JPS62150662A - Normal pressure type fuel cell power generation plant - Google Patents

Normal pressure type fuel cell power generation plant

Info

Publication number
JPS62150662A
JPS62150662A JP60289256A JP28925685A JPS62150662A JP S62150662 A JPS62150662 A JP S62150662A JP 60289256 A JP60289256 A JP 60289256A JP 28925685 A JP28925685 A JP 28925685A JP S62150662 A JPS62150662 A JP S62150662A
Authority
JP
Japan
Prior art keywords
air
mcfc
exhaust gas
fuel cell
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60289256A
Other languages
Japanese (ja)
Other versions
JPH0828225B2 (en
Inventor
Toshiaki Yoshida
敏明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60289256A priority Critical patent/JPH0828225B2/en
Publication of JPS62150662A publication Critical patent/JPS62150662A/en
Publication of JPH0828225B2 publication Critical patent/JPH0828225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the efficiency of the transmission line terminal, by furnishing an expansion turbine, rotating it by the compressed air introduced from the outlet of an air preheater, and driving an air compressor. CONSTITUTION:An expansion turbine 10 to drive an air compressor 3 and an auxiliary air preheater 11 to heat the exhaust gas of the turbine 10 are furnished. The air is compressed at the air compressor 3, when, the temperature of the air rises because it is compressed adiabatically. Furthermore, the temperature of the compressed air rises more at an air preheater 4, through a heat exchange with a part of the exhaust gas from a cathode of an MCFC 1. The air from the outlet of the air preheater 4 rotates the expansion turbine 10 to drive the air compressor 3, while it is decompressed and cooled through the turbine 10. The exhaust gas of the expansion turbine 10 is heat-exchanged with the remaining exhaust gas from the MCFC 1 other than the gas used for the air preheater 4, and, the turbine exhaust gas is heated and then delivered to the cathode side of the MCFC 1, and at the same time, delivered to a reformer 2 as the air for combustion.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は燃料電池を使用した発電プラントに係り、特に
システムとしての発電効率を向上させた燃料電池発電プ
ラントに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a power generation plant using a fuel cell, and more particularly to a fuel cell power generation plant with improved power generation efficiency as a system.

〈従来の技術〉 第2図は従来の燃料電池発電プラントのフローシートで
ある。第2図において、1は溶融炭酸塩を使用した常圧
型燃料電池(MCFC)、2はリフオーマ、3は空気圧
縮機、4は空気予熱器、5は過熱器付蒸発器、6は天然
ガス圧縮機、7は天然ガス予熱器である。ここでMCF
Clは第3図に示すような構造となっている。
<Prior Art> Figure 2 is a flow sheet of a conventional fuel cell power generation plant. In Fig. 2, 1 is a normal pressure fuel cell (MCFC) using molten carbonate, 2 is a re-heater, 3 is an air compressor, 4 is an air preheater, 5 is an evaporator with a superheater, and 6 is a natural gas compressor. Machine 7 is a natural gas preheater. Here MCF
Cl has a structure as shown in FIG.

第3図においてaは電解質保持材に電解質を含浸させた
タイル、bは酸化ニッケル等の多孔質板製のカソード、
Cはニッケル等の多孔質板製のアノード、dはステンレ
ス鋼製で集電機能とガスの通路としての機能を合せもつ
セパレータ、eは空気等の酸化ガス流、fは水素と一酸
化炭素を含む燃料ガス流である。
In Fig. 3, a is a tile made of an electrolyte-retaining material impregnated with electrolyte, b is a cathode made of a porous plate such as nickel oxide,
C is an anode made of a porous plate such as nickel, d is a separator made of stainless steel that functions as a current collector and a gas passage, e is an oxidizing gas flow such as air, and f is a separator for hydrogen and carbon monoxide. A fuel gas flow containing

MCFCはかかる単一のユニット(セル)を多数積層し
たものである。即ちMCFCは水素と一酸化炭素を含む
燃料ガスと、空気等の酸化ガスを、それぞれアノード側
とカソード側に供給されて水と炭酸ガスに変換すると共
に電気を発生させるものである。
MCFC is a stack of many such single units (cells). That is, in the MCFC, a fuel gas containing hydrogen and carbon monoxide and an oxidizing gas such as air are supplied to the anode side and the cathode side, respectively, to convert them into water and carbon dioxide gas and generate electricity.

