JPH0215743B2 - - Google Patents

Info

Publication number
JPH0215743B2
JPH0215743B2 JP8653785A JP8653785A JPH0215743B2 JP H0215743 B2 JPH0215743 B2 JP H0215743B2 JP 8653785 A JP8653785 A JP 8653785A JP 8653785 A JP8653785 A JP 8653785A JP H0215743 B2 JPH0215743 B2 JP H0215743B2
Authority
JP
Japan
Prior art keywords
curvature
tooth profile
gear
tooth
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8653785A
Other languages
Japanese (ja)
Other versions
JPS61244966A (en
Inventor
Shigeyoshi Osada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8653785A priority Critical patent/JPS61244966A/en
Publication of JPS61244966A publication Critical patent/JPS61244966A/en
Publication of JPH0215743B2 publication Critical patent/JPH0215743B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は歯車、特に、接触点に於ける相対曲率
が小さく、滑り率が実質的に0である歯車に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to gears, and particularly to gears having a small relative curvature at the contact points and a slip ratio of substantially zero.

〔用語の定義〕〔Definition of terms〕

本明細書に於いて使用される技術用語の定義は
次の通りである。
Definitions of technical terms used in this specification are as follows.

(1) 相対曲率1/K 歯車O1の歯形曲線F1と、歯車O2の歯形曲線
F2が一点Cが接触しているとき、点Cに於け
る両歯形曲線の曲率中心g1,g2は両歯形曲線の
共通の接線上にある。
(1) Relative curvature 1/K Tooth profile curve F 1 of gear O 1 and tooth profile curve of gear O 2
When F 2 is in contact with point C, the centers of curvature g 1 and g 2 of both tooth profile curves at point C are on the common tangent line of both tooth profile curves.

両歯形曲線の曲率半径をそれぞれρ1及びρ2
あるとすると、 ρ1=g1 ρ2=g2 このとき、相対曲率1/Kは、 1/K=1/ρ1+1/ρ2 である。但し、Cに対しg1,g2が反対側にある
ときはρ1、ρ2は同符号、同じ側にあるときは
ρ1、ρ2は異符号であるとする。
Assuming that the radii of curvature of both tooth profile curves are ρ 1 and ρ 2 respectively, ρ 1 = g 1 ρ 2 = g 2 Then, the relative curvature 1/K is: 1/K = 1/ρ 1 + 1/ρ 2 It is. However, when g 1 and g 2 are on opposite sides of C, ρ 1 and ρ 2 have the same sign, and when they are on the same side, ρ 1 and ρ 2 have different signs.

(2) すべり率 微小角回転が行われ、噛み合い点が前記の点
Cから、F1、F2上の点C1,C2に移動したとき、
弧CC1、CC2の長さをdS1、dS2とすると、すべ
り率δ1、δ2はそれぞれ、 δ1=dS1−dS2/dS1 δ2=dS1−dS2/dS2 である。
(2) Slip rate When a small angle rotation is performed and the engagement point moves from the above point C to points C 1 and C 2 on F 1 and F 2 ,
If the lengths of arcs CC 1 and CC 2 are dS 1 and dS 2 , the slip rates δ 1 and δ 2 are respectively δ 1 = dS 1 − dS 2 /dS 1 δ 2 = dS 1 − dS 2 /dS 2 It is.

(3) 噛み合い率ε 上記一対の歯形曲線F1、F2の噛み合い始め
(点CA)から、噛み合い終了点(点CB)までの
間に両歯車O1,O2が回転した角度をそれぞれ
φ1、φ2とし、歯数をZ1、Z2とし、かつ、 φ1=2π/Z1 φ2=2π/Z2 としたとき、噛み合い率εは、 ε=φ1/φ1=φ2/φ2 である。
(3) Mesh ratio ε The angle through which both gears O 1 and O 2 rotated between the mesh start point (point C A ) and the mesh end point (point C B ) of the above pair of tooth profile curves F 1 and F 2 . When φ 1 and φ 2 are respectively, the number of teeth is Z 1 and Z 2 , and φ 1 = 2π/Z 1 φ 2 = 2π/Z 2 , the contact ratio ε is as follows: ε=φ 11 = φ2 / φ2 .

