JPH0534537B2 - - Google Patents

Info

Publication number
JPH0534537B2
JPH0534537B2 JP27689284A JP27689284A JPH0534537B2 JP H0534537 B2 JPH0534537 B2 JP H0534537B2 JP 27689284 A JP27689284 A JP 27689284A JP 27689284 A JP27689284 A JP 27689284A JP H0534537 B2 JPH0534537 B2 JP H0534537B2
Authority
JP
Japan
Prior art keywords
teeth
gear
internal gear
input shaft
external gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27689284A
Other languages
Japanese (ja)
Other versions
JPS61153040A (en
Inventor
Masahiro Tsunemi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NABUKO KK
Original Assignee
NABUKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NABUKO KK filed Critical NABUKO KK
Priority to JP27689284A priority Critical patent/JPS61153040A/en
Publication of JPS61153040A publication Critical patent/JPS61153040A/en
Publication of JPH0534537B2 publication Critical patent/JPH0534537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高減速比を有する重負荷用の減速機
に利用するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is applied to a heavy-load reduction gear having a high reduction ratio.

〔従来の技術〕[Conventional technology]

従来、歯車減速機において、使用する歯車の数
を少なくし、しかも高減速比を得る減速機として
特開昭51−71459号あるいは1967年日本機械学会
において発表された減速機(JSME1967 SEMI−
INTERNATIONAL SYMPOSIUM)がある。
Conventionally, in gear reducers, a reducer that reduces the number of gears used and achieves a high reduction ratio is the reducer (JSME1967 SEMI-
INTERNATIONAL SYMPOSIUM).

これらの減速機は、モータ等で駆動される入力
軸に偏心部を設け、この偏心部に外歯歯車を回転
自在に取り付け、この外歯歯車に内歯歯車を噛み
合わせると共に、前記外歯歯車に入力軸と平行に
固定したピンを貫通させ、このピンの貫通孔は、
偏心部で揺動回転させられるときの外周に沿つて
回る構成である。
These reducers are provided with an eccentric part on an input shaft driven by a motor, etc., an external gear is rotatably attached to this eccentric part, and an internal gear is meshed with the external gear. A pin fixed parallel to the input shaft is passed through the pin, and the through hole of this pin is
It has a configuration in which it rotates along the outer periphery when it is oscillated and rotated by the eccentric part.

この減速機は、内歯歯車を固定するとピンが出
力軸となり(前記した1967年日本機械学会で発表
された減速機は、この形式である。)、ピンが固定
されると内歯歯車が出力となるものである。
In this reducer, when the internal gear is fixed, the pin becomes the output shaft (the reducer announced at the Japan Society of Mechanical Engineers in 1967, mentioned above, is of this type), and when the pin is fixed, the internal gear becomes the output shaft. This is the result.

この減速機の減速比は、内歯歯車と外歯歯車と
の歯数差を分子とし、内歯歯車の歯数あるいは、
外歯歯車の歯数を分母とすることで決まる。
The reduction ratio of this reducer uses the difference in the number of teeth between the internal gear and the external gear as the numerator, and the number of teeth on the internal gear or
It is determined by using the number of teeth of the external gear as the denominator.

従つて歯数差が1の時に最大の減速比となるも
のである。
Therefore, the maximum reduction ratio is achieved when the difference in the number of teeth is 1.

この減速機の内歯歯車、外歯歯車の歯形曲線と
しては、ペリサイクロイド平行曲線の歯形、円弧
曲線歯形が用いられるが、これらの歯形は、噛み
合い圧力角を小さな値にできないので、負荷伝達
時の軸方向の負荷が大きくなる欠点を有する。
Pericycloid parallel curve tooth profiles and circular arc curve tooth profiles are used as the tooth profile curves of the internal gear and external gear of this reducer, but since these tooth profiles cannot reduce the meshing pressure angle to a small value, it is difficult to reduce the pressure during load transmission. This has the disadvantage that the axial load increases.

