JPS62151506A - Method for controlling throat pressure of converter exhaust gas treatment device - Google Patents

Method for controlling throat pressure of converter exhaust gas treatment device

Info

Publication number
JPS62151506A
JPS62151506A JP29193785A JP29193785A JPS62151506A JP S62151506 A JPS62151506 A JP S62151506A JP 29193785 A JP29193785 A JP 29193785A JP 29193785 A JP29193785 A JP 29193785A JP S62151506 A JPS62151506 A JP S62151506A
Authority
JP
Japan
Prior art keywords
exhaust gas
disturbance
converter
amount
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29193785A
Other languages
Japanese (ja)
Inventor
Hiroshi Narasaki
博司 楢崎
Masami Konishi
正躬 小西
Yoshio Onishi
大西 義雄
Yasuo Kaihara
貝原 保男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29193785A priority Critical patent/JPS62151506A/en
Publication of JPS62151506A publication Critical patent/JPS62151506A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust

Abstract

PURPOSE:To stably control a throat pressure with high accuracy by calculating the disturbance quantity from the output of a converter throat detector and the input of the controlled variable of an exhaust gas flow rate control valve and adding the compensation quantity calculated in accordance therewith to the controlled variable. CONSTITUTION:A molten steel 2 is refined in a converter 1 having lance 3 and the throat pressure thereof is detected by a throat pressure detector 10 provided to a hood 5. The detected throat pressure output (y) is compared with a set throat pressure value (r) by a controller 11 and the controlled variable (u) of the exhaust gas flow rate control valve 7 disposed in a converter exhaust gas induction path having an induced draft fan 8 is calculated. The above-mentioned throat pressure is subjected to constant feedback control in accordance with the controlled variable (u). The disturbance quantity to the exhaust gas treatment process is calculated by an arithmetic processing unit 12 with the above-mentioned throat pressure output (y) and the controlled variable (u) as the arithmetic input and further the controlled variable DELTAu for the disturbance compensation is calculated in the above-mentioned method for controlling the throat pressure of a converter exhaust gas treatment device. Such controlled variable DELTAu for the disturbance compensation is added to the controlled variable (u) in an adder 13 and the above-mentioned control valve 7 is thereby controlled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は酸素転炉の如き転炉の排ガス処理装置におけ
る炉口圧制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the furnace port pressure in an exhaust gas treatment device for a converter such as an oxygen converter.

〔従来の技術〕[Conventional technology]

この種の転炉における排気ガスは燃料として有用なもの
であるので、再利用のため、ガスホルダー等へ誘引して
回収するが、この排ガス回収率を安定させるためには、
転炉の炉口圧変動を抑制する必要がある。
The exhaust gas from this type of converter is useful as fuel, so it is collected in a gas holder etc. for reuse, but in order to stabilize the exhaust gas recovery rate,
It is necessary to suppress fluctuations in the furnace mouth pressure of the converter.

この為、従来は、例えば、特公昭58−46527号公
報に示されているように、炉口圧を検出し、この検出値
を設定炉口圧と比較してその偏差が零になるようにフィ
ードバック制御することにより炉口圧を一定に維持する
ようにしている。
For this reason, in the past, as shown in Japanese Patent Publication No. 58-46527, for example, the furnace mouth pressure was detected, this detected value was compared with the set furnace mouth pressure, and the deviation was made to be zero. The furnace mouth pressure is maintained constant through feedback control.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、この従来の制御方法では、制御系に゛おける
検出遅れ、信号伝達遅れ、ダンパ動作遅れや測定誤差に
対する補償は行われているが、排ガス処理プロセスに加
わる外乱に対する補償は考慮されていないので、炉内発
生ガス量変動等の外乱による制御精度の低下は避けられ
ず、安定で且つ充分に精度の高い炉口圧制御を実現する
ことができないという問題があった。
However, although this conventional control method compensates for detection delays, signal transmission delays, damper operation delays, and measurement errors in the control system, it does not take into account compensation for disturbances added to the exhaust gas treatment process. However, there is a problem in that control accuracy inevitably deteriorates due to disturbances such as fluctuations in the amount of gas generated in the furnace, and stable and sufficiently accurate furnace mouth pressure control cannot be achieved.