〔従来の技術〕[Conventional technology]

動力伝達用歯車の歯形としては、インボリユー
ト歯形が代表的なものであるが、その外にもサイ
クロイド系歯形、円弧歯形又はそれらの組合せ歯
形が公知である。
The typical tooth profile of a power transmission gear is an involute tooth profile, but cycloid tooth profiles, circular arc tooth profiles, and combinations thereof are also known.

上記各歯形を曲率半径について見ると、円弧歯
車以外の歯車では歯形の曲率半径が歯ケタ方向に
単調連続的に変化するものであり、又、噛合点で
は両歯車は凸面同士で接触するので、噛合時の歯
形曲線間の相対曲率を小さい値、望ましくは実質
的に0に保つことは不可能である。
Looking at the radius of curvature of each of the above tooth profiles, for gears other than circular gears, the radius of curvature of the tooth profile changes monotonically and continuously in the direction of the tooth digits, and at the meshing point, both gears contact each other with their convex surfaces. It is not possible to maintain the relative curvature between the tooth profile curves during meshing to a small value, preferably substantially zero.

歯形の強度は、歯の曲げ応力によつて定まる限
界と、歯面間の面圧によつて定まる限界とがあ
る。然しながら、一般に広く用いられているイン
ボリユート歯車では、曲げ応力による限界は歯面
圧による限界よりも高いので、歯面圧応力による
限界、いわゆるK値を高めることが必要である。
The strength of a tooth profile has a limit determined by the bending stress of the tooth and a limit determined by the surface pressure between the tooth surfaces. However, in the commonly used involute gears, the limit due to bending stress is higher than the limit due to tooth surface pressure, so it is necessary to increase the limit due to tooth surface pressure stress, the so-called K value.

このK値は歯面間に作用する所謂ヘルツ応力に
よつて定められるものであり、ヘルツ応力は歯面
間の相対曲率と歯面圧力とによつて定まるので、
上記K値を大きくするためには、噛合点に於ける
相対曲率を出来るだけ小さくすること、望ましく
は0とすることが必要である。
This K value is determined by the so-called Hertzian stress that acts between the tooth surfaces, and the Hertzian stress is determined by the relative curvature between the tooth surfaces and the tooth surface pressure.
In order to increase the above K value, it is necessary to make the relative curvature at the meshing point as small as possible, preferably zero.

相対曲率が小さい歯形としては、円弧歯形から
成るウイルドハーバーノビコフ系歯形があるが、
この歯形は歯形の一点でしか噛み合わない点接触
歯形(噛合率=0)であるため、上記ウイルドハ
ーバーノビコフ系歯形を動力伝達用歯車として使
用するには、幅広のねじ歯車にしなければならな
いので、製造が困難でコストも嵩むという問題が
あつた。
A tooth profile with a small relative curvature is the Wildhaber Novikov tooth profile, which consists of a circular arc tooth profile.
This tooth profile is a point contact tooth profile that only meshes at one point of the tooth profile (meshing ratio = 0), so in order to use the above Wildhaber Novikov tooth profile as a power transmission gear, it must be made into a wide screw gear. However, there were problems in that it was difficult to manufacture and the cost was high.