MCPCIに供給されるガスの圧力と温度は燃料ガスお
よび酸化ガス共に略1,2klj/ CmZ a。
The pressure and temperature of the gases supplied to the MCPCI are approximately 1.2 klj/CmZ a for both fuel gas and oxidizing gas.

540℃程度である。The temperature is about 540°C.

MCFC内の反応は発熱反応でありMCFCからの排気
の温度は略700℃程度である。MOPCIのアノード
側に燃料ガスを供給するリフオーマ2は内部に触媒を担
持し、化学反応を起させる熱交換器であって、加熱側は
MCFClのアノード側から送られる未反応の水素と一
酸化炭素を含むガスと圧縮空気とをそれぞれ導入して内
部で燃焼させており、被加熱側は触媒を担持し天然ガス
等のメタンを主成分とするガスと水蒸気の混合ガスを受
入れてそれを加熱改質し水素と一酸化炭素を主成分とす
る燃料ガスとして流出させるようになっている。そして
リフオーマ2からの燃焼排ガスはMCFCの)Jソード
側に送られる。
The reaction within the MCFC is an exothermic reaction, and the temperature of the exhaust gas from the MCFC is approximately 700°C. Reformer 2, which supplies fuel gas to the anode side of MOPCI, is a heat exchanger that supports a catalyst inside and causes a chemical reaction, and the heating side uses unreacted hydrogen and carbon monoxide sent from the anode side of MCFCl. A gas containing methane and compressed air are respectively introduced and combusted internally, and the heated side supports a catalyst and receives a mixed gas of water vapor and a gas containing methane, such as natural gas, as a main component, and heats and reforms it. The fuel gas is released as a fuel gas containing hydrogen and carbon monoxide as main components. The combustion exhaust gas from the refoamer 2 is then sent to the J-sword side of the MCFC.

以下第2図のフローによって説明する。The process will be explained below using the flow shown in FIG.

空気を電動機3aにより駆動される空気圧縮機3により
略1.2kO/ Cm2 aに圧縮し、空気予熱機4に
送る。空気予熱機4では上記圧縮空気とMCFCIのカ
ソード側からの排気の一部とをそれぞれ流通させて熱交
換し、圧縮空気を略505℃まで昇温すると共に、熱交
換の終った排気を系外に排出する。昇温された圧縮空気
とリフオーマ2からの燃焼排ガスとが混合されてMCF
Clのカソード側に送られる。尚リフオーマからの燃焼
排ガスと空気を混合してカソード側に送るのは、カソー
ド入口のガス温度を高めると共にMCPCIタイルa中
をカソード側からアノード側に移行するC O3−の供
給源としてCO2を供給するためである。MCFCIの
カソード側からの排気は、その一部が上述のように空気
予熱器4に送られると共に、残部は過熱器付蒸発器5に
送られる。
Air is compressed to approximately 1.2 kO/Cm2a by an air compressor 3 driven by an electric motor 3a and sent to an air preheater 4. In the air preheater 4, the compressed air and a part of the exhaust gas from the cathode side of the MCFCI are passed through each other to exchange heat, raise the temperature of the compressed air to approximately 505°C, and send the exhaust gas after heat exchange to the outside of the system. to be discharged. The heated compressed air and combustion exhaust gas from Refomar 2 are mixed to form an MCF.
It is sent to the cathode side of Cl. Furthermore, mixing the combustion exhaust gas from the re-former and sending it to the cathode side increases the gas temperature at the cathode inlet and supplies CO2 as a source of CO3-, which migrates from the cathode side to the anode side in MCPCI tile a. This is to do so. A part of the exhaust gas from the cathode side of the MCFCI is sent to the air preheater 4 as described above, and the remaining part is sent to the evaporator 5 with a superheater.