上記の歯形曲線以外に、噛み合い圧力角を小さ
くし得る歯形曲線としてインボリユート曲線を用
いた減速機がある。この減速機は、理論噛み合い
率を1以上にするための転位を行なわず、噛み合
い時のトロコイド干渉をさけるため低歯にするこ
とで理論理噛み合い率が1以下となつたものであ
るが、実際の噛み合い回転にはさしつかえないも
のが提案された(この減速機が、1967年日本機械
学会において発表されたものである。) 〔発明が解決しようとする問題点〕 上述した、インボリユート曲線の歯形の減速機
の内歯歯車と外歯歯車との噛み合い状態を第4図
に示す。
In addition to the tooth profile curves described above, there is a reduction gear that uses an involute curve as a tooth profile curve that can reduce the meshing pressure angle. In this reducer, the theoretical meshing ratio is less than 1 by not performing any shift to make the theoretical meshing ratio more than 1, and by using low teeth to avoid trochoidal interference during meshing, the theoretical meshing ratio is less than 1. (This reducer was announced at the Japan Society of Mechanical Engineers in 1967.) [Problems to be solved by the invention] The above-mentioned involute curve tooth profile FIG. 4 shows the meshing state of the internal gear and external gear of the reducer.

第4図において、入力軸4は、本体(第1図参
照)に回転自在に保持され、偏心部4aを有す
る。この偏心部4aは、外歯歯車3が回転自在に
取り付けてある。外歯歯車3は、本体に固定され
るピン9n−1〜9n−8が貫通すると共に、内
歯歯車6と噛み合う。内歯歯車6は、出力側とな
るものである。なお、内歯歯車6の歯6nと外歯
歯車3の歯3nの歯数差は1としており、内歯歯
車6の歯を転位せず、外歯歯車3は、バツクラツ
シユを得る分だけ転位し、歯6n,3nの歯丈は
トロコイド干渉を生じないように超低歯としてあ
る。
In FIG. 4, the input shaft 4 is rotatably held by the main body (see FIG. 1) and has an eccentric portion 4a. The external gear 3 is rotatably attached to the eccentric portion 4a. The pins 9n-1 to 9n-8 fixed to the main body pass through the external gear 3 and mesh with the internal gear 6. The internal gear 6 is on the output side. Note that the difference in the number of teeth between the teeth 6n of the internal gear 6 and the teeth 3n of the external gear 3 is 1, and the teeth of the internal gear 6 are not shifted, and the external gear 3 is shifted by the amount necessary to obtain backlash. , the tooth heights of the teeth 6n and 3n are set to be extremely low so as not to cause trochoidal interference.

前記低歯は、偏心部4aが入力軸によつて回転
させられ、外歯歯車3の歯3n−1と内歯歯車6
の歯6n−1とが噛み合つているとき、歯3n−
11と歯6n−12とがコロイド干渉を生じない
歯丈とし、この時の伝達トルクをA1とする。す
ると、歯6n−1と3n−1との接触面には、第
3図aに示すように、伝達トルクA1に相当する
力12Tが作用するとし、圧力角をα、ピツチ円
Pの半径R1とする。すると前記12Tの分力1
2T1,12T2は、次の式(1)、(2)で表わされる。
The eccentric portion 4a of the low teeth is rotated by the input shaft, and the teeth 3n-1 of the external gear 3 and the internal gear 6
When teeth 6n-1 are engaged, teeth 3n-
11 and teeth 6n-12 have a tooth height that does not cause colloidal interference, and the transmitted torque at this time is A1 . Then, as shown in Fig. 3a, a force 12T corresponding to the transmission torque A1 acts on the contact surface between the teeth 6n-1 and 3n-1, the pressure angle is α, and the radius of the pitch circle P is Let it be R1. Then, the component force 1 of the above 12T
2T 1 and 12T 2 are expressed by the following equations (1) and (2).

12T1=Sinα×12T −(1) 12T2=Cosα×12T −(2) また、伝達トルクA1を伝達するときに生じる
各ピン9n−5〜9n−8の各々に作用する力を
a1〜a4としその総計をAとし、その総計Aが作用
する作用点までの距離をR2とすれば式(3)が成立
する。
12T 1 = Sinα×12T −(1) 12T 2 = Cosα×12T −(2) Also, the force acting on each pin 9n-5 to 9n-8 that occurs when transmitting torque A1 is
If a 1 to a 4 are set, the total of them is A, and the distance to the point of action where the total A acts is R 2 , equation (3) is established.

