JPS621489Y2 - - Google Patents

Info

Publication number
JPS621489Y2
JPS621489Y2 JP1981092940U JP9294081U JPS621489Y2 JP S621489 Y2 JPS621489 Y2 JP S621489Y2 JP 1981092940 U JP1981092940 U JP 1981092940U JP 9294081 U JP9294081 U JP 9294081U JP S621489 Y2 JPS621489 Y2 JP S621489Y2
Authority
JP
Japan
Prior art keywords
tooth profile
theoretical
curved plate
curve
trochoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981092940U
Other languages
Japanese (ja)
Other versions
JPS5723455U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981092940U priority Critical patent/JPS621489Y2/ja
Publication of JPS5723455U publication Critical patent/JPS5723455U/ja
Application granted granted Critical
Publication of JPS621489Y2 publication Critical patent/JPS621489Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Gear Transmission (AREA)
  • Gears, Cams (AREA)

Description

【考案の詳細な説明】 この出願の考案は、修整歯形を有する歯車に関
する。詳しくは、実際の歯形に理論歯形を用いる
ことによつて、理想的なかみ合いが確保されるよ
うな歯形をもつた歯車を提供することを目的とす
るものである。
[Detailed Description of the Invention] The invention of this application relates to a gear having a modified tooth profile. Specifically, the purpose is to provide a gear having a tooth profile that ensures ideal meshing by using a theoretical tooth profile as an actual tooth profile.

従来、遊星歯車減速機における曲線板等の歯車
の歯形は、背隙(バツクラツシユ)を確保する為
理論曲線から修整して使用するのを常としてい
る。
Conventionally, the tooth profile of a gear such as a curved plate in a planetary gear reducer is usually modified from a theoretical curve in order to ensure back clearance.

第1図は、従来の遊星歯車減速機における曲線
板の歯形であつて、1は曲線板で最も外側の点線
2は曲線板1のトロコイド理論歯形である。3は
外ピンであつて、曲線板1の歯形がかみ合つてい
る。そして、曲線板1の実際の歯形は、実線で示
した2′であつて、理論曲線2から法線方向内側
に距離δだけ平行に切り込んだトロコイド包絡歯
形を使用し、これによつてバツクラツシユを確保
している。
FIG. 1 shows the tooth profile of a curved plate in a conventional planetary gear reducer, where 1 is the curved plate and the outermost dotted line 2 is the theoretical trochoid tooth profile of the curved plate 1. 3 is an outer pin with which the tooth profile of the curved plate 1 is engaged. The actual tooth profile of the curved plate 1 is 2' shown by a solid line, and a trochoid envelope tooth profile is used, which is cut parallel to the theoretical curve 2 by a distance δ inward in the normal direction. It is secured.

しかし、第1図より明らかなように、この方法
だと歯形は理論歯形でないから、外ピン3と歯形
2′が理論噛合(完全噛合)しない。その結果、
不規則な噛合が生ずるのは避けられなかつた。
However, as is clear from FIG. 1, with this method, the tooth profile is not a theoretical tooth profile, so the outer pin 3 and the tooth profile 2' do not mesh theoretically (completely mesh). the result,
Irregular occlusion was inevitable.

本考案は、このような従来の歯形修整の欠点を
解決するために開発されたもので、理論曲線を位
相角△だけ回転移動させることによつて、バツ
クラツシユをとるもので以下に説明する(第2図
参照)。
The present invention was developed to solve these drawbacks of conventional tooth profile modification, and it achieves a backlash by rotating the theoretical curve by a phase angle △. (See Figure 2).