その上、これを幅広のねじ歯車としても、実際
の噛み合いは常に一つの軸直角断面上の一点でし
か生起せず、且つその噛合点は歯車の回転に応じ
て歯の一端〔噛み合い開始点〕から他端〔噛み合
い終了点〕まで歯幅方向に移動するから、この歯
車系は振動を発生し易く、そのため高速で駆動で
きないと言う問題もあつて、広く実用化さるには
到つていない。
Furthermore, even if this is a wide screw gear, actual meshing always occurs only at one point on a cross section perpendicular to the axis, and the meshing point changes from one end of the teeth [meshing start point] as the gear rotates. Because it moves in the face width direction from one end to the other end (meshing end point), this gear system tends to generate vibrations, and therefore cannot be driven at high speeds, so it has not been widely put into practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は叙上の観点に立つてなされたものであ
つて、その目的とするところは、相対曲率を小さ
くしてK値、即ち、歯面圧応力による歯の強度限
界を大きくすると共に、噛合率を1以上とし、更
には噛合圧力角を比較的小さくして、面圧と軸受
応力が高まるのを防止し、総合的に大きな強度を
有する歯車を提供することにある。
The present invention has been made based on the above-mentioned viewpoints, and its purpose is to reduce the relative curvature and increase the K value, that is, the strength limit of the tooth due to tooth surface pressure stress, and to The objective is to provide a gear having a ratio of 1 or more and a relatively small meshing pressure angle to prevent surface pressure and bearing stress from increasing and having overall high strength.

〔問題点を解決するための手段〕[Means for solving problems]

而して、上記の目的は、歯形曲線の曲率が歯タ
ケに沿つて単調には変化しない連続且つ微分可能
な函数であるような歯車によつて達成される。
The above object is thus achieved by a gear in which the curvature of the tooth profile is a continuous and differentiable function that does not vary monotonically along the tooth profile.

そのような歯形では、曲率が周期的に増減し、
且つその曲率中心の軌跡が通常ピツチ円に接近し
てその片側又は両側に跨がつて存在する一連の鋸
歯状曲線となる。
In such a tooth profile, the curvature increases and decreases periodically,
In addition, the locus of the center of curvature usually becomes a series of sawtooth curves that approach the pitch circle and straddle one or both sides of the pitch circle.

尚、上記の曲率が極小となる点に対応する曲率
中心はピツチ線上に位置することが望ましい。
Note that it is desirable that the center of curvature corresponding to the point where the curvature becomes minimum is located on the pitch line.

〔作用〕[Effect]

上記の如く構成することにより、曲率の極小と
なる点では互いに噛み合う歯面の相対曲率を実質
的に0とすることができ、且つ一方では、互いに
噛み合う歯車の噛合率を1以上に保持することが
可能となり、更に噛合圧力角を比較的小さくして
面圧と軸受応力の高まるのを防止することがで
き、且つ、叙上の如く、歯車の歯面間の相対曲率
を従来のものに比べて小さく保つことができるの
で、歯形の総合強度を大幅に高めることができ、
従来の歯車に比して歯幅やモジユールを小さくす
ることができる。
By configuring as described above, the relative curvature of the mutually meshing tooth surfaces can be made substantially 0 at the point where the curvature is minimum, and on the other hand, the meshing ratio of the mutually meshing gears can be maintained at 1 or more. In addition, the meshing pressure angle can be made relatively small to prevent surface pressure and bearing stress from increasing, and as mentioned above, the relative curvature between the tooth surfaces of the gear can be reduced compared to conventional gears. Since the tooth profile can be kept small, the overall strength of the tooth profile can be greatly increased.
The face width and module can be made smaller than conventional gears.

又、本発明にかかる歯車は、滑り率が実質的に
0であるので、伝達効率が高く、摩耗が少ない。
Further, since the gear according to the present invention has a slip ratio of substantially 0, the transmission efficiency is high and wear is low.

更に又、本発明にかかる歯車は、ねじ歯車とし
ても使用できることは勿論であるが、通常は平歯
車として利用できるものであり、平歯車として利
用する場合も、歯幅の全面で当たりが生じるので
一点でしか噛み合わない円弧歯車に較べると単位
歯幅当たりの強度が格段に高いものである。
Furthermore, the gear according to the present invention can of course be used as a screw gear, but it can also normally be used as a spur gear, and even when used as a spur gear, contact occurs over the entire face width. Compared to arc gears that mesh only at one point, the strength per unit tooth width is much higher.

