JPS60218105A - Control device - Google Patents

Control device

Info

Publication number
JPS60218105A
JPS60218105A JP7398384A JP7398384A JPS60218105A JP S60218105 A JPS60218105 A JP S60218105A JP 7398384 A JP7398384 A JP 7398384A JP 7398384 A JP7398384 A JP 7398384A JP S60218105 A JPS60218105 A JP S60218105A
Authority
JP
Japan
Prior art keywords
control
signal
control system
model
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7398384A
Other languages
Japanese (ja)
Other versions
JPH0434766B2 (en
Inventor
Takashi Shigemasa
隆 重政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7398384A priority Critical patent/JPS60218105A/en
Priority to EP85300069A priority patent/EP0159103B1/en
Priority to DE8585300069T priority patent/DE3572740D1/en
Priority to AU37330/85A priority patent/AU550917B2/en
Priority to US06/690,259 priority patent/US4679136A/en
Publication of JPS60218105A publication Critical patent/JPS60218105A/en
Publication of JPH0434766B2 publication Critical patent/JPH0434766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

PURPOSE:To strengthen suppressing force against disturbance by identifying the dynamic characteristics of a controlled system, operating and setting up a control constant through a model and PID-operating an error signal between the outputs of the model and a control system to superpose the error signal to the controlled system. CONSTITUTION:An identification signal is inputted to a system control box 16, and during the control of a closed loop, an identification signal generator 12 and an on-line identifier 14 are actuated to identify the identification parameters (ai), (bi) of the controlled system 1 in the on-line. The transmission function, integration gain, etc. of the controlled system 1 are operated by a design block 15 to which said parameters (ai), (bi), a response shape factor alpha and a robust (low sensitivity) gain gamma are inputted and the factor of a discrete time model in the control system is calculated and outputted on the basis of said operated results. A control system mode 7 calculates a model output and a compensated output obtained from a sample value PID compensator 9 is fed back to an operation from a sample value PID compensator 9 is fed back to an operation terminal by using said factor calculated by the design block 15. Consequently, the robust control system resisting against disturbance can be automatically constituted.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、制御対象のサンプル値制御装置に係シ、特に
閉ループ制御中に制御対象の動特性を同定して、その同
定結果にもとづいて制御定数を自動的に調整(チューニ
ング)することのできる機能を有し、さらに、チューニ
ング後の制御系の制御性能が制御対象の動特性変化に対
して劣化しない機能を有する制御装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a sample value control device for a controlled object, and in particular, to a method for identifying the dynamic characteristics of a controlled object during closed loop control and performing control based on the identification result. The present invention relates to a control device having a function of automatically adjusting (tuning) constants, and further having a function of preventing the control performance of a control system after tuning from deteriorating due to changes in the dynamic characteristics of a controlled object.

〔発明の背景技術とその問題点〕[Background technology of the invention and its problems]

プラントの流量、温度、圧力などを制御する制御装置は
その制御定数を制御対象の動特性に応じて適切に調整す
る必要がある。一方、最近ではプラントの省エネルギ運
転にともない、運転中に制御対象の動特性が変化するケ
ースが増加している。動特性変化に対して、これまでダ
インスケ?)ニール制御方式と、モデル規範形適応制御
方式たる2つの制御技術が知られている。
A control device that controls the flow rate, temperature, pressure, etc. of a plant needs to appropriately adjust its control constants according to the dynamic characteristics of the controlled object. On the other hand, in recent years, with energy-saving operation of plants, there have been an increasing number of cases in which the dynamic characteristics of a controlled object change during operation. What has been done so far regarding changes in dynamic characteristics? ) Two control techniques are known: the Neil control method and the model-norm adaptive control method.

この2つの方法は、広い意味で適応制御のクラスに属す
る制御方式であシ、まず前者のダインスケジュール制御
方式では、動特性変化に直接に関係する制御対象に関す
る補助信号を入力して、明らかになっているダインスケ
ジュール曲線に従って、制御定数を変化させていく方式
である。したがって、事前に動特性変化の様子と対応す
るゲインスケジュールの関係が明らかになっている必要
がある。
These two methods are control methods that belong to the class of adaptive control in a broad sense.Firstly, the former dyne schedule control method inputs auxiliary signals related to the controlled object that are directly related to changes in dynamic characteristics. This method changes the control constants according to the dyne schedule curve. Therefore, it is necessary to clarify the relationship between the dynamic characteristic change and the corresponding gain schedule in advance.

