JPS62149117A - Method of vapor phase growth - Google Patents

Method of vapor phase growth

Info

Publication number
JPS62149117A
JPS62149117A JP28928185A JP28928185A JPS62149117A JP S62149117 A JPS62149117 A JP S62149117A JP 28928185 A JP28928185 A JP 28928185A JP 28928185 A JP28928185 A JP 28928185A JP S62149117 A JPS62149117 A JP S62149117A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
vapor phase
phase growth
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28928185A
Other languages
Japanese (ja)
Inventor
Noboru Akiyama
登 秋山
Hironori Inoue
洋典 井上
Saburo Ogawa
三郎 小川
Michio Ogami
大上 三千男
Takaya Suzuki
誉也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28928185A priority Critical patent/JPS62149117A/en
Publication of JPS62149117A publication Critical patent/JPS62149117A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent crystal defects, by performing one process of removing an oxide film from the surface of a substrate and one process of forming an oxide film on the surface of the substrate and then removing the oxide film from the surface of the substrate. CONSTITUTION:A substrate 10 is set on a heating table 100. A reaction chamber 500 is evacuated as it is supplied with H2 through a gas nozzle 200. The substrate 10 is heated to 850 deg.C within the hydrogen. An ultraviolet lamp 300 is lit and ultraviolet rays are applied to the substrate 10, which hydrogen is supplied together with chloride corresponding to about 0.5% to the flow rate of the hydrogen, so that an oxide film is removed from the surface of the substrate 10 A (process A). Subsequently, oxygen is supplied into the chamber, while ultraviolet rays are continuously applied, to oxidize the surface of the substrate 10 (process B). After each of these processes A and B is carried out at least once, the process A is repeated to remove the oxide film 20 from the surface of the substrate 10. Subsequently, hydrogen and dichlorosilane are supplied in the chamber as ultraviolet rays are applied so that a single crystal silicon layer 40 is grown on the substrate 10. According to this method, crystal defects can be prevented effectively.

Description

【発明の詳細な説明】 (発明の利用分野ノ 本発明は気相成長方法に係り、特に低温で基板表面の清
浄化を行い、引き続き低温で薄膜の成長を行う気相成長
方法に関するものである。
[Detailed Description of the Invention] (Field of Application of the Invention) The present invention relates to a vapor phase growth method, and particularly relates to a vapor phase growth method in which a substrate surface is cleaned at a low temperature and a thin film is subsequently grown at a low temperature. .

(発明の背景) 従来のシリコン気相成長において、基板(その内部に所
定の不純物をドープしたもの)表面の清浄化(#処理)
Kは基板を水素中あるいは微量の塩素を含む水素中で、
約1200℃の高1で熱処理をする方法が主に用いられ
てきた。
(Background of the invention) In conventional silicon vapor phase growth, cleaning (# treatment) of the surface of a substrate (the inside of which is doped with a predetermined impurity)
K is the substrate in hydrogen or hydrogen containing a trace amount of chlorine,
A method of heat treatment at high temperature of about 1200° C. has been mainly used.

しかし、この方法では、高温の熱処理のために。However, in this method, due to high temperature heat treatment.

引き続いて気相成長を行う際に、成長層への基板不純物
のオートドーピングが多くなるという問題がある。これ
は前処理温蜜の低温化によって防止できるが、この場合
は、基板表面の清浄化が十分に行われないという別の問
題が生じる。
When performing subsequent vapor phase growth, there is a problem in that autodoping of substrate impurities into the growth layer increases. Although this can be prevented by lowering the temperature of the pretreatment temperature, another problem arises in this case: the substrate surface is not sufficiently cleaned.

この問題を解決する手段として1例えば特開昭60−4
7414号公報に示されているように、酸素を含む雰囲
気下で、基板表面に紫外線を照射して炭素系の汚染を除
去し、欠いて真空下で加熱して酸化膜を除去した後、こ
れに引き続いて薄膜成長を行う方法が知られている。
As a means to solve this problem, for example, JP-A-60-4
As shown in Publication No. 7414, the substrate surface is irradiated with ultraviolet rays in an oxygen-containing atmosphere to remove carbon-based contamination, and then heated in a vacuum to remove the oxide film. A method is known in which thin film growth is performed subsequently.