〔実施例〕〔Example〕

以下、図面により本発明の詳細を具体的に説明
する。
Hereinafter, the details of the present invention will be specifically explained with reference to the drawings.

第1図及び第2図はそれぞれ本発明にかゝる歯
車歯型の一例を示す破断一部拡大図、第3図は上
記歯車の噛み合い状態を示す説明図、第4図は基
準ラツク歯形曲線の構成を示す説明図、第5図は
上記基準ラツク歯形の全体を示す説明図である。
1 and 2 are partially enlarged fragmentary views showing examples of gear teeth according to the present invention, FIG. 3 is an explanatory view showing the meshing state of the gears, and FIG. 4 is a reference rack tooth profile curve. FIG. 5 is an explanatory diagram showing the entire reference rack tooth profile.

而して、第1図乃至第3図中、1は歯数15の歯
車の歯形曲線、2はそのピツチ円、3は歯数5の
歯車の歯形曲線、4はそのピツチ円である。
1 to 3, 1 is the tooth profile curve of a gear with 15 teeth, 2 is its pitch circle, 3 is the tooth profile curve of a gear with 5 teeth, and 4 is its pitch circle.

而して、本発明にかゝる歯車の歯形1,3はそ
れらのピツチ線上より歯先及び歯元に向かつて、
その曲率半径が増加、減少を繰り返しながら周期
的に変化するよう構成されており、そして、曲率
半径が極小となる点では、両歯車の曲率半径の中
心がいずれもピツチ線上にあり、且つ、一方の歯
車のアデンダム及びデデンダムは、それぞれ他の
一方のデデンダム及びアデンダムと噛み合い、か
つ両歯車ともアデンダムは凸、デデンダムは凹で
あるから、噛み合いは常に凹面と凸面との間で行
なわれ、従つて、上記のように曲率半径が極小と
なる噛合点では歯形1及び3間の相対曲率は0と
なり、そのため滑り率も0となる。
Therefore, the tooth profiles 1 and 3 of the gear according to the present invention are directed from the pitch line toward the tooth tip and the tooth root,
The radius of curvature is configured to change periodically by repeating increases and decreases, and at the point where the radius of curvature becomes minimum, the centers of the radii of curvature of both gears are both on the pitch line, and one The addendum and dedendum of the gear mesh with the dedendum and addendum of the other gear, respectively, and since the addendum of both gears is convex and the dedendum is concave, meshing is always performed between the concave surface and the convex surface, and therefore, As mentioned above, at the meshing point where the radius of curvature is minimum, the relative curvature between tooth profiles 1 and 3 becomes 0, and therefore the slip rate also becomes 0.

而して、本発明にかゝる歯車に於ては、そのよ
うな好ましい噛合点が1ピツチの間に多数周期的
に現れる。
Therefore, in the gear according to the present invention, such preferable meshing points appear many times periodically during one pitch.

そして、相対曲率及び滑り率が0となる点の中
間では、相対曲率及び滑り率は完全には0となら
ないが、それらの点でも噛み合いは常に凸面と凹
面とで行なわれ、且つ、曲率の差もさほど大きな
値とならないから、相対曲率も亦比較的小さな値
に保たれるものであり、滑り率も亦実質的に0に
保たれるものである。而して、従来のインボリユ
ート歯車との間の相対曲率及び滑り率の差異は、
ピツチ線から離れた噛合点に於いて特に甚だしい
ものとなる。
In the middle of the points where the relative curvature and sliding rate are 0, the relative curvature and sliding rate are not completely 0, but even at those points, meshing always takes place between the convex surface and the concave surface, and the difference in curvature Since the value of the relative curvature is not very large, the relative curvature is also kept at a relatively small value, and the slip rate is also kept at substantially zero. Therefore, the difference in relative curvature and slip rate between conventional involute gears is
This is particularly severe at engagement points far from the pitch line.