一方モデル規範形適応制御方式は、制御対象の動特性が
未知の場合に用いる制御方式であり、制御系の出力と制
御系のモデル出力との誤差が零となるように、コントロ
ーラの制御定数を適応的に調整していく制御方法である
。この方法は、制御対象の動特性が未知の場合に用いる
ことができる利点はあるが、未知外乱や観測ノイズなど
が原因して制御対象によっては、十分な性能を発揮でき
ないケースがあるばかシでなく、動特性が変化したとき
適応するのにある程度の時間がかがシ、さらに、過渡状
態での操作信号が大きく変動しやすいという問題を持っ
ている。
On the other hand, the model reference adaptive control method is a control method used when the dynamic characteristics of the controlled object are unknown, and the control constants of the controller are adjusted so that the error between the output of the control system and the model output of the control system is zero. This is a control method that makes adaptive adjustments. This method has the advantage that it can be used when the dynamic characteristics of the controlled object are unknown, but it is foolish and may not provide sufficient performance depending on the controlled object due to unknown disturbances, observation noise, etc. However, it takes a certain amount of time to adapt when the dynamic characteristics change, and furthermore, there are problems in that the operation signal tends to fluctuate greatly in a transient state.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した従来の制御装置の性能を改良したも
ので、制御対象の動特性変化に低感度、あるいはロバス
トな制御系に自動的にチューニングされる制御装置を提
供することを目的としている。
The present invention improves the performance of the conventional control device described above, and aims to provide a control device that is automatically tuned to a control system that is low in sensitivity or robust to changes in the dynamic characteristics of a controlled object. .

〔発明の概要〕[Summary of the invention]

本発明は、閉ループ制御中に制御対象の動特性を同定す
る手段と、その同定結果から制御系の望ましいモデルを
用いて制御定数を演算する手段と、制御系の望ましいモ
デルを自動的に構成する手段と、望ましいモデルの出力
と制御系の出力との誤差信号をサンプル値PID演算し
、そのPID演算出力を制御対象に重畳するようにフィ
ードパ、りして構成した制御装置でおる。
The present invention provides means for identifying dynamic characteristics of a controlled object during closed-loop control, means for calculating control constants using a desirable model of a control system from the identification results, and automatically configuring a desirable model for a control system. The control device is configured by performing sample value PID calculation on the error signal between the output of the desired model and the output of the control system, and using a feedper to superimpose the PID calculation output on the controlled object.

〔発明の効果〕〔Effect of the invention〕

上述した構成とすることによシ、制御系全体が制御対象
の動特性の変化に対して低感度、あるいは、口・々スト
となるばかシでなく、制御系に印加される外乱に対して
、その抑制力が強化される。このような制御系に、自動
的にチューニングされるので、設計や調整にかかわるマ
ンノ9ワーを大幅に省力化することができる。
By adopting the above-mentioned configuration, the control system as a whole is not sensitive to changes in the dynamic characteristics of the controlled object, or is susceptible to disturbances applied to the control system. , its suppressive power will be strengthened. Since the system is automatically tuned to such a control system, it is possible to significantly save the manpower involved in design and adjustment.

また、制御対象の動特性変化に対して、制御系を低感度
(ロバスト)とすることができるのでゲインスケジュー
ルする必要がないし、制御定数を動特性変化に対して時
々刻々適応させる必要もなく、動特性変化時の操作信号
や出力の応答もなめらかなものとすることができる。
In addition, since the control system can be made less sensitive (robust) to changes in the dynamic characteristics of the controlled object, there is no need for gain scheduling, and there is no need to constantly adapt the control constants to changes in the dynamic characteristics. The response of operation signals and outputs when dynamic characteristics change can also be made smooth.

〔発明の実施例〕[Embodiments of the invention]

麻1図は、本発明の一実施例を示すブロック図である。 Fig. 1 is a block diagram showing one embodiment of the present invention.