過熱器付蒸発器5は蒸発器5aと過熱器5bからなり、
カソードからの排気の熱で蒸発した水蒸気一部は過熱器
5bで加熱されて過熱蒸気となり、残りの蒸気は外部に
送られる。過熱蒸気は先に述べたように天然ガスと混合
され、リフオーマ2に送られる。上記混合ガスはリフオ
ーマ2で改質されて燃料ガスとなり、MCPCIのアノ
ードに送られる。MCPCIのアノードからの排ガス中
には未反応の水素ガス(H2)と−酸化炭素ガス(C○
)が含まれているので、上述のように燃料としてリフオ
ーマ2に送られ空気と共に燃焼される。そしてMCFC
lのアノードからの排ガスは略700℃程度の高温なの
で、リフオーマ2に送られる途中で天然ガス予熱器7を
通過し、リフオーマ2に送られる天然ガスを予熱する。
The evaporator with superheater 5 consists of an evaporator 5a and a superheater 5b,
A portion of the water vapor evaporated by the heat of the exhaust gas from the cathode is heated by the superheater 5b to become superheated vapor, and the remaining vapor is sent to the outside. The superheated steam is mixed with natural gas as described above and sent to the reformer 2. The mixed gas is reformed in the reformer 2 to become a fuel gas, which is sent to the anode of the MCPCI. The exhaust gas from the MCPCI anode contains unreacted hydrogen gas (H2) and -carbon oxide gas (C○
), it is sent as fuel to the reformer 2 and burned together with air as described above. and MCFC
Since the exhaust gas from the anode 1 has a high temperature of about 700° C., it passes through a natural gas preheater 7 on the way to the reheater 2 and preheats the natural gas sent to the reheater 2.

天然ガスは天然ガス圧縮機6により昇圧され天然ガス予
熱器7で昇温された後、上述のように水蒸気と共にリフ
オーマ2に送られる。
After the natural gas is pressurized by the natural gas compressor 6 and heated by the natural gas preheater 7, it is sent to the reformer 2 together with steam as described above.

〈発明が解決しようとする問題点〉 以上述べたような従来の常圧型燃料電池発電プラントに
おいて、動力を消費するのは空気圧縮機3と天然ガス圧
縮機6であるが、天然ガスと空気の流量は重量比で略1
:80となっているので、動力消費の大部分は空気圧縮
機3である。
<Problems to be solved by the invention> In the conventional normal pressure fuel cell power generation plant as described above, power is consumed by the air compressor 3 and the natural gas compressor 6. The flow rate is approximately 1 in terms of weight ratio.
:80, most of the power consumption is from the air compressor 3.

空気圧縮機3によりMCFClで発生する電力の一部が
消費されるので、プラントとしての送電端発電効率が低
下する。
Since a part of the electric power generated by MCFCl is consumed by the air compressor 3, the power generation efficiency at the transmission end of the plant decreases.

〈発明の目的〉 本発明は従来技術のかかる問題点に鑑み案出されたもの
で、空気予熱器4からの加熱圧縮空気を膨脹タービン1
0に導入して1.2kg/ cm2 a程度まで減圧す
ると共に膨脹タービン10を回転させ、該膨脹タービン
10により空気圧縮機3を駆動することにより、プラン
ト内の消費電力を削減し、それによりプラントとしての
送電端発電効率を向上させた常圧型燃料電池発電プラン
トを提供することを目的とする。
<Object of the Invention> The present invention has been devised in view of the problems of the prior art.
0 and reduce the pressure to about 1.2 kg/cm2 a, rotate the expansion turbine 10, and drive the air compressor 3 by the expansion turbine 10, thereby reducing power consumption in the plant, thereby reducing the pressure in the plant. The purpose of the present invention is to provide a normal pressure fuel cell power generation plant with improved transmission end power generation efficiency.