図において、点線2は曲線板1の歯形(図では
歯形の谷部)を形成するトロコイド理論曲線であ
る。そして、この理論曲線2を曲線板中心Oのま
わりに△ψ左に回転変位させて得られる曲線2′
よりなる下り面と理論曲線2を曲線板中心Oの右
に△ψだけ回転変位して得られる曲線2″よりな
る上り面とで歯形の谷部を構成すると、曲線2′
と2″は歯形の山部と谷部で鋭角的に交わる。こ
の場合当然のことであるが、曲線2′と2″の2つ
の曲線は、それぞれトロコイド理論曲線である。
これらの山部と谷部で交わつた部分は荷重の伝達
にはほとんど寄与しないので、2曲線2′,2″の
交叉部をなめらかに図の点線の如く連続して、適
当に逃げて使用する。なお、この部分の逃げ構造
については、本件出願と同日の実用新案登録出願
(実開昭57−23455号公報)を参照されたい。
In the figure, the dotted line 2 is a trochoid theoretical curve that forms the tooth profile of the curved plate 1 (the trough of the tooth profile in the figure). Then, a curve 2' obtained by rotationally displacing this theoretical curve 2 to the left by △ψ around the center O of the curve plate
If the valley of the tooth profile is formed by the downward surface formed by the curve 2'' obtained by rotationally displacing the theoretical curve 2 by △ψ to the right of the curved plate center O, the valley of the tooth profile is formed by the curve 2'.
and 2'' intersect at an acute angle at the peak and valley of the tooth profile.In this case, naturally, the two curves 2' and 2'' are trochoid theory curves.
The intersections of these peaks and valleys make little contribution to load transmission, so the intersections of the two curves 2' and 2'' should be smoothly continuous as shown by the dotted lines in the figure, and used with appropriate escape. Regarding the escape structure of this part, please refer to the utility model registration application (Japanese Utility Model Publication No. 57-23455) filed on the same day as the present application.

そして、前記逃げの部分を除いた個所即ち第2
図の下り面と上り面Aは、すべてトロコイド理論
曲線より構成されているから、かみ合いは、完全
な理論的なかみ合いが行われるのである。
Then, the part excluding the relief part, that is, the second
Since the downward and upward surfaces A in the figure are all constructed from trochoidal theoretical curves, complete theoretical engagement is achieved.

第3図と第4図は、従来の曲線板における歯形
の修整法と本考案の修整方法とを比較するもので
あり、曲線板1を回転した時のこれとかみ合う外
ピン3と曲線板との相対運動を示したものであ
る。
Figures 3 and 4 compare the conventional tooth profile modification method for a curved plate and the modification method of the present invention, and show the relationship between the outer pin 3 that engages with the curved plate 1 and the curved plate when the curved plate 1 is rotated. This shows the relative motion of .

第3図において、外ピン3は曲線板の噛合開始
点で接線方向から接近しないため、曲線板に衝突
し、非理論的な噛合を小範囲B(理論的には1歯
の噛合)でした後、又も非接線方向に去つてゆ
く。
In Figure 3, since the outer pin 3 does not approach from the tangential direction at the starting point of engagement of the curved plate, it collides with the curved plate, resulting in non-theoretical engagement in a small range B (theoretically, one tooth engagement). After that, it leaves again in a non-tangential direction.

これに反し、第4図においては、外ピン3は曲
線板1との噛合開始点に接線方向から接近し、広
い範囲Cで理論噛合した後、噛合終点で又も接線
方向に去つてゆくので理想的である。なお、理論
噛合範囲Cは最適の条件に△を決定することが
できるのは勿論である。
On the other hand, in Fig. 4, the outer pin 3 approaches the starting point of engagement with the curved plate 1 from the tangential direction, and after theoretically engaging in a wide range C, it leaves again in the tangential direction at the engagement end point. ideal. Incidentally, it goes without saying that the theoretical meshing range C can be determined to be Δ to the optimum condition.

以上の説明でじゆうぶんわかる通り、本考案は
トロコイド理論曲線を維持した上で、バツクラツ
シユ修整をしているので、噛み合いが極めて理論
的に行われ、回転のむら、振動、騒音等が非常に
減少された。
As you can easily understand from the above explanation, the present invention maintains the trochoid theoretical curve and performs backlash correction, so the meshing is done in an extremely theoretical manner, and uneven rotation, vibration, noise, etc. are greatly reduced. It was done.

又、トロコイド理論歯形の維持により、広い範
囲の理論噛合が行われ、噛合率が増大し、(同時
噛合数の増大)噛合面の面圧が低下するので、ピ
ツチング等の損傷限界が相当に向上する。
In addition, by maintaining the trochoid theoretical tooth profile, theoretical engagement occurs over a wide range, increasing the engagement ratio (increasing the number of simultaneous engagements) and reducing the surface pressure on the engagement surfaces, which significantly improves the limit of damage such as pitting. do.