しかしながら、900℃以下の低温で前処理及び成長を
行なった場合、結晶欠陥の一種である転位及び積層欠陥
が多数発生して成長層の結晶性が十分でないという問題
があった。
However, when the pretreatment and growth are performed at a low temperature of 900° C. or lower, there is a problem that a large number of dislocations and stacking faults, which are types of crystal defects, occur and the crystallinity of the grown layer is insufficient.

(発明の目的) 本発明の目的は、低温で基板の前処理をし、これに引き
続いて低温で結晶成長を行った場合に発生する結晶欠陥
の発生を防止することが可能な気相成長方法を提供する
ことにある。
(Objective of the Invention) The object of the present invention is to provide a vapor phase growth method capable of preventing the occurrence of crystal defects that occur when a substrate is pretreated at a low temperature and subsequently crystal growth is performed at a low temperature. Our goal is to provide the following.

(発明の概要) 本発明は、基板表面に形成された薄い酸化膜を、例えば
水素とハロゲンガス又は水素とハロゲン化水素ガスの混
合ガスを含む雰囲気下で、基板に紫外光を照射あるいは
ガス雰囲気をプラズマ状態にして除去する工程と、これ
に引き続いて酸素を含む雰囲気下で基板に紫外光を照射
あるいはガス雰囲気をプラズマ状態にして基板表面を酸
化する工程の連続した2工程を少くとも1回行い5次い
で、基板表面の酸化膜を除去することにより、結晶欠陥
の発生原因となる基板表面の汚染物質を十分に除去した
後に、基板を反応室から取出すことなしに、引き続き気
相成長を行うことを特徴とする。
(Summary of the Invention) The present invention provides a method for irradiating a thin oxide film formed on a substrate surface with ultraviolet light or in a gas atmosphere, for example, in an atmosphere containing hydrogen and halogen gas or a mixed gas of hydrogen and hydrogen halide gas. At least once, the following two steps are performed: a step of converting the material into a plasma state and removing it, and then a step of irradiating the substrate with ultraviolet light in an oxygen-containing atmosphere or making a gas atmosphere into a plasma state and oxidizing the substrate surface. Step 5 Next, by removing the oxide film on the substrate surface, contaminants on the substrate surface that cause crystal defects are sufficiently removed, and then vapor phase growth is continued without taking the substrate out of the reaction chamber. It is characterized by

(発明の実施例) 第smは1本発明気相成長力法の工程説明図である。1
0は所定の不純物をドープした基板。
(Embodiments of the Invention) No. sm is a process explanatory diagram of the vapor phase growth force method of the present invention. 1
0 is a substrate doped with a predetermined impurity.

20は基板lO上の酸化膜、30は基板lOの表面また
は酸化膜20内の表面汚染物質、40は基板10上に成
長された単結晶層である。
20 is an oxide film on the substrate 1O, 30 is a surface contaminant on the surface of the substrate 1O or in the oxide film 20, and 40 is a single crystal layer grown on the substrate 10.

また、第2図は本発明の気相成長方法を実施する装量の
一例を示したものである。 100は加熱台、200 
 はガスノズル、300は紫外ランプ。
Moreover, FIG. 2 shows an example of the loading amount for carrying out the vapor phase growth method of the present invention. 100 is a heating stand, 200
is a gas nozzle, and 300 is an ultraviolet lamp.

400 は高周波加熱コイル、5004石英製反応容器
である。
400 is a high frequency heating coil, and 5004 is a quartz reaction vessel.