次に、第4図により上記本発明にかかる歯車の
歯形曲線の一例に就いて説明する。図中のX軸は
ピツチ線であり、曲線C0C1C2C3は基準ラツク歯
形曲線の一部である。
Next, an example of the tooth profile curve of the gear according to the present invention will be explained with reference to FIG. The X axis in the figure is a pitch line, and the curve C 0 C 1 C 2 C 3 is a part of the standard rack tooth profile curve.

而して、弧C0C1はアデンダム側に曲率中心A0
を有する小円弧g0g1のインボリユートであり、弧
C1C2はデデンダム側に曲率中心A1を有し、上記
小円弧g0g1と点g1で法線を共有する小円弧g1g2
インボリユートであり、弧C2C3はアデンダム側
に曲率中心A2を有し、上記小円弧g1g2と点g2
於て法線を共有する小円弧g2g3のインボリユート
である。
Therefore, the arc C 0 C 1 has the center of curvature A 0 on the addendum side.
is an involute of a small arc g 0 g 1 with
C 1 C 2 has the center of curvature A 1 on the dedendum side and is an involute of the small arc g 1 g 2 that shares the normal with the above small arc g 0 g 1 at point g 1 , and the arc C 2 C 3 is It is an involute of the small arc g 2 g 3 which has the center of curvature A 2 on the addendum side and shares the normal line at point g 2 with the above small arc g 1 g 2 .

而して、これらの円弧の一方の終点g0、g2はピ
ツチ線上にあり、この点では曲率半径は極小であ
り、他の部分はピツチ線の近傍で歯形5と反対
側、即ち歯形がアデンダムであれば終点g1、g3
デデンダムに、或いはその逆にある。
Therefore, the end points g 0 and g 2 of one of these arcs are on the pitch line, and the radius of curvature is minimal at this point, and the other part is near the pitch line and on the opposite side of the tooth profile 5, that is, the tooth profile is If it is an addendum, the end points g 1 and g 3 are at the addendum or vice versa.

この図から曲率半径が、弧C0C1に於ては、C0
からC1に向かつてr0=C0g0からr1=C1g1まで単調
に増加しているが、弧C1C2に於ては、C1からC2
に向かつてr1=C1g1からr2=C2g2まで単調に減少
し、更に弧C2C3に於ては、C2からC3に向かつて
r2=C2g2からr3=C3g3まで再び単調に増加してい
ることが知られる。
From this figure, the radius of curvature is C 0 C 1 in the arc C 0 C 1
It increases monotonically from r 0 = C 0 g 0 to r 1 = C 1 g 1 from C 1 to C 1 , but in the arc C 1 C 2 , from C 1 to C 2
It decreases monotonically from r 1 = C 1 g 1 to r 2 = C 2 g 2 toward
It is known that the value increases monotonically from r 2 = C 2 g 2 to r 3 = C 3 g 3 .

而して、実際の歯形は上記と同様の手法で歯形
曲線を図中左右に延長して成るものである。
The actual tooth profile is obtained by extending the tooth profile curve from side to side in the figure using the same method as above.

なお、各小円弧がそれぞれ曲率半径に対して張
る角度は理論上は小さくすればする程有利となる
が、特に制限はなく、例えば1乃至5度とすれば
充分である。
Although it is theoretically more advantageous to make the angle that each small circular arc makes with respect to the radius of curvature, there is no particular restriction, and for example, 1 to 5 degrees is sufficient.

