikolaj Ivanovi&ccaron; &Ccaron;ebankov Ultra high frequency plasmatron and an installation for obtaining very finely divided powder

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313980A1 (en) * 1987-10-23 1989-05-03 AeroChem Research Laboratories, Inc. Process and apparatus for the preparation of ceramic powders
EP0327401A2 (en) * 1988-02-05 1989-08-09 The Dow Chemical Company Apparatus and method for producing uniform, fine ceramic powders
EP0327401A3 (en) * 1988-02-05 1990-03-07 The Dow Chemical Company Apparatus and method for producing uniform, fine ceramic powders
EP0334791A1 (en) * 1988-03-24 1989-09-27 Union Explosivos Rio Tinto, S.A. Process for the preparation of silicon nitride
FR2630427A1 (en) * 1988-04-23 1989-10-27 Tioxide Group Plc BLACK POWDER OF TITANIUM NITRIDE AND METHOD OF MANUFACTURING THE SAME
EP0340907A1 (en) * 1988-04-23 1989-11-08 Tioxide Group Limited Black titanium nitride and process for its preparation
US5108729A (en) * 1989-10-02 1992-04-28 Phillips Petroleum Company Production of carbide products
EP0421314A1 (en) * 1989-10-02 1991-04-10 Phillips Petroleum Company Carbide products and method and apparatus for their production
EP0421313A1 (en) * 1989-10-02 1991-04-10 Phillips Petroleum Company Method for producing carbide products
EP0450593A2 (en) * 1990-04-04 1991-10-09 Phillips Petroleum Company Method and apparatus for producing carbide products
EP0450593A3 (en) * 1990-04-04 1992-04-08 Phillips Petroleum Company Method and apparatus for producing carbide products
US5348718A (en) * 1990-04-04 1994-09-20 Phillips Petroleum Company Method and apparatus for producing carbride products
US6362449B1 (en) 1998-08-12 2002-03-26 Massachusetts Institute Of Technology Very high power microwave-induced plasma
EP1294640A1 (en) * 2000-05-16 2003-03-26 Tohoku Electric Power Co., Inc. Method and apparatus for production of high purity silicon
EP1294640A4 (en) * 2000-05-16 2005-04-06 Tohoku Electric Power Co Method and apparatus for production of high purity silicon
WO2001093315A2 (en) * 2000-05-25 2001-12-06 Jewett Russell F Methods and apparatus for plasma processing
WO2001093315A3 (en) * 2000-05-25 2002-03-21 Russell F Jewett Methods and apparatus for plasma processing
US6696662B2 (en) 2000-05-25 2004-02-24 Advanced Energy Industries, Inc. Methods and apparatus for plasma processing
EP1579936A4 (en) * 2002-09-30 2007-06-27 Toho Titanium Co Ltd Method and apparatus for producing metal powder
US7449044B2 (en) 2002-09-30 2008-11-11 Toho Titanium Co., Ltd. Method and apparatus for producing metal powder
CN1684787B (en) * 2002-09-30 2010-05-05 东邦钛株式会社 Process for production of metallic powder and producing device thereof
EP1579936A1 (en) * 2002-09-30 2005-09-28 Toho Titanium Co., Ltd. Method and apparatus for producing metal powder
WO2005049491A1 (en) * 2003-11-19 2005-06-02 Degussa Ag Nanoscale, crystalline silicon powder
KR100769441B1 (en) * 2003-11-19 2007-10-22 데구사 게엠베하 Nanoscale, crystalline silicon powder
CN100431954C (en) * 2003-11-19 2008-11-12 德古萨股份公司 Nanoscale, crystalline silicon powder
WO2008041261A2 (en) * 2006-10-02 2008-04-10 Solaria Tecnologie S.R.L. Process and device for the production of high-purity silicon using multiple precursors
WO2008041261A3 (en) * 2006-10-02 2008-08-21 Solaria Tecnologie S R L Process and device for the production of high-purity silicon using multiple precursors
WO2009025559A1 (en) 2007-08-17 2009-02-26 Silansil As Apparatus and method for compaction of silicon powder
US8418605B2 (en) 2007-08-17 2013-04-16 Silansil As Apparatus and method for compaction of silicon powder
US11839919B2 (en) 2015-12-16 2023-12-12 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
DE102017125723A1 (en) * 2017-04-25 2018-10-25 Eeplasma Gmbh Method and apparatus for growing a single crystal
CN109121550B (en) * 2018-09-07 2021-02-05 山东省种子有限公司 Rice breeding method adopting microwave plasma treatment
CN109121550A (en) * 2018-09-07 2019-01-04 山东省种子有限公司 A kind of rice breeding method of Microwave plasma treatment
US11633785B2 (en) 2019-04-30 2023-04-25 6K Inc. Mechanically alloyed powder feedstock
US20210146432A1 (en) * 2019-11-18 2021-05-20 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11717886B2 (en) * 2019-11-18 2023-08-08 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11855278B2 (en) 2020-06-25 2023-12-26 6K, Inc. Microcomposite alloy structure
US11963287B2 (en) 2020-09-24 2024-04-16 6K Inc. Systems, devices, and methods for starting plasma
US11919071B2 (en) 2020-10-30 2024-03-05 6K Inc. Systems and methods for synthesis of spheroidized metal powders