まず、実施例の構成を説明すると、y(t)は制御対象
1の出力信号、u(t)は入力信号あるいは操作信号で
あシ、制御対象1は操作信号側に外乱a (t)が入力
されている。出力信号y (t)は第1のサンシラ2に
よシ、サンプリング周期τ毎にサンプラされ、離散時間
の出力信号y (k)が生成5− される。ここで、kはにτ=tを意味する。また、r 
(t)は制御系の目標値信号であシ、同様に第2のサン
プラ3によシサンプラされ、離散時間の目標値r*←)
が生成される。偏差演算器4では、r*(k)とy*(
k)よシ第1式によシ偏差#*(k)を演算する。
First, to explain the configuration of the embodiment, y(t) is an output signal of the controlled object 1, u(t) is an input signal or an operation signal, and the controlled object 1 has a disturbance a(t) on the operation signal side. It has been entered. The output signal y (t) is sampled by the first sensor 2 at every sampling period τ to generate a discrete time output signal y (k). Here, k means τ=t. Also, r
(t) is a target value signal of the control system, which is similarly sampled by the second sampler 3, and is a discrete time target value r*←)
is generated. The deviation calculator 4 calculates r*(k) and y*(
k) Calculate the deviation #*(k) according to the first equation.

eへ)=y〜)−y”(k) ・・・第1式主積分演算
器5では積分子インKを用いて、偏差e”(k)を積分
して、積分出力U。*(k)を演算する。
to e)=y~)-y"(k)...The first equation main integral calculator 5 integrates the deviation e"(k) using the integrator in K, and outputs the integral output U. *Calculate (k).

u %)= u ”(k−1)十に−e(k) −・・
第2式%式% フィードバック補償器F(i−1) 6では、出力信号
y〜)を入力してu/”(k)を演算する。
u%) = u''(k-1) 10-e(k) -...
Second Formula % Formula % The feedback compensator F(i-1) 6 inputs the output signal y~) and calculates u/''(k).

u 1Oc) −F(’g−1’) ・y”Qc) ・
・・第3式制御系モデル7では、後述する設計ブロック
15によシ設定されたモデルノ4ラメータとr*(k)
とを用いて、モデル出力y:(k)を演算する。
u 1Oc) -F('g-1') ・y''Qc) ・
...In the third equation control system model 7, the model number 4 parameters set by the design block 15 described later and r*(k)
The model output y:(k) is calculated using

yM%)=GM(Z−’ + τ+ ’ rα2.α、
・”) −r”(k)・・・第4式 出力誤差演算器8は、出力y*(k)とモデル出力y詠
)との誤差ε−)を次のように演算する。
yM%)=GM(Z-' + τ+'rα2.α,
・")-r"(k)...Fourth formula The output error calculator 8 calculates the error ε-) between the output y*(k) and the model output yyei) as follows.

eへ)=y〜)−y謹) ・・・第5式サンプル値PI
D補償器9では、出力誤差−(k)を入力して、設計プ
ロ、り15に設定されたノ母うメータをもちいて、U−
[有])を次のように演算する。
to e) = y ~) - y 謹) ・・・5th formula sample value PI
In the D compensator 9, the output error -(k) is input, and using the standard meter set in the design pro 15, the U-
[Yes]) is calculated as follows.

ug%)=H(Z−’ 、 r 、 a 、α2.α5
 + ・” e K r r ) ” ”QC)・・・
第6式 u g*(k)は、前述したuih>と加算器10で加
算され、この加算された出力は、加減算器11で、積分
出力、 ”(k)などと演算され入力信号、”(k)を
生成する。
ug%)=H(Z-', r, a, α2.α5
+・”e Kr r)” “QC)...
The sixth equation ug*(k) is added to the above-mentioned uih> in an adder 10, and the added output is calculated as an integral output, "(k), etc., in an adder/subtractor 11, and becomes an input signal." (k) is generated.

u%)=u、%)+v%)−u/ (k)−u−(k)
 ・・・第7式なお、マ嘩)は、同定信号発生器12で
生成された、制御対象1を同定するための信号である。
u%)=u,%)+v%)-u/ (k)-u-(k)
. . . Equation 7) is a signal generated by the identification signal generator 12 and used to identify the controlled object 1.

入力信号、”(k)は、零次ホールド13によシサンプ
ル周期の間ホールドされて入力信号u(1)となる。オ
ンライン同定器14では、入力U〜)と出力y*(k)
の時系列データを入力して、制御対象1の次のような離
散時間モデルの係数as(i=x。
The input signal ``(k) is held for a second sample period by the zero-order hold 13 and becomes the input signal u(1).In the online identifier 14, the input U~) and the output y*(k)
Input the time series data of , and calculate the coefficient as(i=x) of the following discrete time model of controlled object 1.