12T2×R1=R2×A −(3) そうであるから外歯歯車3をラジアル方向へ押
圧する力RはR=√(121+)2+(1222(第
5図参照)となる。すると力Rは、圧力角αが大
きくなれば、増加する。
12T 2 ×R 1 = R 2 ×A − (3) Therefore, the force R that presses the external gear 3 in the radial direction is R = √ (12 1 +) 2 + (12 2 ) 2 (Fig. 5) ). The force R then increases as the pressure angle α increases.

さて、外歯歯車3と入力軸4との間には、複数
の軸受(ベアリング)が設けられるものである。
従つて、外歯歯車3に、前記の力R、Aが作用す
ると、入力軸、軸受の撓み及び各部品間の隙間、
製作誤差の総計分だけ偏心量が減少する。従つ
て、定格トルクA1によつて、前記力R、Aが作
用し偏心量が減少しても、歯3n−11と6n−
12との干渉を生じないように、その歯丈を減少
させる必要がある。
Now, a plurality of bearings are provided between the external gear 3 and the input shaft 4.
Therefore, when the forces R and A act on the external gear 3, the input shaft and the bearings are bent, and the gaps between the parts are
The amount of eccentricity is reduced by the total manufacturing error. Therefore, even if the forces R and A act and the eccentricity decreases due to the rated torque A1 , the teeth 3n-11 and 6n-
It is necessary to reduce the tooth height so as not to cause interference with 12.

以上のとおりであるから、従来の減速機は、伝
達トルクが最初に相定したA1の値より小さいA0
であれば、変形量も少なく、トロコイド干渉を起
さず作動するが、伝達トルクA1より大きいA2
値になるとトロコイド干渉を生じるので、さらに
低歯とする必要がある。(なお、偏心部4aの偏
心量の変化に対して外歯歯車3の外径の減少は13
倍程度となる。)従つてトルク伝達用にすれば、
その分外歯歯車の外径を減少する必要があり、面
圧が大きくなる。従つて大トルクの伝達ができな
い欠点を有する。
As described above, in the conventional reducer, the transmitted torque is A 0 which is smaller than the initially stabilized value of A 1 .
If so, the amount of deformation is small and it operates without causing trochoidal interference, but if the value of A2 is larger than the transmission torque A1 , trochoidal interference will occur, so it is necessary to make the teeth even lower. (Note that the decrease in the outer diameter of the external gear 3 is 13
It will be about twice as much. ) Therefore, if it is used for torque transmission,
It is necessary to reduce the outer diameter of the external gear accordingly, and the surface pressure increases. Therefore, it has the disadvantage that large torque cannot be transmitted.

本発明は、上記の問題点を解決するものであ
る。
The present invention solves the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の手段は、内歯歯車に、入力軸の偏心部
で揺動回転させられ、前記入力軸と平行に本体内
に設けたキヤリアに固定したピンが貫通する外歯
歯車を噛み合わせ、前記内歯歯車と外歯歯車との
歯数差を1枚とすると共にその歯のインボリユー
ト曲線で形成し、前記内歯歯車あるいはピンを出
力側に連結する減速機において、前記偏心部の偏
心量をモジユールの半分の値に、最高定格トルク
が作用したとき発生する前記入力軸、軸受等の前
記外歯歯車をラジアル方向に支承する各部品の変
形量と前記各部品間の〓間の総計と、前記各部品
部の製作誤差の総計とを加えた値にすると共に、
前記内歯歯車と外歯歯車とは、無負荷時において
回転可能なバツクラツシユを有し、その刃先円径
は、歯形修正を加えないで干渉しない値としたも
のである。
The means of the present invention meshes with the internal gear an external gear which is rotated by an eccentric portion of the input shaft and is penetrated by a pin fixed to a carrier provided in the main body parallel to the input shaft. In a reducer in which the difference in the number of teeth between an internal gear and an external gear is one, the teeth are formed by an involute curve, and the internal gear or pin is connected to the output side, the eccentricity of the eccentric part is determined. The total amount of deformation of each part supporting the external gear in the radial direction, such as the input shaft and bearing, which occurs when the maximum rated torque is applied to half the value of the module, and the distance between each part; In addition to adding the total manufacturing error of each part,
The internal gear and the external gear have backlashes that are rotatable under no load, and the diameters of their cutting edges are set to a value that does not interfere with each other without tooth profile modification.