Also Published As

Publication number Publication date
JPS62152532A (en) 1987-07-07

Similar Documents

Publication Publication Date Title
FR2591412A1 (en) Method for the production of powders and a sealed microwave plasma reactor
EP0296921B1 (en) Microwave plasma torch, device comprising such a torch and production procedure for powder operating them
JPS5997599A (en) Manufacture of graphite fiber
EP0334432A1 (en) Epitaxy reactor with wall protected against deposits
CA1314709C (en) Process and apparatus working with a flame for the production of synthetic gas
FR2764163A1 (en) INDUCTIVE PLASMA TORCH WITH REAGENT INJECTOR
FR2677998A1 (en) METHOD AND APPARATUS FOR MAKING A GAS DIFFUSION LAYER THROUGH AN ALUMINUM WELL.
EP0614852B1 (en) Process for preparation of disilane from monosilane by electric discharge and use of a cryogenic trap and reactor for carrying out the process
EP0292391B1 (en) Hydrocracking process of a hydrocarbon feed, and apparatus for carrying out this process
CA2073645A1 (en) Apparatus and process for dcpv diamond deposit assisted by microwave plasma
CH414567A (en) Process for carrying out thermal reactions and apparatus for carrying out this process
CA2156820C (en) Thermal reactor with direct flow tube
EP0526312B1 (en) Process and effusion cell for forming molecular beams
EP0370910B1 (en) Process for cracking a heavy hydrocarbon feedstock into lower boiling hydrocarbons, and apparatus for carrying out this process
US3950479A (en) Method of producing hollow semiconductor bodies
EP2231518B1 (en) Apparatus including a plasma torch for purifying a semiconductor material
FR2586334A2 (en) Method of heat treatment by a microwave plasma torch and torch for its implementation
CA1337547C (en) Refractory metal silicide deposit process for the production of integrated circuits
FR2606395A1 (en) Process for the preparation of submicronic oxide powders and apparatus for carrying it out
FR2476823A1 (en) PERFECTED LIGHT FOR ARC ELECTRIC OVEN
FR2930562A1 (en) Reactor for depositing silicon carbide material obtained from decomposition of gas on receiving surface of graphite substrate, comprises longitudinal duct defining gas flow channel and three chambers, and first and second heating units
WO2007017977A1 (en) High-frequency induction thermal plasma torch and method for synthesizing solid material
BE833323R (en) METHOD AND DEVICE FOR DISPLACING THE LOAD CONTAINED IN AN ELECTRIC FUSION OVEN
BE471907A (en)
FR2623524A1 (en) Improvement to the process and device for metal deposition on a sample

Legal Events

Date Code Title Description
ST Notification of lapse