2 # ・・’ l nl) bl (1−1+”’e
 nl) )、但し、A (’r、−,1’) y*(
k)=B (z−1) u*Qc) ”・第8式をオン
ライン最小2乗法によシ同定する。
2 #...' l nl) bl (1-1+"'e
nl) ), however, A ('r, -, 1') y*(
k)=B (z-1) u*Qc) ”・Identify the eighth equation using the online least squares method.

設計ブロック15では、同定された制御対象1の離散時
間モデル係数al、b1と、制御系の応答形状を規定す
るパラメータαと、ロバストダインrとを入力して主積
分演算器5の積分ダインにとフィードバック補償器6の
係数10 + / 1 r丁や制御系モデルrで用いる
τ、σ、α1.α2゜・・・などの係数や、サンプル値
PID補償器9で用いるτ、σ、α4.α2.・・・、
rなどの係数を設計するようになっている。システムコ
ントロールブロック16では、同定開始(start)
信号を受けて、同定信号発生器12、オンライン同定器
14などの動作状態を管理するようになっている。
In the design block 15, the identified discrete-time model coefficients al and b1 of the controlled object 1, the parameter α that defines the response shape of the control system, and the robust dyne r are inputted to the integral dyne of the main integral calculator 5. and the coefficients 10 + / 1 r of the feedback compensator 6 and τ, σ, α1 . used in the control system model r. coefficients such as α2°, τ, σ, α4, etc. used in the sample value PID compensator 9. α2. ...,
Coefficients such as r are designed. In the system control block 16, the identification start is started.
In response to the signal, the operating status of the identification signal generator 12, online identifier 14, etc. is managed.

次に、この制御装置の動作を説明する。まず、積分ダイ
ンにとフィードバック係数f。、f、を制御系が安定に
動作する適当な定数に設定し、システムコントロールブ
ロックxgニ同定開1th信号を入力する。閉ループ制
御中に同定信号発生器12とオンライン同定器14を動
作させる。
Next, the operation of this control device will be explained. First, the integral dyne and feedback coefficient f. , f are set to appropriate constants for stable operation of the control system, and an open 1th signal is input to the system control block xg. The identification signal generator 12 and online identifier 14 are operated during closed loop control.

これにとも外いノ4−シスチントリ・エキサイテイング
な同定信号V〜)が生成され、制御系に注入される。し
たがって、入力u”(k)に出力y*o=)とは独立な
ノJ?−シスチントリ・エキサイテイングな信号成分が
含まれるので、閉ループ制御中でも入力U〜)と出力y
”k)から制御対象1の離散時間モデルの係数a1.J
が次のようなオンライン最小2乗フィルタによシ同定さ
れる 9− 同定が進むにつれて、同定誤差信号η(k)が小さくな
シ、未知・母うメータベクトル金仮)の変化が小さくな
ると、これをシステムコントロールツp、り16が検出
し、同定信号発生器12とオンライン同定器14との動
作を停止させるとともに、同定74ラメータal e 
Jと応答形状係数αとpバストダインrが入力されてい
る設計ブロック15を起動させる。設計ブロック15で
は、まず同定ノ母うメータal 、 Jとサンプル周期
τとから、制御対象1の伝達関数QP (a)を演算す
る。
At the same time, an exciting identification signal V~) is generated and injected into the control system. Therefore, since the input u''(k) contains an exciting signal component that is independent of the output y*o=), the input U~) and the output y even during closed loop control.
”k) to the coefficient a1.J of the discrete-time model of controlled object 1
is identified by the following online least squares filter9- As the identification progresses, the identification error signal η(k) becomes smaller, and the change in the unknown/mother meter vector (k) becomes smaller. The system controller 16 detects this, stops the operation of the identification signal generator 12 and the online identifier 14, and also stops the identification signal generator 12 and online identifier 14.
Activate the design block 15 into which J, response shape coefficient α, and pbust dyne r are input. In the design block 15, first, the transfer function QP(a) of the controlled object 1 is calculated from the identified parameters al, J and the sampling period τ.