この他、転炉内のモデル(数式の集合)により発生ガス
量を予測して排ガス流量の制御弁を制御する方法が提案
されているが、これには高精度な炉内モデルを作成する
必要があり、外乱までモデル化するのは実用上困難であ
るので、この方法によっても、上記した問題を解消する
ことはできない。
In addition, a method has been proposed in which the amount of gas generated is predicted using a model (a set of mathematical formulas) inside the converter and the control valve for the exhaust gas flow rate is controlled, but this requires the creation of a highly accurate furnace interior model. Since it is practically difficult to model even the disturbance, the above-mentioned problem cannot be solved even with this method.

この発明は上記問題を解消するためになされたもので、
排ガス処理プロセスに加わる外乱を検出・補償して従来
に比し炉口圧を安定にかつ高精度に制御することができ
る転炉排ガス処理装置における炉口圧制御方法を得るこ
とを目的とする。
This invention was made to solve the above problem.
The object of the present invention is to obtain a furnace mouth pressure control method in a converter exhaust gas treatment device that can detect and compensate for disturbances added to the exhaust gas treatment process and control the furnace mouth pressure more stably and with higher precision than in the past.

〔問題を解決するための手段〕[Means to solve the problem]

この発明は上記目的を達成するため、従来のフィードバ
ック制御系における炉口圧検出器の出力と流量制御弁の
制御量を演算入力として排ガス処理プロセスに加わる外
乱量を演算し、次いで、該外乱量に基づいて外乱補償制
御量を演算する演算処理装置を設け、上記外乱補償制御
量を上記制御量に加算する構成としたものである。
In order to achieve the above object, the present invention calculates the amount of disturbance added to the exhaust gas treatment process using the output of the furnace mouth pressure detector and the control amount of the flow rate control valve in the conventional feedback control system as calculation input, and then calculates the amount of disturbance applied to the exhaust gas treatment process. An arithmetic processing device is provided to calculate a disturbance compensation control amount based on the above, and the disturbance compensation control amount is added to the control amount.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例を示すブロック図である。 FIG. 1 is a block diagram showing one embodiment of the present invention.

図において、1は転炉、2は溶鋼、3はランス、4はス
カート、5はフードである。6は冷却器、7は排ガス流
量制御弁(ダンパ)であって、フード5を含む排ガス誘
引路内に配設されている。8は誘引送風機、9は排ガス
である。
In the figure, 1 is a converter, 2 is molten steel, 3 is a lance, 4 is a skirt, and 5 is a hood. 6 is a cooler, and 7 is an exhaust gas flow rate control valve (damper), which are disposed in an exhaust gas guide path including the hood 5. 8 is an induced blower, and 9 is an exhaust gas.

10は炉口圧検出器であって、フード5内の炉圧即ち、
転炉lの炉口圧yを検出して炉口圧検出信号を送出する
。1)はPI制御もしくは最適制御のコントローラであ
って、設定炉口圧rと炉口圧検出器10の出力yとから
ダンパ6の制御量(弁開度)Uを算出し弁開度信号を出
力する。12は外乱補償検出・補償用の演算処理装置(
CPU)であって、第2図に示す如く、制御対象挙動モ
デルブロックに1、外乱推定ブロックに2および外乱補
償量演算ブロックに3を有し、弁開度信号Uと炉口圧検
出信号yを演算入力として外乱補償信号ΔUを作成する
。13は加算器であって、外乱補償信号ΔUと弁開度信
号Uとを加算し、その加算値(U+ΔU)を弁開度制御
信号Uとしてダンパ7に供給する。
10 is a furnace mouth pressure detector, which measures the furnace pressure inside the hood 5, that is,
The furnace mouth pressure y of the converter l is detected and a furnace mouth pressure detection signal is sent. 1) is a controller for PI control or optimal control, which calculates the control amount (valve opening degree) U of the damper 6 from the set furnace mouth pressure r and the output y of the furnace mouth pressure detector 10, and generates a valve opening signal. Output. 12 is an arithmetic processing unit for disturbance compensation detection/compensation (
As shown in Fig. 2, the CPU has 1 for the controlled object behavior model block, 2 for the disturbance estimation block, and 3 for the disturbance compensation amount calculation block, and has a valve opening degree signal U and a furnace mouth pressure detection signal y. A disturbance compensation signal ΔU is created using the calculation input. 13 is an adder that adds the disturbance compensation signal ΔU and the valve opening degree signal U, and supplies the added value (U+ΔU) to the damper 7 as the valve opening degree control signal U.