〔作用〕[Effect]

上記の手段を有する本発明は、インボリユート
歯形で少歯数差の内歯歯車と外歯歯車とを噛み合
わせるため、その歯面がほぼ同じ曲率となるもの
である。従つて、その偏心部の偏心量を最大定格
トルク伝達時の部品の変形、部品間の隙間及び加
工誤差の総計を加えた値にして、その歯丈を定め
ればよいものであるから、最大定格トルク伝達時
にその負荷を伝達するために必要な噛み合い歯丈
を得るものである。
In the present invention having the above-mentioned means, an internal gear and an external gear having an involute tooth profile and a small difference in the number of teeth are meshed with each other, so that the tooth surfaces thereof have approximately the same curvature. Therefore, it is sufficient to determine the tooth height by adding the amount of eccentricity of the eccentric part to the sum of the deformation of the part at the time of maximum rated torque transmission, the gap between the parts, and the machining error. This is to obtain the meshing tooth height necessary to transmit the load when transmitting the rated torque.

〔実施例〕 第1図a〜第1図cは、本発明の一実施例であ
る。
[Example] Figures 1a to 1c show an example of the present invention.

減速機の縦断面を示す第1図において、1は、
本体で、入力軸4と、内歯歯車6とが回転自在に
保持されると共に、前記入力軸4に回転を与える
モータを取り付けた機体5に固定される。
In FIG. 1 showing the longitudinal section of the reducer, 1 is:
The main body rotatably holds an input shaft 4 and an internal gear 6, and is fixed to a body 5 equipped with a motor that rotates the input shaft 4.

6は、内歯歯車で、前記本体1にベアリング6
aを介して回転自在に取り付けられると共に、他
端は蓋7で閉鎖される。またその外側には、クロ
ーラ等に連結するスプロケツト8が取り付けてあ
る。
6 is an internal gear, and a bearing 6 is attached to the main body 1.
It is rotatably attached via a, and the other end is closed with a lid 7. Further, a sprocket 8 connected to a crawler or the like is attached to the outside thereof.

外歯歯車2,3は、本体1内に設けたキヤリア
13に固定したキヤリアピン9n−1〜9n−8
が貫通し、前記入力軸4の偏心部4a,4bにベ
アリングを介して取り付けてあり、各々前記内歯
歯車6の歯6nに噛み合う歯3nを有する。
The external gears 2 and 3 are connected to carrier pins 9n-1 to 9n-8 fixed to a carrier 13 provided inside the main body 1.
passes through the input shaft 4 and is attached to the eccentric portions 4a, 4b of the input shaft 4 via bearings, each having teeth 3n that mesh with the teeth 6n of the internal gear 6.

前記外歯歯車2と3とは、第1図aのA−A及
びB−Bの各々の断面を示す第1図b、第1図c
に示すように180°相違する位置で内歯歯車と噛み
合わせると共に、噛み合い位置を半ピツチ相違さ
せてある。すなわち、噛み合い位置を180°相違さ
せることで負荷伝達時、入力軸4に作用する力の
相殺を行う。また、噛み合い位置を半ピツチ相違
させることで、噛み合い率を1に近似させたもの
である。
The external gears 2 and 3 are shown in FIG. 1b and FIG.
As shown in the figure, the internal gear meshes with the internal gear at positions that differ by 180 degrees, and the meshing positions differ by half a pitch. That is, by making the meshing positions different by 180°, the force acting on the input shaft 4 during load transmission is canceled out. Furthermore, by changing the meshing position by half a pitch, the meshing ratio is approximated to 1.