次に、応答形状係数αによシ規定された、制御系のモデ
ルGM(m +σ、α、)とサンプル周期τとを用い部
分的モデルマツチングによシ、積分10− ゲインにとフィードバック係数f。、flとを演算し、
このとき決まる制御系の立ち上シ時間σから、制御系の
離散時間モデルの係数σ、α2゜α6.・・・、を演算
し出力する。
Next, partial model matching is performed using the control system model GM (m + σ, α,) defined by the response shape coefficient α and the sampling period τ, and the integral 10− gain and feedback coefficient are f. , fl,
From the start-up time σ of the control system determined at this time, the coefficients σ, α2°α6, of the discrete time model of the control system. ..., is calculated and output.

これらの係数を受けて、まず、制御系のモデル7では、
前記第4式にもとづきモデル出力” M” (k)を出
力する。一方、設計ブロック15で演算された、σ、α
2.α3.・・・、r、Kを用いて、サンプル値PID
補償器9では、出力誤差ε(k)を入力して、ug”(
k)を出力する。このu、1)信号は、制御系に印加さ
れた外乱と制御対象1の動特性変化分から構成されてお
シ、この信号u−(k)を操作端へフィードバックする
ことによシ、動特性変化に強い、しかも、外乱にも強い
ロバストな制御系が自動的に構成されることになる。
Based on these coefficients, first, in control system model 7,
A model output "M" (k) is output based on the fourth equation. On the other hand, σ, α calculated in design block 15
2. α3. ..., r, K, the sample value PID
The compensator 9 inputs the output error ε(k) and calculates ug''(
k). This signal u,1) is composed of the disturbance applied to the control system and the change in the dynamic characteristics of the controlled object 1.By feeding back this signal u-(k) to the operating end, the dynamic characteristics can be changed. A robust control system that is resistant to changes and also to disturbances will be automatically constructed.

なお、設計ブロック15では、次のようなステップでま
ずα2.α3.α4を設計するとともに、σ、に、fo
、f、などの設計定数を設計する。
In addition, in the design block 15, α2. α3. While designing α4, σ, fo
, f, etc. are designed.

また、制御系設計のための参照モデルをGM(s、σ、
α2.α、)とすると GM(lI、σ、α2.α3.・・・)=110+σ@
剌z(σB)2+α3(σl)3+α4(σs ) ’
−1−・・)ることによシ離散時間モデルをめることが
できる。
In addition, the reference model for control system design is GM (s, σ,
α2. α, ) then GM(lI, σ, α2.α3...)=110+σ@
剌z(σB)2+α3(σl)3+α4(σs)'
-1-...), we can construct a discrete-time model.

GM(Z−’ r τ* ’ *α2 +α51”’)
為(8+ ’ r α2 r α5 t”’)1゜・・
・第15式 次に、K*IO*f、については、以下の演算によシ設
計される。
GM(Z-' r τ* ' *α2 +α51"')
For (8+ ' r α2 r α5 t"')1゜...
・Equation 15 Next, K*IO*f is designed by the following calculation.

(11) ・・・第16式 の正の最小機σを用いて、K r for flは次の
ようにまる。
(11) ... Using the positive minimum machine σ of Equation 16, K r for fl is calculated as follows.

また、以上によシ演算されたσ、τ、α1(1=1.2
.・・・)、γから、サンプル値PID補償器9の演算
器を 13− (12) 以上のように本発明では、閉ループ制御中に制御対象の
伝達関数をオン−ライン同定し、同定結果から、各補償
器と制御系の望ましいモデルを構成しているので構成さ
れた後は、制御対象の動特性変化に対してロバストな制
御系となるため、ロバストな制御系が自動的に構成され
ることになる。
Also, σ, τ, α1 (1=1.2
.. ...), γ, the arithmetic unit of the sampled value PID compensator 9 is calculated as 13- (12) As described above, in the present invention, the transfer function of the controlled object is identified on-line during closed-loop control, and from the identification result, , since each compensator and the desired model of the control system are configured, after the compensator is configured, the control system becomes robust against changes in the dynamic characteristics of the controlled object, so a robust control system is automatically configured. It turns out.