第2図において、Pは排ガス処理プロセス(フード5−
ダンパ7間、即ち、(弁開度信号Uの入力点−炉口圧検
出点間)の伝達特性を表し、δはこの排ガス処理プロセ
スに加わる外乱を表す。
In Fig. 2, P is the exhaust gas treatment process (hood 5-
It represents the transmission characteristic between the dampers 7, that is, (between the input point of the valve opening signal U and the furnace mouth pressure detection point), and δ represents the disturbance added to this exhaust gas treatment process.

この排ガス処理プロセス内の制御対象の挙動Xは下記の
状態方程式で近似的に記述することができる。
The behavior X of the controlled object in this exhaust gas treatment process can be approximately described by the following equation of state.

(d/d t)X(t)=AX(t)+B(u)(t−
L)  ・(1)y (t) = CX (t)+δ(
tl・ ・ ・ ・ ・ ・(2)ここで、X (t)
は状態変数と呼ばれる適当な次元のベクトルで、これは
直接計測できない量であってもよい。tは時間、Lは系
の無駄時間である。
(d/d t)X(t)=AX(t)+B(u)(t-
L) ・(1)y (t) = CX (t) + δ(
tl・ ・ ・ ・ ・ ・(2) Here, X (t)
is a vector of appropriate dimensions called a state variable, which may be a quantity that cannot be directly measured. t is time and L is dead time of the system.

A、B及びCは適当な大きさの定数行列である。A, B and C are constant matrices of appropriate size.

上記(1)式および(2)式で表現される系において、
制御対象の挙動X (tlが実測値y tt)と一致し
ない場合、δft) = y(t) −CX (t)は
有限の値となるが、この有限のδ(1)は上記(1)式
及び(2)式で規定される系における外乱と見なすこと
でき、転炉l内における発生ガス量の変動等がこれに相
当する。
In the system expressed by the above equations (1) and (2),
The behavior of the controlled object It can be regarded as a disturbance in the system defined by Equation and Equation (2), and fluctuations in the amount of gas generated in the converter l correspond to this.

この発明は、演算処理装置12により上記外乱δ(1)
を演算により推定してこれを補償するものである。
In this invention, the above disturbance δ(1) is calculated by the arithmetic processing unit 12.
This is estimated by calculation and compensated for.

制御対象挙動モデルブロックに、は、現代制御h■理論
におけるオブザーバと同一の構造を有するものであって
、弁開度信号Uと炉口圧検出信号yを入力として、伝達
関数Pで示される上記排ガス処理プロセスにおける制御
対象の挙動を演算により模擬もしくは推定する構造を有
し、下記式が成立するように設計されている。
The controlled object behavior model block has the same structure as the observer in modern control h■ theory, and uses the valve opening signal U and the reactor mouth pressure detection signal y as input, and the above-mentioned signal expressed by the transfer function P. It has a structure that simulates or estimates the behavior of a controlled object in an exhaust gas treatment process by calculation, and is designed so that the following formula holds true.

(d / d t ) Z(tl=h Z(tl +F
2 y(t)+F3(ul (t −L )  ・・・
・・(3)ここで、制御対象の挙動モデルであるZ (
t)は前記(1)式のX (t)と同一次元のベクトル
であり、Fl、F2及びF3は前記(1)式及び(2)
式の定数行列A、B及びCに基づいて次のように決めら
れている。
(d / d t ) Z(tl=h Z(tl +F
2y(t)+F3(ul(t-L)...
...(3) Here, Z (
t) is a vector with the same dimension as X (t) in the above equation (1), and Fl, F2, and F3 are the vectors in the above equation (1) and (2).
It is determined as follows based on the constant matrices A, B, and C of the equation.

(alFi = B (bl F +は固有値の実部が負である行列fc)F
2は、A−FユC=F1を満たす行列なお、FlとF2
は一意的に決るのではな(、上記山)および(C1の両
条件が両立する範囲で適当に選ばれる。
(alFi = B (bl F + is a matrix fc in which the real part of the eigenvalue is negative) F
2 is a matrix that satisfies A-F YuC=F1, and Fl and F2
is not uniquely determined, but is appropriately selected within a range where both conditions (the above mountain) and (C1) are compatible.