而して、このようにして構成されたラツク歯形
では多数の点g0,g2,…はそれぞれ歯形曲線上の
点C0,C2,C4,C6,…に対応する曲率中心であ
り、かつそれらの諸点はすべてピツチ線上にある
から、かつ基準ラツクを用いて創成した歯車はす
べてこの基準ラツク及び前記の歯車1,3と同様
にこれらの点C0,C2,C4,C6,…に対応する噛
合せ点で相対曲率が0となるものである。
Therefore, in the rack tooth profile constructed in this way, the many points g 0 , g 2 , ... are the centers of curvature corresponding to the points C 0 , C 2 , C 4 , C 6 , ... on the tooth profile curve, respectively. , and all of those points are on the pitch line, and all the gears created using the reference rack are located at these points C 0 , C 2 , C 4 , as well as this reference rack and gears 1 and 3 above. The relative curvature becomes 0 at the meshing points corresponding to C 6 , .

第5図に上記基準ラツク歯形の全体が示されて
いる。第4図及び第5図から明らかなように、歯
形曲線上の点C0,C2,C4,C6,…に於ける曲率
中心g0,g2,…はいずれもピツチ線上にあり、こ
れらの点に於ける曲率半径は極小値となる。即
ち、上記C0,C2,…以外の点、例えばC0C2の中
間では曲率半径はC0g0、C2g2より大であり、曲率
中心はピツチ線より下側に位置することゝとな
る。而して、これらの曲率中心の軌跡は、常にピ
ツチ線の近傍にある一連の鋸歯状の曲線となる。
FIG. 5 shows the entire reference rack tooth profile. As is clear from Figs. 4 and 5, the centers of curvature g 0 , g 2 , ... at points C 0 , C 2 , C 4 , C 6 , ... on the tooth profile curve are all on the pitch line. , the radius of curvature at these points becomes a minimum value. That is, at points other than the above C 0 , C 2 , ..., for example, in the middle of C 0 C 2 , the radius of curvature is larger than C 0 g 0 and C 2 g 2 , and the center of curvature is located below the pitch line. That's it. Thus, the locus of these centers of curvature becomes a series of sawtooth curves always in the vicinity of the pitch line.

このラツク工具により歯切りされた歯車は、ピ
ツチ円上に歯形の曲率中心が多数存在し、同じ工
具で製造さた他の歯車と噛み合うとき、相対曲率
が0で噛み合うことになる。
A gear cut with this rack tool has many centers of curvature of the tooth profile on the pitch circle, and when it meshes with another gear manufactured with the same tool, the relative curvature is 0.

而して、本発明にかかる歯車は相対曲率が0で
噛み合う点ではウイルドハーバーノビコフ歯車と
同一の長所を有し、且つ上記各小円弧がそれぞれ
曲率中心に対して張る角度を小さくすればこの相
対曲率が0となる点の数が増し、滑り率も減少す
るが、そのようにしても尚噛合率を1以上に保持
することができるから、本発明にかかる歯車は平
歯車として利用できものであり、この点ではイン
ポリユート歯車と同一の利点を具備するものであ
る。この観点から、本発明歯車がインボリユート
歯車とウイルドハーバーノビコフ歯車の長所を兼
ね備えたものであることが知られる。
Therefore, the gear according to the present invention has the same advantage as the Wildhaber Novikov gear in that it meshes with a relative curvature of 0, and this can be achieved by reducing the angle that each of the small arcs makes with respect to the center of curvature. Although the number of points where the relative curvature becomes 0 increases and the slip ratio decreases, the meshing ratio can still be maintained at 1 or more even in this case, so the gear according to the present invention can be used as a spur gear. In this respect, it has the same advantages as an impolite gear. From this point of view, it is known that the gear of the present invention combines the advantages of an involute gear and a Wildhaber Novikov gear.

而して、上記の角度を3度前後とすると、例え
ば第1図及び第2図に示したような歯車が得られ
る。これらの歯車は、圧力角をあまり大きくとる
ことなく、比較的自由に設計でき、且つ、歯タケ
に沿つて曲率半径が周期的に増減を繰り返し、歯
面の噛み合いは常時凹面と凸面との間で行われる
ので、本発明によるときは噛合点に於ける相対曲
率を実質的に0となし得るものである。
If the above-mentioned angle is about 3 degrees, gears as shown in FIGS. 1 and 2, for example, can be obtained. These gears can be designed relatively freely without making the pressure angle too large, and the radius of curvature increases and decreases periodically along the tooth ridge, so that the meshing of the tooth surfaces is always between the concave and convex surfaces. Therefore, according to the present invention, the relative curvature at the meshing point can be made substantially zero.