〈問題点を解決するための手段〉 上記目的を達成するため本発明の常圧型燃料電池発電プ
ラントは、第1図に示すように溶融炭酸塩型燃料電池(
MCFC)1と、MCFClのアノード側からの排気と
圧縮空気を共に受入れて燃焼させ、燃焼排ガスをMCF
Clのカソード側に送るとともに、天然ガス等炭化水素
を含むガスと水蒸気を受入れて、上記燃焼熱で加熱して
改質し、水素と一酸化炭素を含む燃料ガスを生成させて
、MCFCのアノード側に送るリフオーマ2と、該MC
FCのカソード側とリフオーマでの燃焼用に圧縮空気を
送る空気圧縮I13と、該圧縮I13からの圧縮空気と
MCFCのカソード側からの排気をそれぞれ流通させて
熱交換し圧縮空気を加熱する空気予熱器4と、MCFC
のカソード側からの排気を熱源として、リフオーマに送
られる上記水蒸気を発生させる過熱器付蒸発器5とを備
えた常圧型燃料電池発電プラントにおいて、上記空気予
熱器4からの加熱圧縮空気を導入して回転し、上記空気
圧縮機を駆動する膨脹タービン10を設け、該膨脹ター
ビンの排気は1.2に!II/ Cm28程度まで減圧
されており、MCFCのカソード側とリフオーマに送ら
れるようになっていることを特徴とするものである。
<Means for Solving the Problems> In order to achieve the above object, the atmospheric pressure fuel cell power generation plant of the present invention uses a molten carbonate fuel cell (
MCFC) 1, exhaust gas from the anode side of MCFCl and compressed air are both accepted and combusted, and the combustion exhaust gas is transferred to the MCF.
In addition to sending Cl to the cathode side, gas containing hydrocarbons such as natural gas and water vapor are received, heated and reformed using the heat of combustion, and a fuel gas containing hydrogen and carbon monoxide is generated, which is then connected to the anode of the MCFC. Refoma 2 sent to the side and the MC
An air compressor I13 that sends compressed air for combustion between the cathode side of the FC and the refoamer, and an air preheater that heats the compressed air by circulating the compressed air from the compressor I13 and the exhaust gas from the cathode side of the MCFC. 4 and MCFC
In a normal-pressure fuel cell power generation plant equipped with an evaporator with a superheater 5 that uses exhaust gas from the cathode side as a heat source to generate the steam sent to the refoamer, heated compressed air from the air preheater 4 is introduced. An expansion turbine 10 is provided which rotates to drive the air compressor, and the exhaust gas of the expansion turbine is 1.2! It is characterized in that it is depressurized to about II/Cm28 and is sent to the cathode side of the MCFC and the refoamer.

〈作   用〉 リフオーマ2に送られる空気は空気圧縮ta3で従来よ
りも高圧の略2,4k(1/ cmz a程度まで昇圧
して、空気予熱器4に送り、ここで加熱後膨脹タービン
10に送られここで1.2kg/ cm2 a程度まで
減圧すると共に、該タービン10を回転させる。タービ
ン10の排気はMCFClのカソード側に送られるとと
もに、リフオーマ2に燃焼用として送られるようになっ
ている。
<Operation> The air sent to the re-former 2 is compressed by the air compressor TA3 to approximately 2.4K (1/cmz a), which is a higher pressure than before, and sent to the air preheater 4, where it is heated and then sent to the expansion turbine 10. There, the pressure is reduced to about 1.2 kg/cm2 a, and the turbine 10 is rotated.The exhaust gas of the turbine 10 is sent to the cathode side of the MCFCl, and is also sent to the rifoma 2 for combustion. .

膨脹タービン10により空気圧縮機3を駆動するように
したので空気圧縮機駆動用の電力がほぼ不要となり、プ
ラントとしての送電端発電効率が向上する。
Since the air compressor 3 is driven by the expansion turbine 10, almost no electric power is required for driving the air compressor, and the power generation efficiency at the transmission end of the plant is improved.

〈実 施 例〉 以下本発明の一実施例を図面を参照しつつ説明する。<Example> An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の常圧型燃料電池発電プラントのフロー
シートである。第1図において1はMCFC,2はリフ
オーマ、3は空気圧縮機、4は空気予熱器、5は過熱器
付蒸発器、6は天然ガス圧縮機、7は天然ガス予熱器、
10は膨脹タービン、11は補助空気予熱器、12は補
助電動機である。
FIG. 1 is a flow sheet of a normal pressure fuel cell power generation plant of the present invention. In Fig. 1, 1 is an MCFC, 2 is a reheater, 3 is an air compressor, 4 is an air preheater, 5 is an evaporator with superheater, 6 is a natural gas compressor, 7 is a natural gas preheater,
10 is an expansion turbine, 11 is an auxiliary air preheater, and 12 is an auxiliary electric motor.

尚本発明の燃料電池発電プラントと従来のものとの相違
は空気圧縮機3駆動用の膨脹タービン10と、該タービ
ン10の排気加熱用の補助空気予熱器11とを追加した
ことなので、その部分を中心に説明し、従来と同じ部分
については同一の付号を用いてあり、説明は省略する。
The difference between the fuel cell power generation plant of the present invention and the conventional one is that an expansion turbine 10 for driving the air compressor 3 and an auxiliary air preheater 11 for heating the exhaust gas of the turbine 10 are added. The explanation will focus on the following, and the same numbers will be used for the same parts as before, and the explanation will be omitted.