外乱推定ブロックにλは挙動モデルZ (t)と炉口圧
検出信号yから外乱量推定値δ(1)を演算するもので
、下記(8)式の演算を実行する。
In the disturbance estimation block, λ calculates the estimated amount of disturbance δ(1) from the behavior model Z (t) and the reactor mouth pressure detection signal y, and executes the calculation of the following equation (8).

いま、制御対象の挙動モデルZ (t)と実挙動である
前記(1)式のX (tlとの誤差ベクトルを、ε(t
) = X (tl −Z (t)・・・・・・・・・
・・・・(4)と定義すると、誤差εと前記(2)式の
外乱δとの間には、次式の関係が成立する。
Now, let us define the error vector between the behavior model Z (t) of the controlled object and the actual behavior, X (tl) of equation (1), as ε(t
) = X (tl −Z (t)・・・・・・・・・
When defined as (4), the following relationship holds true between the error ε and the disturbance δ in equation (2) above.

ε(S)=(S I  Fl) F1a(S)・・・・
・・・(5)ここで、ε(S)、δ(31はそれぞれε
(tl、δft+のラプラス変換を表す。
ε(S)=(S I Fl) F1a(S)...
...(5) Here, ε(S), δ (31 is ε
(tl, represents the Laplace transform of δft+.

一方、前記(2)式より、y、Xのラプラス変換をy(
S)、X (S)とすれば、 Y (31= CX (S)+δ(S)=C(Z(S)
+ε(S))+δ(S)・・・・・・、・(6)が得ら
れ、この式のε(31に(5)式を代入することにより
、 (I  C(sl  Fl)Fz)  δ(s) = 
y (sl−Cz (s)・・・・・(7) を得る。従って、δ(1)は、 δ(s)= (y(sl −CZ(sl) x G(s
l・・・・・・・(8)但し、G(s)=1/ (1−
C(s I −F+) Fユ)・・・・・(9) で与えられる。即ち、外乱推定ブロックにλは上記(9
)式で表される伝達関数G (81を有し、外乱δの推
定値、即ち、外乱量推定値ηを信号として送出する。な
お、式(9)は前記定数行列Aの実部が負である時に実
現可能である。
On the other hand, from equation (2) above, the Laplace transform of y and X is expressed as y(
S), X (S), then Y (31= CX (S) + δ(S) = C(Z(S)
+ε(S))+δ(S)...(6) is obtained, and by substituting equation (5) into ε(31) of this equation, (I C(sl Fl)Fz) δ(s) =
y (sl-Cz (s)...(7) is obtained. Therefore, δ(1) is δ(s)=(y(sl-CZ(sl) x G(s
l・・・・・・(8) However, G(s)=1/(1-
C(s I −F+) Fyu) (9) It is given by: That is, in the disturbance estimation block, λ is the above (9
) has a transfer function G (81), and sends out the estimated value of the disturbance δ, that is, the estimated amount of disturbance η, as a signal.Equation (9) is based on the assumption that the real part of the constant matrix A is negative. It is possible when .

外乱補償量演算ブロックに、は外乱量推定値ηに基づき
外乱補償制御量ΔUを演算し、外乱補償信号(弁開度補
償信号)として出力する。このΔUが前記Uと加算器1
3で加算される。
The disturbance compensation amount calculation block calculates a disturbance compensation control amount ΔU based on the estimated disturbance amount η and outputs it as a disturbance compensation signal (valve opening degree compensation signal). This ΔU is the above U and adder 1
3 is added.

上記外乱δ、外乱量推定値ηと外乱補償量ΔUとの間に
は、 η=−PΔU+δ・・・・・・・・・・・・αψの関係
が成立するので、例えば、ΔUをηの比例量、即ち、Δ
u=にη、或いは、ηの比例+積分量、即、ち、Δu=
Co  (1+C+  (1/s))する定数である。
The above-mentioned disturbance δ, disturbance amount estimated value η, and disturbance compensation amount ΔU hold the following relationship: η=-PΔU+δ・・・・・・・・・αψ Therefore, for example, ΔU is Proportional quantity, i.e. Δ
u = η, or proportionality of η + integral amount, that is, Δu =
Co (1+C+ (1/s)) is a constant.