前記内歯歯車6と外歯歯車2,3の歯数差を1
とすると共に、その歯形曲線にインボリユート曲
線を用い、その歯丈は、トロコイド干渉をさける
ため低歯としてある。また、外歯歯車2,3を揺
動回転させる偏心部4a,4bの偏心量をE=
m/2+δ1+δ2(mはモジユール、δ1は最大定格
トルクが作用したとき各軸受のたわみ量と部品間
の隙間総計、δ2は機械加工の加工誤差の総計であ
る。)としてあり、歯3nと歯6nとの間には、
無負荷時に回転可能な分だけのバツクラツシユを
設けてある。また、外歯歯車2,3の歯先円径
R3及び内歯歯車6の歯先円径R6は、歯3n,6
nに修正を加えずに(第3図bの破線Rに示す歯
の干渉をさけるため歯形の修正をせずに)歯3n
と6nの干渉を生じない値にしてある。
The difference in the number of teeth between the internal gear 6 and the external gears 2 and 3 is 1.
In addition, an involute curve is used for the tooth profile curve, and the tooth height is set to be low to avoid trochoidal interference. In addition, the eccentricity of the eccentric parts 4a and 4b that swing and rotate the external gears 2 and 3 is E=
m/2 + δ 1 + δ 2 (m is the module, δ 1 is the amount of deflection of each bearing and the total gap between parts when the maximum rated torque is applied, and δ 2 is the total machining error in machining.) Between tooth 3n and tooth 6n,
A backlash is provided for the amount that can be rotated when no load is applied. In addition, the tooth tip circle diameter of external gears 2 and 3
R 3 and the tooth tip circle diameter R 6 of the internal gear 6 are the teeth 3n, 6
Tooth 3n without making any modification to n (without modifying the tooth profile to avoid tooth interference shown by the broken line R in Fig. 3b)
and 6n are set to a value that does not cause interference.

上記の実施例において、入力軸4が矢印B方向
に回転させられると、歯6n−1と3n−1及び
歯6n−1′と3n−1′との噛み合いにより、ス
プロケツト8に作用する負荷に対向するものであ
るが、このとき、スプロケツト8へ伝達すべきト
ルクが最大定格トルクになると偏心量Eがm/2
となり、歯面でのすべりがほとんどなくきわめて
効率のよい動作を行うものである。
In the above embodiment, when the input shaft 4 is rotated in the direction of arrow B, the load acting on the sprocket 8 is reduced due to the meshing of the teeth 6n-1 and 3n-1 and the teeth 6n-1' and 3n-1'. At this time, when the torque to be transmitted to the sprocket 8 reaches the maximum rated torque, the eccentricity E becomes m/2.
This means that there is almost no slippage on the tooth surface, and the operation is extremely efficient.

すなわち、歯6n−1と3n−1との噛み合い
部を示す第2図aは、スプロケツト8に作用する
負荷が、最大定格トルクより小さい状態を示すも
ので、偏心部4a,4bの偏心量Eを多くした値
だけ、内歯歯車6のピツチ円P6と外歯歯車2,
3のピツチ円P3とは一致せず、その噛み合いに
すべりを生じる。しかし、スプロケツト8に作用
する負荷が最大定格トルクに近づくにつれ、ピツ
チ円P6とP3とが接近し、その分すべりが減少し
最大定格トルクで、第2図bに示すように、ピツ
チ円P6とP3とが一致し、すべりが0となるもの
である。
That is, FIG. 2a showing the meshing portion between the teeth 6n-1 and 3n-1 shows a state in which the load acting on the sprocket 8 is smaller than the maximum rated torque, and the eccentricity E of the eccentric portions 4a and 4b is Pitch circle P6 of internal gear 6 and external gear 2,
It does not match the pitch circle P3 of 3, and slippage occurs in the meshing. However, as the load acting on the sprocket 8 approaches the maximum rated torque, the pitch circles P 6 and P 3 approach each other, and the slippage decreases accordingly. P 6 and P 3 match, and the slip becomes 0.

〔発明の効果〕〔Effect of the invention〕

本発明は、上記の構成、作用を用するものであ
るから以下の効果を有する。
Since the present invention uses the above-described configuration and operation, it has the following effects.