空気は空気圧縮63で略2−4ko/ cm2 aまで
昇圧され、その際断熱圧縮されるので略120℃まで昇
温する。さらに圧縮空気は空気予熱器4でMCFClの
カソードからの略700℃の排気の一部と熱交換されて
、略550℃まで昇温する。
Air is pressurized to about 2-4 ko/cm2 a by air compression 63, and is adiabatically compressed at this time, so the temperature is raised to about 120°C. Further, the compressed air is heated in the air preheater 4 with a part of the approximately 700°C exhaust gas from the MCFCl cathode, and is heated to approximately 550°C.

空気予熱器4出口の略2,4ka/cm2 a、 55
0℃の空気は膨脹タービン10を通って略1,2ko/
 cm2a、略450℃まで減圧、減温すると共に、タ
ービン10を回転させて、空気圧縮機3を駆動する。
Air preheater 4 outlet approximately 2.4ka/cm2 a, 55
Air at 0°C passes through the expansion turbine 10 at approximately 1.2 ko/
The pressure and temperature are reduced to cm2a, approximately 450° C., and the turbine 10 is rotated to drive the air compressor 3.

膨脹タービン10の排気は補助空気予熱器11で、MC
FClのカソードからの排気の内空気予熱器に使用した
残部と熱交換し、タービン排気は略505℃まで昇温し
た後MCFC1のカソード側に、送られると共にリフオ
ーマ2に燃焼用空気として送られる。尚本実施例では補
助空気予熱器11を使用しているが、空気予熱器4、膨
脹タービン10の条件設定によっては補助空気予熱器1
1は省略できる。
The exhaust gas of the expansion turbine 10 is supplied to the auxiliary air preheater 11, and the MC
The exhaust gas from the FCl cathode exchanges heat with the remainder of the air used in the air preheater, and the turbine exhaust heats up to about 505° C., and then is sent to the cathode side of the MCFC 1 and sent to the re-former 2 as combustion air. Although the auxiliary air preheater 11 is used in this embodiment, the auxiliary air preheater 1 may be used depending on the condition settings of the air preheater 4 and the expansion turbine 10.
1 can be omitted.

以下200kW M CF C発電プラントについて従
来のものと本発明のものとを比較する。第1表は空気圧
縮機まわりの圧力、温度条件の比較、図は従来例のプラ
ントとしてのエネルギーフローであり、第5図は本発明
のプラントとしてのエネルギーフローである。
Below, a comparison will be made between a conventional 200kW MCFC power plant and a 200kW MCFC power plant according to the present invention. Table 1 shows a comparison of pressure and temperature conditions around the air compressor, the figure shows the energy flow as a conventional plant, and FIG. 5 shows the energy flow as a plant of the present invention.

第  1  表 第  2  表 第2表(つづき) 上記第2表がら明らかなように本発明によれば空気圧縮
機3の駆動動力は、膨脹タービンによりほぼ全面的に供
給されるので、送電端効率はほぼ3.1%向上する。
Table 1 Table 2 Table 2 (Continued) As is clear from Table 2 above, according to the present invention, the driving power of the air compressor 3 is almost entirely supplied by the expansion turbine, so that the net power efficiency is low. will improve by approximately 3.1%.

〈発明の効果〉 以上述べたように本発明の常圧型燃料電池発電プラント
には以下の効果がある。
<Effects of the Invention> As described above, the normal pressure fuel cell power generation plant of the present invention has the following effects.