基板表面の酸化膜を弗酸と脱イオ/純水(以下純水と記
す)の混合液で除去し、純水で流水洗浄後、アンモニア
と過酸化水素及び純水の混合液で洗浄する。このとき、
基板10上には酸化膜20が生じている。そしてさらに
、純水で流水洗浄後、基板を乾燥させる(第1図のP工
程)。
The oxide film on the surface of the substrate is removed with a mixture of hydrofluoric acid and deionized/pure water (hereinafter referred to as pure water), washed with running pure water, and then cleaned with a mixture of ammonia, hydrogen peroxide, and pure water. At this time,
An oxide film 20 is formed on the substrate 10. Further, after washing with running pure water, the substrate is dried (step P in FIG. 1).

その後、基板10を反応室の加熱台 100上にセット
する。ガスノズル 200から水素(H2)を流しなが
ら、約ITorTまで反応容器500内を減圧排気し、
水素中で基板を 850℃まで加熱する。
Thereafter, the substrate 10 is set on the heating table 100 in the reaction chamber. While flowing hydrogen (H2) from the gas nozzle 200, the inside of the reaction vessel 500 is evacuated to about ITorT,
The substrate is heated to 850°C in hydrogen.

ざらに、紫外ランプ300を点燈して基板10に紫外光
を照射し、水素流量に対して約0.5%の塩素を水素と
ともに流して、基板表面の酸化膜を除去する(人工程)
Roughly, the ultraviolet lamp 300 is turned on to irradiate the substrate 10 with ultraviolet light, and chlorine of about 0.5% relative to the hydrogen flow rate is flowed together with hydrogen to remove the oxide film on the substrate surface (human process).
.

次いで、紫外光を照射したまま、塩素と水素の代わりに
V累(02)を如して4板表面を酸化する(B工程)。
Next, while irradiating with ultraviolet light, the surfaces of the four plates are oxidized using V (02) instead of chlorine and hydrogen (step B).

この連続したA、Bの工程を少なくとも1回(第1図は
、A、B工程を2回くり返した例を示している)行った
後、i&後にA工程を行って基板表面の酸化膜20を除
去する。
After performing these consecutive steps A and B at least once (FIG. 1 shows an example in which steps A and B are repeated twice), step A is performed after i& to remove the oxide film 20 on the substrate surface. remove.

引き続いて水素と約0.1mo1%のジクロルシラン(
SiHgCAl2)を流して、S外光を照射しながら基
板上にシリコンの単結晶層40の成長を行う(E工程)
Subsequently, hydrogen and about 0.1 mo1% dichlorosilane (
A silicon single crystal layer 40 is grown on the substrate while flowing SiHgCAl2) and irradiating S external light (Step E).
.

第3図は、基板温度を 850℃として本発明を実施し
た際のA、B連続工程の実施回数(横軸)と結晶層の転
位密度(縦軸)の関係を、実験例で示したものである。
Figure 3 shows an experimental example of the relationship between the number of consecutive steps A and B (horizontal axis) and the dislocation density of the crystal layer (vertical axis) when the present invention was carried out at a substrate temperature of 850°C. It is.

この図から、A、B連続工程を1回でも行うと、結晶7
140内の転位@度は急激に減少する。この工程を2回
以上くり返して行うと転位密妾はさらに減少し、結晶性
の良い成長層が得られた。
From this figure, if the continuous steps A and B are performed even once, the crystal 7
The dislocations within 140° decrease rapidly. When this step was repeated two or more times, the number of dislocation concubines was further reduced and a grown layer with good crystallinity was obtained.

これは、第1図にも示したように、基板表面を酸化する
際に表面汚染物30が酸化物の形で基板表面から気相中
へ脱離したか、あるいは酸化膜20中にとり込まれ1次
の酸化膜除去の工程で酸化膜と一緒に除去されたものと
考えられる。
This is because, as shown in FIG. 1, when the substrate surface is oxidized, the surface contaminants 30 are desorbed from the substrate surface in the form of oxides into the gas phase, or are incorporated into the oxide film 20. It is thought that this was removed together with the oxide film in the next oxide film removal step.

第4図はA、B連続工程を2回実施した際の。Figure 4 shows the results when consecutive steps A and B were carried out twice.

基板温度と転位密度の関係を示したものである。This figure shows the relationship between substrate temperature and dislocation density.