尚、本実施例では、ロバストなI−PD制御装置につい
て説明したが、サンプル値PID制御演算器を主制御演
算器としたロバストなPID制御装置で構成することも
できる。
In this embodiment, a robust I-PD control device has been described, but it is also possible to configure a robust PID control device using a sample value PID control calculator as a main control calculator.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例に係る制御装置のプル2ク図であ
る。 1・・・制御対象、2,3・・・サンプラ、5・・・主
積分演算器、6・・・フィードバック補償器、7・・・
制14− 御系モデル、8・・・出力誤差演算器、9・・・サンプ
ル値PID補償器、12・・・同定信号発生器、14・
・・オンライン同定器、15・・・設計ブロック。
The figure is a pull diagram of a control device according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Controlled object, 2, 3... Sampler, 5... Main integral calculator, 6... Feedback compensator, 7...
Control 14- Control system model, 8... Output error calculator, 9... Sample value PID compensator, 12... Identification signal generator, 14.
...Online Identifier, 15...Design Block.

Claims (1)

【特許請求の範囲】[Claims] 目標値信号と制御対象の出力信号とから制御演算出力信
号を演算する制御演算器と、前記目標値信号を入力して
制御系上デル出力信号を演算する制御系のダイナミック
モデルと、前記制御対象の出力信号とモデル出力信号と
の差から出力誤差信号をめる減算器と、前記出力誤差信
号を入力してPID (比例、積分、微分)演算を行な
うPID演算器と、とのPID演算器の出力信号を前記
制御演算出力信号から減算する減算器と、この減算器の
出力を前記制御対象の操作信号とする制御装置において
、同定用信号発生器と、制御対象の動特性を同定するオ
ンライン同定器と、同定結果から前記制御演算器で用い
る制御定数と前記PID演算器の制御定数と前記ダイナ
ミックモデルのパラメータとを演算する設計ブロックと
を有し、閉ループ制御中に制御対象の動特性を同定し、
その同定結果から各定数を自動的に演算する機能を備え
てなることを特徴とした制御装置。
a control calculator that calculates a control calculation output signal from a target value signal and an output signal of a controlled object; a dynamic model of a control system that receives the target value signal and calculates an output signal on the control system; a subtracter that calculates an output error signal from the difference between the output signal and the model output signal; and a PID calculation unit that inputs the output error signal and performs a PID (proportional, integral, differential) calculation. A subtracter that subtracts the output signal of the control calculation output signal from the control calculation output signal, and a control device that uses the output of the subtracter as an operation signal for the controlled object, an identification signal generator, and an online identification signal generator that identifies the dynamic characteristics of the controlled object. an identifier, and a design block that calculates control constants used in the control calculation unit, control constants of the PID calculation unit, and parameters of the dynamic model from the identification results, and the design block calculates the dynamic characteristics of the controlled object during closed-loop control. identify,
A control device characterized by having a function of automatically calculating each constant from the identification results.
JP7398384A 1984-04-13 1984-04-13 Control device Granted JPS60218105A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7398384A JPS60218105A (en) 1984-04-13 1984-04-13 Control device
EP85300069A EP0159103B1 (en) 1984-04-13 1985-01-04 Process control apparatus
DE8585300069T DE3572740D1 (en) 1984-04-13 1985-01-04 Process control apparatus
AU37330/85A AU550917B2 (en) 1984-04-13 1985-01-04 Process control apparatus with reference model
US06/690,259 US4679136A (en) 1984-04-13 1985-01-10 Dynamic error compensating process controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7398384A JPS60218105A (en) 1984-04-13 1984-04-13 Control device

Publications (2)

Publication Number Publication Date
JPS60218105A true JPS60218105A (en) 1985-10-31
JPH0434766B2 JPH0434766B2 (en) 1992-06-09

Family

ID=13533844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7398384A Granted JPS60218105A (en) 1984-04-13 1984-04-13 Control device

Country Status (1)