(1)  膨脹タービンを設け、空気予熱器出口の圧油
り竺f−墳11丁開(1売ε江憤−九■粘するようにし
たので、所内動力がほぼ全面的にこの膨脹タービンによ
りまかなわれ、膨脹タービンの出力圧力は1.2kO/
Cm28程度にしたので燃料電池まわりはほぼ常圧とし
たままで燃料電池で発電する電力がほぼそのまま発電所
外へ取り出せるので発電プラントとして送電端効率が向
上する。
(1) An expansion turbine was installed so that the pressure oil at the outlet of the air preheater would be viscous. The output pressure of the expansion turbine is 1.2kO/
Since the pressure is set to about Cm28, the electricity generated by the fuel cell can be taken out of the power plant almost as is while the pressure around the fuel cell remains almost normal, improving the net efficiency of the power generation plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の常圧型燃料電池発電プラントのプロセ
スフローシート、第2図は従来の常圧型燃料電池発電プ
ラントのプロセスシート、第3図は溶融炭酸塩型燃料電
池の説明図、第4図は従来例のプラントとしてのエネル
ギーフロー、第5図は本発明のプラントとしてのエネル
ギー70−である。 1・・・・・・MCFC 2・・・・・・リフオーマ 3・・・・・・空気圧縮機 4・・・・・・空気予熱器 5・・・・・・過熱器付蒸発器 10・・・・・・膨脹タービン 11・・・・・・補助空気予熱器 第  1  図 第  3  図
Fig. 1 is a process flow sheet for a normal pressure fuel cell power generation plant of the present invention, Fig. 2 is a process sheet for a conventional normal pressure fuel cell power plant, Fig. 3 is an explanatory diagram of a molten carbonate fuel cell, and Fig. 4 is an explanatory diagram of a molten carbonate fuel cell. The figure shows the energy flow as a conventional plant, and FIG. 5 shows the energy flow 70- as the plant of the present invention. 1...MCFC 2...Reformer 3...Air compressor 4...Air preheater 5...Evaporator with superheater 10. ...Expansion turbine 11...Auxiliary air preheater Fig. 1 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 溶融炭酸塩型燃料電池(MCFC)と、MCFCのアノ
ード側からの排気と圧縮空気を共に受入れて燃焼させ、
燃焼排ガスをMCFCのカソード側に送るとともに、天
然ガス等の炭化水素を含むガスと水蒸気を受入れて、上
記燃焼熱で加熱して改質し、水素と一酸化炭素を含む燃
料ガスを生成させて、MCFCのアノード側に送るリフ
ォーマと、上記MCFCのカソード側と上記リフォーマ
での燃焼用に圧縮空気を送る空気圧縮機と、該圧縮機か
らの圧縮空気とMCFCのカソード側からの排気をそれ
ぞれ流通させて熱交換し圧縮空気を加熱する空気予熱器
と、MCFCのカソード側からの排気を熱源として、リ
フォーマに送られる上記水蒸気を発生させる過熱器付蒸
発器とを備えた常圧型燃料電池発電プラントにおいて、
上記空気予熱器からの加熱圧縮空気を導入して回転し、
上記空気圧縮機を駆動する膨脹タービンを設け、該膨脹
タービンの排気はMCFCのカソード側とリフォーマに
送られるようになっていることを特徴とする常圧型燃料
電池発電プラント。
A molten carbonate fuel cell (MCFC) receives and burns exhaust gas and compressed air from the anode side of the MCFC,
The combustion exhaust gas is sent to the cathode side of the MCFC, and gas containing hydrocarbons such as natural gas and steam are received and heated and reformed using the heat of combustion to generate fuel gas containing hydrogen and carbon monoxide. , a reformer that sends compressed air to the anode side of the MCFC, an air compressor that sends compressed air for combustion in the cathode side of the MCFC and the reformer, and the compressed air from the compressor and the exhaust gas from the cathode side of the MCFC, respectively. A normal pressure fuel cell power generation plant equipped with an air preheater that exchanges heat and heats compressed air, and an evaporator with a superheater that uses exhaust gas from the cathode side of the MCFC as a heat source to generate the steam that is sent to the reformer. In,
The heated compressed air from the air preheater is introduced and rotated,
A normal pressure fuel cell power generation plant, comprising: an expansion turbine for driving the air compressor, and exhaust gas from the expansion turbine is sent to the cathode side of the MCFC and the reformer.
JP60289256A 1985-12-24 1985-12-24 Atmospheric pressure fuel cell power plant Expired - Lifetime JPH0828225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60289256A JPH0828225B2 (en) 1985-12-24 1985-12-24 Atmospheric pressure fuel cell power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60289256A JPH0828225B2 (en) 1985-12-24 1985-12-24 Atmospheric pressure fuel cell power plant

Publications (2)

Publication Number Publication Date
JPS62150662A true JPS62150662A (en) 1987-07-04
JPH0828225B2 JPH0828225B2 (en) 1996-03-21

Family

ID=17740801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60289256A Expired - Lifetime JPH0828225B2 (en) 1985-12-24 1985-12-24 Atmospheric pressure fuel cell power plant