従来の技術の問題点は、インボリユート曲線を
用いることがその主要因であるとして、円弧歯形
を改良する発明が特開昭51−71459号として提案
された。
The main problem with the conventional technology is the use of an involute curve, and an invention to improve the circular tooth profile was proposed in Japanese Patent Laid-Open No. 71459/1983.

この発明は、円弧歯形の欠点である大きな圧力
角を小さくして軸方向の分力を小さくする。その
結果、噛み合い時にエツヂ当りとなるが、これを
さけるため偏心量を増加する手段を有するもので
ある。この発明では、偏心量を増加することで、
歯面の接触面に立てた共通法線があらゆる噛み合
い位置でピツチ点を通る条件が(共役性)失われ
る。そのために、一定速度で入力軸を回転させて
も、出力側の回転は、角速度変化をきたす欠点を
有する。
This invention reduces the large pressure angle, which is a disadvantage of circular tooth profiles, and reduces the component force in the axial direction. As a result, edge contact occurs during meshing, but in order to avoid this, the device has means for increasing the amount of eccentricity. In this invention, by increasing the amount of eccentricity,
The condition that the common normal line erected to the contact surface of the tooth surface passes through the pitch point at all meshing positions (conjugation) is lost. Therefore, even if the input shaft is rotated at a constant speed, the rotation on the output side has the disadvantage that the angular velocity changes.

この点本発明は、その歯形曲線にインボリユー
ト曲線を用いるものであるから偏心量の増加によ
り、共役性が失われずなめらかな回転を得る効果
を有する。
In this regard, since the present invention uses an involute curve for the tooth profile curve, it has the effect of obtaining smooth rotation without losing conjugation due to an increase in eccentricity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは、本発明の一実施例の減速機の縦断
面図。第1図bは、第1図aのA−A断面図。第
1図cは、第1図aのB−B断面図。第2図a,
bは、本発明の減速機の内歯歯車と外歯歯車の噛
み合い状態の説明図。第3図a,bは、第4図に
示した従来の減速機の内歯歯車と外歯歯車との噛
み合い状態の説明図。第5図は、力の作用説明
図。 1……本体、2,3……外歯歯車、4……入力
軸、5……機体、6……内歯歯車、7……蓋、4
a,4b……偏心部、10a,10b,11a,
11b……ベアリング、6n,3n……歯。
FIG. 1a is a longitudinal sectional view of a speed reducer according to an embodiment of the present invention. FIG. 1b is a sectional view taken along the line AA in FIG. 1a. FIG. 1c is a sectional view taken along line BB in FIG. 1a. Figure 2a,
b is an explanatory diagram of the meshing state of the internal gear and the external gear of the reduction gear of the present invention. 3a and 3b are explanatory diagrams of the meshing state of the internal gear and the external gear of the conventional reducer shown in FIG. 4. FIG. FIG. 5 is an explanatory diagram of the action of force. 1... Main body, 2, 3... External gear, 4... Input shaft, 5... Body, 6... Internal gear, 7... Lid, 4
a, 4b... eccentric part, 10a, 10b, 11a,
11b...Bearing, 6n, 3n...Teeth.

Claims (1)