以上、本考案は、遊星歯車減速機の曲線板を例
に説明したが、サイクロイド系歯車、あるいはト
ロコイド系歯形を利用したポンプやモーターにも
応用することも可能である。
The present invention has been described above using the curved plate of a planetary gear reducer as an example, but it can also be applied to pumps and motors using cycloidal gears or trochoidal tooth profiles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、公知の曲線板における歯形修整法を
示す。第2図は、本考案の新規な歯形修整法を示
す。第3図は、公知の遊星歯車減速機における曲
線板と外ピンとの噛合状態を示す。第4図は、本
考案における曲線板と外ピンとの噛合状態を示
す。 図において;―1……曲線板、2……(歯形
の)トロコイド理論曲線、2′,2″……修整後の
理論歯形、3……外ピン、A……(修整歯形のか
み合いが行われる)下り面及び上に面、B……
(公知歯形の)噛合範囲、C……(本考案の)理
論噛合範囲。
FIG. 1 shows a known tooth profile modification method for a curved plate. FIG. 2 shows the novel tooth profile modification method of the present invention. FIG. 3 shows the meshing state of the curved plate and the outer pin in a known planetary gear reducer. FIG. 4 shows the state of engagement between the curved plate and the outer pin in the present invention. In the figure: -1...Curved plate, 2...Theoretical trochoid curve (of the tooth profile), 2', 2''...Theoretical tooth profile after modification, 3...Outer pin, A...(The meshing of the modified tooth profile is ) down side and up side, B...
Meshing range (of known tooth profile), C...theoretical meshing range (of the present invention).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 下り面と上り面で形成される歯形を有し、該歯
形の下り面は1つのトロコイド理論曲線2を歯車
の中心0のまわりに△ψ左に回転変位させて得ら
れる曲線2′で構成し、又歯形の上り面は前記ト
ロコイド理論曲線2を歯車の中心0のまわりに右
に△ψだけ回転変位させて得られる曲線2″で構
成したことを特徴とするトロコイド系歯形歯車。
It has a tooth profile formed by a descending surface and an ascending surface, and the descending surface of the tooth profile consists of a curve 2' obtained by rotationally displacing one trochoid theoretical curve 2 to the left around the center 0 of the gear. , and a trochoidal tooth profile gear characterized in that the upward surface of the tooth profile is formed by a curve 2'' obtained by rotationally displacing the trochoid theoretical curve 2 by Δψ to the right around the center 0 of the gear.
JP1981092940U 1981-06-25 1981-06-25 Expired JPS621489Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981092940U JPS621489Y2 (en) 1981-06-25 1981-06-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981092940U JPS621489Y2 (en) 1981-06-25 1981-06-25

Publications (2)

Publication Number Publication Date
JPS5723455U JPS5723455U (en) 1982-02-06
JPS621489Y2 true JPS621489Y2 (en) 1987-01-14

Family

ID=29454886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981092940U Expired JPS621489Y2 (en) 1981-06-25 1981-06-25

Country Status (1)

Country Link
JP (1) JPS621489Y2 (en)

Also Published As

Publication number Publication date
JPS5723455U (en) 1982-02-06

Similar Documents

Publication Publication Date Title
US5083474A (en) Zero transmission error gearing
US3881365A (en) Gearing
US7694607B2 (en) Wave gear drive with continuous meshing, high ratcheting torque tooth profile
US6837123B2 (en) Non-involute gears with conformal contact
CA1099990A (en) Hydrostatic gear machine
JPH08189548A (en) Inscribed meshing type planetary gear device
KR101029624B1 (en) Internal gear pump and inner rotor of the pump
US4702126A (en) Axial gear train having syncline face cycloid gearing
CA2275656A1 (en) Random engagement roller chain sprocket with staged meshing and flank relief to provide improved noise characteristics
US3982445A (en) High torque gearing
US20050164824A1 (en) Epicyclic gear train
DE3689479D1 (en) GEAR WITH A RELATIVELY SMALL CURVING AT THE CONTACT POINT.
JPS621489Y2 (en)
JPS621488Y2 (en)
CN111637200B (en) Helical gear planetary transmission mechanism
JPS60157548A (en) Star gear apparatus
JPH034757B2 (en)
CN107327559A (en) A kind of helical gear of circular arc parabola Multi-contact
JPH0215743B2 (en)
JPS634056B2 (en)
JPS58196348A (en) Reduction gear
JPH0534537B2 (en)
JPH03168448A (en) Planetary gear
JP2928053B2 (en) Gear mechanism
US5908289A (en) Gear machines with improved kinematics