Country Status (1)

Country Link
JP (1) JPH0828225B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234871A (en) * 1986-04-04 1987-10-15 Hitachi Ltd Fuel cell power generating plant
JPH01157065A (en) * 1987-12-14 1989-06-20 Sanyo Electric Co Ltd Fuel cell power generating system
CN114243052A (en) * 2021-11-19 2022-03-25 上海鲲华新能源科技有限公司 Efficient energy storage method combining compressed air energy storage and hydrogen energy storage
CN114628731A (en) * 2020-12-12 2022-06-14 中国科学院大连化学物理研究所 Gas feeding device of fuel cell system and control method thereof
CN117317333A (en) * 2023-11-27 2023-12-29 常州创氢能源科技有限公司 High-temperature proton exchange membrane fuel cell stack for aviation turbine pressurization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719974A (en) * 1980-07-09 1982-02-02 Toshiba Corp Molten salt fuel cell system
JPS60160574A (en) * 1984-01-30 1985-08-22 Shimadzu Corp Turbo-compressor system for fuel cell power generation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719974A (en) * 1980-07-09 1982-02-02 Toshiba Corp Molten salt fuel cell system
JPS60160574A (en) * 1984-01-30 1985-08-22 Shimadzu Corp Turbo-compressor system for fuel cell power generation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234871A (en) * 1986-04-04 1987-10-15 Hitachi Ltd Fuel cell power generating plant
JPH01157065A (en) * 1987-12-14 1989-06-20 Sanyo Electric Co Ltd Fuel cell power generating system
CN114628731A (en) * 2020-12-12 2022-06-14 中国科学院大连化学物理研究所 Gas feeding device of fuel cell system and control method thereof
CN114628731B (en) * 2020-12-12 2023-07-14 中国科学院大连化学物理研究所 Gas feeding device of fuel cell system and control method thereof
CN114243052A (en) * 2021-11-19 2022-03-25 上海鲲华新能源科技有限公司 Efficient energy storage method combining compressed air energy storage and hydrogen energy storage
CN117317333A (en) * 2023-11-27 2023-12-29 常州创氢能源科技有限公司 High-temperature proton exchange membrane fuel cell stack for aviation turbine pressurization
CN117317333B (en) * 2023-11-27 2024-01-30 常州创氢能源科技有限公司 High-temperature proton exchange membrane fuel cell stack for aviation turbine pressurization

Also Published As

Publication number Publication date
JPH0828225B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
EP2800186B1 (en) Fuel cell hybrid system
JPH09129255A (en) Power generating system for combined cycle of indirect combustion gas turbine and doubled fuel cell
JPS5918830B2 (en) power plant
WO2010044113A1 (en) Apparatus and method for capturing carbon dioxide from combustion exhaust gas and generating electric energy by means of mcfc systems
JPH0845523A (en) Fuel cell/gas turbine combined generation system
JPS62150662A (en) Normal pressure type fuel cell power generation plant
CN115995575B (en) Fuel cell system based on carbon trapping and heat storage sharing and thermoelectric decoupling method
JPH1012255A (en) Fuel cell generating system and compound generating plant
JP3079317B2 (en) Molten carbonate fuel cell power generator
KR20020031686A (en) Apparatus and method of efficiency improvement for Fuel Cell generation of electric power sysytem
JP3072630B2 (en) Fuel cell combined cycle generator
JP2000348749A (en) Starting method of fuel cell power generation plant
JPS6264067A (en) Fuel battery system
JP3211505B2 (en) Method for controlling anode inlet temperature of molten carbonate fuel cell power generator
JP3377523B2 (en) Fuel cell system
JPH0377121B2 (en)
JP3286795B2 (en) Molten carbonate fuel cell power generator
JP3546234B2 (en) Solid oxide fuel cell / internal combustion type Stirling engine combined system
JP2508781B2 (en) Fuel cell generator
JP2004119239A (en) Fuel cell-gas turbine power generation equipment and combined cycle power generation equipment
JP2719354B2 (en) Steam supply system for power plant reforming
JPH0364865A (en) Molten carbonate fuel cell power generating system
JPS63254677A (en) Fuel cell power generating system
JPH01112671A (en) Operating method for fuel cell power plant
JPS6372072A (en) Control method of fuel cell power generating plant