【特許請求の範囲】[Claims] 1 内歯歯車に、入力軸の偏心部で揺動回転させ
られ、前記入力軸と平行に本体内に設けたキヤリ
アに固定したピンが貫通する外歯歯車を噛み合わ
せ、前記内歯歯車と外歯歯車との歯数差を1枚と
すると共にその歯をインボリユート曲線で形成
し、前記内歯歯車あるいはピンを出力側に連結す
る減速機において、前記偏心部の偏心量をモジユ
ールの半分の値に、最高定格トルクが作用したと
きに発生する前記入力軸、軸受等の前記外歯歯車
をラジアル方向に支承する各部品の変形量を前記
各部品間の〓間の総計と、前記各部品部の製作誤
差の総計とを加えた値にすると共に、前記内歯歯
車と外歯歯車とは、無負荷時において回転可能な
バツクラツシユを有し、その刃先円径は、歯形修
正を加えないで干渉しない値とした減速機。
1. The internal gear is rotated by an eccentric part of the input shaft, and a pin fixed to a carrier provided in the main body in parallel with the input shaft meshes with the external gear. In a reducer in which the difference in the number of teeth from the gear is one and the teeth are formed in an involute curve, and the internal gear or pin is connected to the output side, the eccentricity of the eccentric part is set to half the value of the module. Then, the amount of deformation of each part that supports the external gear in the radial direction, such as the input shaft and bearing, which occurs when the maximum rated torque is applied, is calculated as the total distance between each part and the part of each part. The internal gear and the external gear have a backlash that can rotate under no load, and the diameter of the cutting edge can be determined by adding the total manufacturing error of . Reducer with no value.
JP27689284A 1984-12-26 1984-12-26 Speed reduction gear Granted JPS61153040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27689284A JPS61153040A (en) 1984-12-26 1984-12-26 Speed reduction gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27689284A JPS61153040A (en) 1984-12-26 1984-12-26 Speed reduction gear

Publications (2)

Publication Number Publication Date
JPS61153040A JPS61153040A (en) 1986-07-11
JPH0534537B2 true JPH0534537B2 (en) 1993-05-24

Family

ID=17575848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27689284A Granted JPS61153040A (en) 1984-12-26 1984-12-26 Speed reduction gear

Country Status (1)

Country Link
JP (1) JPS61153040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475315B2 (en) 2010-02-15 2013-07-02 Jtekt Corporation Swing internal contact type planetary gear device and rotation drive device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2586488B2 (en) * 1987-06-16 1997-02-26 ソニー株式会社 Digital signal processor
JPS6453664U (en) * 1987-09-30 1989-04-03
JP4392771B2 (en) * 1999-11-22 2010-01-06 株式会社ハーモニック・ドライブ・システムズ Flexure-meshing gear device having a displacement meshing involute tooth profile
DE102015201583B4 (en) 2015-01-29 2018-07-26 Carl Zeiss Industrielle Messtechnik Gmbh Method for determining a torque acting on a rotary device or a force acting on a rotary device
JP2018119649A (en) * 2017-01-27 2018-08-02 日本電産株式会社 Speed change gear
JP2020020409A (en) * 2018-08-01 2020-02-06 株式会社ニッセイ Differential reducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475315B2 (en) 2010-02-15 2013-07-02 Jtekt Corporation Swing internal contact type planetary gear device and rotation drive device

Also Published As

Publication number Publication date
JPS61153040A (en) 1986-07-11

Similar Documents

Publication Publication Date Title
JP3481335B2 (en) Inner mesh planetary gear
JP4112461B2 (en) Inscribed mesh planetary gear mechanism
JP2639847B2 (en) Planetary gearbox
US4942781A (en) Differential planet gear unit
US4644814A (en) Wide-angle gearing
WO1996004493A1 (en) Gear system
JPS63254251A (en) Planetary gear speed variation gear
JPH0534537B2 (en)
US10975946B1 (en) Differential reducer with high ratio
JPS6188072A (en) Removing device for angular backlash in planetary gear mechanism
US7331895B2 (en) Composite planetary device
EP0161072B1 (en) Mechanical reduction gear system
JP2828546B2 (en) Inner mesh planetary gear structure
JP4107895B2 (en) Inscribed mesh planetary gear mechanism
JPH0520616B2 (en)
JPH1030687A (en) Planetary type speed increasing/decreasing gear
JPH0621608B2 (en) Angle Backlash Removal Device in Planetary Gear Mechanism
JP3034630B2 (en) Trochoid tooth type inscribed planetary gear structure
JPS61252934A (en) Reduction gear for driving device of crawler vehicles
JP2686337B2 (en) Inner mesh planetary gear structure
JPS58196348A (en) Reduction gear
JP2828580B2 (en) Internally meshing planetary gear structure and flexible meshing gear meshing structure
JPH0586506B2 (en)
JPH03168448A (en) Planetary gear
JPH04131542A (en) Differential planetary gear device