この実施例では、フィードバック制御される制御対象の
挙動を9排ガス処理プロセスの入出力を用いて状態方程
式により模擬もしくは推定し、この推定値と炉口圧の計
測値に対する差に基づき外乱値を検出するので、外乱を
簡単な手段で容易に検出してその炉口圧に与える影響を
高い精度をもって補償することできる。
In this example, the behavior of the controlled object to be feedback-controlled is simulated or estimated using the state equation using the input and output of nine exhaust gas treatment processes, and the disturbance value is detected based on the difference between this estimated value and the measured value of the furnace mouth pressure. Therefore, disturbances can be easily detected using simple means and their effects on the furnace mouth pressure can be compensated for with high accuracy.

第3図に、本発明を実施した場合の炉口圧制御特性(太
線)を従来法による場合の炉口圧制御特性(細線)と対
比して示す。この図から明らかなように、本発明による
外乱補償を行った場合には、炉口圧変動が従来に比し大
巾に改善される。
FIG. 3 shows the furnace mouth pressure control characteristics (thick line) when the present invention is implemented in comparison with the furnace mouth pressure control characteristics (thin line) when the conventional method is used. As is clear from this figure, when the disturbance compensation according to the present invention is performed, the furnace mouth pressure fluctuation is greatly improved compared to the conventional method.

なお、上記実施例における外乱量推定ブロックに2の伝
達関数は、前記(9)式の直流ゲインをgとした場合、
gα(S)(但し、α(S)は直流ゲイン1の伝達関数
)として与えるようにしてもよい。
In addition, the transfer function of 2 in the disturbance amount estimation block in the above embodiment is as follows, when the DC gain in the above equation (9) is set as g.
It may be given as gα(S) (where α(S) is a transfer function with a DC gain of 1).

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、炉口圧制御系における外
乱を演算により推定し、該外乱の炉口圧変動への影響を
補償する構成としたものであるから、炉口圧の制御精度
を従来に比して大幅に向上することできる。
As explained above, this invention is configured to estimate the disturbance in the furnace mouth pressure control system by calculation and compensate for the influence of the disturbance on the furnace mouth pressure fluctuation. can be significantly improved compared to .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図である。第2図
は上記実施例における演算処理装置の詳細ブロック図、
第3図は炉口圧制御特性を示す図である。 1−・−転炉、1〇−炉口圧検出器、1)−コントロー
ラ、12−演算処理装置、13−加算器、K1−・−制
御対象挙動モデルブロック、K2−・外乱量推定ブロッ
ク、K3−外乱補償量演算ブロック、P・−排ガス処理
プロセスの伝達関数。
FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 2 is a detailed block diagram of the arithmetic processing device in the above embodiment;
FIG. 3 is a diagram showing the furnace mouth pressure control characteristics. 1--Converter, 10-Furnace pressure detector, 1)-Controller, 12-Arithmetic processing unit, 13-Adder, K1--Controlled object behavior model block, K2--Disturbance amount estimation block, K3-disturbance compensation amount calculation block, P.-transfer function of exhaust gas treatment process.

Claims (2)