この図から、基板源1700℃の低温でも、本発明によ
り比較的良質の単結晶が得られることが分る。
From this figure, it can be seen that a relatively high-quality single crystal can be obtained by the present invention even at a low temperature of 1700° C. from the substrate source.

本実施例においては、酸化膜除去−表面酸化工程(A、
B連続工程)及び結晶成長工程で、基板10に紫外光を
照射した場合を説明したが、紫外光照射の代わりにガス
雰吐気をプラズマ状態にしても同様の効果が得られた。
In this example, the oxide film removal-surface oxidation process (A,
Although the case where the substrate 10 was irradiated with ultraviolet light in the continuous step B) and the crystal growth step was described, the same effect could be obtained even if the gas atmosphere was made into a plasma state instead of the ultraviolet light irradiation.

また、シリコンの気相成長を例にとって説明したが1本
発明はガリウムヒ素(GaAs ) 等の化合物半導体
の気相成長にも適用できる。
Further, although the description has been made using the vapor phase growth of silicon as an example, the present invention can also be applied to the vapor phase growth of compound semiconductors such as gallium arsenide (GaAs).

さらに、酸化膜を除去する工程で水素とハロゲンガスの
混合ガスを用いた場合を説明したが、これは水素とハロ
ゲン化水素ガスの混合ガスでも勿論かまわない。
Further, although a case has been described in which a mixed gas of hydrogen and halogen gas is used in the step of removing the oxide film, it is of course possible to use a mixed gas of hydrogen and hydrogen halide gas.

(発明の効果) 本発明によれば、基板表面に残存する欧化膜や炭素等の
表面汚染物を低温で十分に除去できるので、これに引き
続き低温で結晶成長を行う場合に、結晶欠陥のきわめて
少ない成長層を得ることができる上、基板不純物からの
オートドーピングも低減できる。
(Effects of the Invention) According to the present invention, surface contaminants such as carbon film and carbon remaining on the substrate surface can be sufficiently removed at low temperature. Not only can a smaller growth layer be obtained, but also autodoping from substrate impurities can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の気相成長方法の工程の説明図、第2図
は本発明気相成長方法を実施する装置の一例を示す断面
図、第3図および第4図は本発明の気相成長方法を適用
して得た基板の特性例を示す図である。
FIG. 1 is an explanatory diagram of the steps of the vapor phase growth method of the present invention, FIG. 2 is a sectional view showing an example of an apparatus for carrying out the vapor phase growth method of the present invention, and FIGS. 3 and 4 are FIG. 3 is a diagram showing an example of the characteristics of a substrate obtained by applying a phase growth method.

Claims (6)