Country Link
JP (1) JPS60218105A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181003A (en) * 1987-01-23 1988-07-26 Nec Home Electronics Ltd Prediction arithmetic control method
JPS63241601A (en) * 1987-03-28 1988-10-06 Toshiba Corp Process controller
JPS63279301A (en) * 1987-05-12 1988-11-16 Yokogawa Electric Corp Identifying method for feedback system
JPH01314306A (en) * 1988-06-15 1989-12-19 Kyushu Denki Seizo Kk Modem norm type adaptive advanced control system with arithmetic circuit
JPH03111904A (en) * 1989-09-26 1991-05-13 Yokogawa Electric Corp Self-tuning controller
CN105404149A (en) * 2015-11-27 2016-03-16 本钢板材股份有限公司 Multi-model LF furnace electrode adjusting method based on steel type clearance slag thickness
JP2017079084A (en) * 2006-10-02 2017-04-27 フィッシャー−ローズマウント システムズ,インコーポレイテッド Method for implementing process control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458180A (en) * 1977-09-29 1979-05-10 Siemens Ag Regulator
JPS576203A (en) * 1980-06-11 1982-01-13 Hitachi Ltd Boiler steam temperature control system
JPS58201103A (en) * 1982-05-19 1983-11-22 Toshiba Corp Sampled value pid controller
JPS5930104A (en) * 1982-08-09 1984-02-17 エレクトロニクス・リサ−チ・アンド・サ−ビス・オ−ガニゼイシヨン・インダストリアル・テクノロジイ・リサ−チ・インステイチユ−ト Adaptive modeling control system
JPS5946353A (en) * 1982-09-08 1984-03-15 Nissan Motor Co Ltd Idling speed controlling method for internal-combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458180A (en) * 1977-09-29 1979-05-10 Siemens Ag Regulator
JPS576203A (en) * 1980-06-11 1982-01-13 Hitachi Ltd Boiler steam temperature control system
JPS58201103A (en) * 1982-05-19 1983-11-22 Toshiba Corp Sampled value pid controller
JPS5930104A (en) * 1982-08-09 1984-02-17 エレクトロニクス・リサ−チ・アンド・サ−ビス・オ−ガニゼイシヨン・インダストリアル・テクノロジイ・リサ−チ・インステイチユ−ト Adaptive modeling control system
JPS5946353A (en) * 1982-09-08 1984-03-15 Nissan Motor Co Ltd Idling speed controlling method for internal-combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181003A (en) * 1987-01-23 1988-07-26 Nec Home Electronics Ltd Prediction arithmetic control method
JPS63241601A (en) * 1987-03-28 1988-10-06 Toshiba Corp Process controller
JPS63279301A (en) * 1987-05-12 1988-11-16 Yokogawa Electric Corp Identifying method for feedback system
JPH01314306A (en) * 1988-06-15 1989-12-19 Kyushu Denki Seizo Kk Modem norm type adaptive advanced control system with arithmetic circuit
JPH03111904A (en) * 1989-09-26 1991-05-13 Yokogawa Electric Corp Self-tuning controller
JP2017079084A (en) * 2006-10-02 2017-04-27 フィッシャー−ローズマウント システムズ,インコーポレイテッド Method for implementing process control system
CN105404149A (en) * 2015-11-27 2016-03-16 本钢板材股份有限公司 Multi-model LF furnace electrode adjusting method based on steel type clearance slag thickness

Also Published As

Publication number Publication date
JPH0434766B2 (en) 1992-06-09

Similar Documents

Publication Publication Date Title
EP0256842B1 (en) Adaptive process control system
Palmor et al. On the design and properties of multivariable dead time compensators
JPH0298701A (en) Controller
JPS60218105A (en) Control device
CN112334845A (en) Feedback control method and feedback control device
CN108227476A (en) A kind of control method of AGV trolleies
JP4982905B2 (en) Control method and control apparatus
WO2019087554A1 (en) Feedback control method and motor control device
Feiler et al. Adaptive speed control of a two-mass system
JPH07261805A (en) Automatic adjusting device for proportional plus integral plus derivative control parameter
US6847851B1 (en) Apparatus for improved general-purpose PID and non-PID controllers
JPS63165903A (en) Adaptive controller
JPH0797285B2 (en) Process control equipment
Hughes Self-tuning and adaptive control-a reviewofsomebasictechniques
JPS61198302A (en) Regulator
JPH0556522B2 (en)
Liu et al. Output-feedback adaptive stabilization for nonlinear systems with unknown direction control coefficients
Pathiran et al. A comparative study on the well-known feedback controller design methods
JPH05265515A (en) Internal model controller
JP2809849B2 (en) 2-DOF adjustment device
JPH0119164B2 (en)
JP3034404B2 (en) 2-DOF PID adjustment device
JPH03268103A (en) Automatic tuning controller
JPS5936803A (en) Method for correcting feedforward model
Stebel et al. Balance-based adaptive control of the second order systems