【特許請求の範囲】[Claims] (1)転炉の炉口圧を検出する炉口圧検出器の出力を炉
口圧設定値と比較することにより転炉排ガス誘引路に設
けられた排ガス流量制御弁の制御量を演算して上記炉口
圧を一定にフードバック制御する転炉排ガス処理装置に
おける炉口圧制御方法において、演算処理装置により、
上記炉口圧検出器の出力と上記制御量を演算入力として
排ガス処理プロセスに加わる外乱量を演算させ、次いで
、該外乱量に基づいて外乱補償制御量を演算せしめ、こ
の外乱補償制御量を上記制御量に加算することを特徴と
する転炉廃ガス処理装置における炉口圧制御方法。
(1) By comparing the output of the furnace mouth pressure detector that detects the furnace mouth pressure of the converter with the furnace mouth pressure set value, the control amount of the exhaust gas flow control valve installed in the converter exhaust gas induction path is calculated. In the furnace mouth pressure control method in a converter exhaust gas treatment device that performs feedback control to keep the furnace mouth pressure constant, the arithmetic processing device:
Using the output of the furnace mouth pressure detector and the control amount as calculation inputs, the amount of disturbance applied to the exhaust gas treatment process is calculated, and then a disturbance compensation control amount is calculated based on the disturbance amount, and this disturbance compensation control amount is A method for controlling furnace port pressure in a converter waste gas treatment device, characterized by adding the pressure to a control amount.
(2)演算処理装置が、前記炉口圧検出器の出力と前記
制御量を入力として排ガス処理プロセス内の状態を演算
により推定する制御対象挙動モデルブロック、該制御対
象挙動モデルブロックの出力を前記炉口圧検出器の出力
と比較演算して外乱量推定値を演算する外乱推定ブロッ
ク、上記外乱量推定値に基づき外乱補償制御量を演算す
る外乱補償量演算ブロックを有することを特徴とする特
許請求の範囲第1項記載の転炉排ガス処理装置における
炉口圧制御方法。
(2) A controlled object behavior model block in which the arithmetic processing unit estimates the state within the exhaust gas treatment process by calculation using the output of the furnace mouth pressure detector and the control amount as input, and the output of the controlled object behavior model block is A patent characterized in that it has a disturbance estimation block that calculates an estimated amount of disturbance by comparing it with the output of a furnace mouth pressure detector, and a disturbance compensation amount calculation block that calculates a disturbance compensation control amount based on the estimated amount of disturbance. A furnace port pressure control method in a converter exhaust gas treatment apparatus according to claim 1.
JP29193785A 1985-12-26 1985-12-26 Method for controlling throat pressure of converter exhaust gas treatment device Pending JPS62151506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29193785A JPS62151506A (en) 1985-12-26 1985-12-26 Method for controlling throat pressure of converter exhaust gas treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29193785A JPS62151506A (en) 1985-12-26 1985-12-26 Method for controlling throat pressure of converter exhaust gas treatment device

Publications (1)

Publication Number Publication Date
JPS62151506A true JPS62151506A (en) 1987-07-06

Family

ID=17775383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29193785A Pending JPS62151506A (en) 1985-12-26 1985-12-26 Method for controlling throat pressure of converter exhaust gas treatment device

Country Status (1)

Country Link
JP (1) JPS62151506A (en)

Similar Documents

Publication Publication Date Title
CN110244561B (en) Secondary inverted pendulum self-adaptive sliding mode control method based on disturbance observer
Shi-Cai et al. Robust leader-follower formation control of mobile robots based on a second order kinematics model
Li et al. Adaptive neural network-based finite-time impedance control of constrained robotic manipulators with disturbance observer
Kurtz et al. Constrained output feedback control of a multivariable polymerization reactor
US4408569A (en) Control of a furnace
Butt et al. Adaptive backstepping control for an engine cooling system with guaranteed parameter convergence under mismatched parameter uncertainties
JPS62151506A (en) Method for controlling throat pressure of converter exhaust gas treatment device
WO2019087554A1 (en) Feedback control method and motor control device
Hassanzadeh et al. A multivariable adaptive control approach for stabilization of a cart-type double inverted pendulum
Prabhu et al. Optimization of a temperature control loop using self tuning regulator
CN113359485A (en) Method for controlling output feedback preset performance of electro-hydraulic servo system
US20170131123A1 (en) Estimating system parameters from sensor measurements
CN113625677A (en) Nonlinear system fault detection and estimation method and device based on adaptive iterative learning algorithm
JPS60218105A (en) Control device
JP3653599B2 (en) Apparatus and method for controlling ammonia injection amount of flue gas denitration equipment
JP2001254111A (en) Method of controlling furnace heat in blast furnace and guidance device
CN112147898B (en) Rigid system anti-interference control method and system only depending on control direction information
Yamin et al. Robust discrete-time simple adaptive tracking
KR20040016143A (en) System controller whose robustness and functional performance are improved
JP3267841B2 (en) Controller with phase compensation function
JPH01239602A (en) Process controller
Zhang Modified Smith prediction compensation control method for temperature control of deformation test equipment
JPH04177095A (en) Disturbance estimating device
JPS629405A (en) Process controller
JPS62263516A (en) Temperature control method and instrument for heating furnace