【特許請求の範囲】[Claims] (1)基板の表面を清浄化した後に、前記表面に薄膜を
形成する気相成長方法であって、 基板の表面の酸化膜を除去するA工程と、 基板の表面に酸化膜を形成するB工程と、 前記AおよびB工程を少なくとも1回ずつ実施した後、
基板表面の酸化膜を除去する工程と、引き続いて前記基
板表面に薄膜を気相成長させる工程とよりなり、 各工程は反応室から基板を取出すことなく連続して行な
われることを特徴とする気相成長方法。
(1) A vapor phase growth method for forming a thin film on the surface of a substrate after cleaning the surface, comprising a step A of removing an oxide film on the surface of the substrate, and a step B of forming an oxide film on the surface of the substrate. After carrying out the steps A and B at least once each,
The method comprises a step of removing an oxide film on the surface of the substrate, and a step of subsequently growing a thin film on the surface of the substrate in a vapor phase, and each step is performed continuously without taking out the substrate from the reaction chamber. Phase growth method.
(2)A工程は、ハロゲンガスおよびハロゲン水素ガス
の一方および水素の混合ガスを含む雰囲気下で行なわれ
ることを特徴とする前記特許請求の範囲第1項記載の気
相成長方法。
(2) The vapor phase growth method according to claim 1, wherein step A is performed in an atmosphere containing a mixed gas of hydrogen and one of halogen gas and halogen hydrogen gas.
(3)A工程は、基板に紫外線を照射した状態で行なわ
れることを特徴とする前記特許請求の範囲第2項記載の
気相成長方法。
(3) The vapor phase growth method according to claim 2, wherein step A is performed while the substrate is irradiated with ultraviolet rays.
(4)A工程はガス雰囲気をプラズマ状態にして行なわ
れることを特徴とする前記特許請求の範囲第2項記載の
気相成長方法。
(4) The vapor phase growth method according to claim 2, wherein the step A is carried out with the gas atmosphere in a plasma state.
(5)B工程は、酸素を含む雰囲気下で、基板に紫外線
を照射した状態で行なわれることを特徴とする前記特許
請求の範囲第1項記載の気相成長方法。
(5) The vapor phase growth method according to claim 1, wherein step B is performed in an oxygen-containing atmosphere while irradiating the substrate with ultraviolet rays.
(6)B工程は、酸素を含む雰囲気下で、ガス雰囲気を
プラズマ状態にして行なわれることを特徴とする前記特
許請求の範囲第1項記載の気相成長方法。
(6) The vapor phase growth method according to claim 1, wherein step B is performed in an oxygen-containing atmosphere with the gas atmosphere in a plasma state.
JP28928185A 1985-12-24 1985-12-24 Method of vapor phase growth Pending JPS62149117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28928185A JPS62149117A (en) 1985-12-24 1985-12-24 Method of vapor phase growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28928185A JPS62149117A (en) 1985-12-24 1985-12-24 Method of vapor phase growth

Publications (1)

Publication Number Publication Date
JPS62149117A true JPS62149117A (en) 1987-07-03

Family

ID=17741140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28928185A Pending JPS62149117A (en) 1985-12-24 1985-12-24 Method of vapor phase growth

Country Status (1)

Country Link
JP (1) JPS62149117A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534935A (en) * 2007-07-26 2010-11-11 アプライド マテリアルズ インコーポレイテッド Method and apparatus for cleaning a substrate surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534935A (en) * 2007-07-26 2010-11-11 アプライド マテリアルズ インコーポレイテッド Method and apparatus for cleaning a substrate surface
US8309440B2 (en) 2007-07-26 2012-11-13 Applied Materials, Inc. Method and apparatus for cleaning a substrate surface
JP2013012752A (en) * 2007-07-26 2013-01-17 Applied Materials Inc Processing method of semiconductor substrate

Similar Documents

Publication Publication Date Title
JPS61270830A (en) Surface cleaning method
JPH0496226A (en) Manufacture of semiconductor device
JPS62149117A (en) Method of vapor phase growth
JPS60239028A (en) Cleaning method of surface
JP2663583B2 (en) Method for manufacturing heteroepitaxial film on silicon substrate
JP2640828B2 (en) Method for removing native oxide film on semiconductor substrate surface
JPH0536653A (en) Substrate surface treatment method
JP2595935B2 (en) Surface cleaning method
JPS58101429A (en) Dry etching method
JPS61160939A (en) Method of dry removal of si surface damage after dry etching
JPS63160324A (en) Molecular beam epitaxial crystal growth
JPH02151031A (en) Manufacture of semiconductor device
JPS635531A (en) Cleaning and flattening of si surface and apparatus therefor
JPS6390138A (en) Method for cleaning semiconductor surface
JPH07230955A (en) Vapor growth method and its device
JPH04290219A (en) Method of forming polycrystalline silicon film
KR0146173B1 (en) Method for manufacturing oxide film of semiconductor device
JP2624366B2 (en) Method for manufacturing semiconductor device
JPS61230326A (en) Vapor growth apparatus
JPS6341014A (en) Epitaxial growth method
JPH0424431B2 (en)
JP2634051B2 (en) Thin film growth method
JPH0226892A (en) Method and device for molecular beam epitaxial growth
JPH0517291A (en) Treatment of substrate for deposition of diamond thin film
JPH06163484A (en) Semiconductor manufacturing device