尚、本発明は叙上の実施例に限定されるもので
はない。即ち、例えば、実施例に於ては、歯形曲
線を構成する弧を円のインボリユートとしたが、
歯形曲線は必ずしもこれのみに限定されるもので
はなく、他の適宜の曲線のインボリユートであつ
てもよく、又更に、他の公知の曲線を採用するこ
とも可能である。
It should be noted that the present invention is not limited to the embodiments described above. That is, for example, in the embodiment, the arc constituting the tooth profile curve is an involute of a circle, but
The tooth-shaped curve is not necessarily limited to this, and may be an involute of any other appropriate curve, and furthermore, other known curves may be employed.

〔発明の効果〕〔Effect of the invention〕

本発明は叙上の如く構成されるので、本発明に
よるときは、噛合点の相対曲率を小さくし、且つ
噛合圧力角を余り大きくすることなく、1以上の
噛合率を得ることが可能となり、面圧と軸受応力
の高まるのを防止することができるので、歯面の
強度を大幅に高めることができる。
Since the present invention is configured as described above, according to the present invention, it is possible to reduce the relative curvature of the meshing point and obtain a meshing ratio of 1 or more without increasing the meshing pressure angle too much, Since it is possible to prevent surface pressure and bearing stress from increasing, the strength of the tooth surface can be significantly increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明にかゝる歯
車の歯形の一例を示す破断一部拡大図、第3図は
上記歯車の噛合状態を示す説明図、第4図は基準
ラツク歯形曲線の構成を示す説明図、第5図は上
記基準ラツク歯形の全体を示す説明図である。 1……歯数15の歯車、2,4……ピツチ円、3
……歯数5の歯車。
FIGS. 1 and 2 are partially enlarged fragmentary views showing an example of the tooth profile of a gear according to the present invention, FIG. 3 is an explanatory diagram showing the meshing state of the gear, and FIG. 4 is a reference rack tooth profile curve. FIG. 5 is an explanatory diagram showing the entire reference rack tooth profile. 1... Gear with 15 teeth, 2, 4... Pitch circle, 3
...A gear with 5 teeth.

Claims (1)

【特許請求の範囲】 1 歯形曲線の曲率が歯タケ方向に周期的に増減
する連続且つ微分可能な函数であることを特徴と
する歯車。 2 歯形曲線の曲率中心の軌跡がピツチ線近傍に
存在する一連の鋸歯状曲線である特許請求の範囲
第1項記載の歯車。 3 曲率の極小となる歯形曲線上の点に対応する
曲率中心がピツチ線上に位置する特許請求の範囲
第1項記載の歯車。 4 曲率の極小となる点に於ける相対曲率が実質
的に0である特許請求の範囲第1項記載の歯車。
[Scope of Claims] 1. A gear characterized in that the curvature of the tooth profile curve is a continuous and differentiable function that periodically increases and decreases in the tooth direction. 2. The gear according to claim 1, wherein the locus of the center of curvature of the tooth profile curve is a series of sawtooth curves existing near the pitch line. 3. The gear according to claim 1, wherein the center of curvature corresponding to the point on the tooth profile curve where the curvature is minimum is located on the pitch line. 4. The gear according to claim 1, wherein the relative curvature at the point where the curvature is minimum is substantially 0.
JP8653785A 1985-04-24 1985-04-24 Gear having relative curvature at contact point Granted JPS61244966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8653785A JPS61244966A (en) 1985-04-24 1985-04-24 Gear having relative curvature at contact point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8653785A JPS61244966A (en) 1985-04-24 1985-04-24 Gear having relative curvature at contact point

Publications (2)

Publication Number Publication Date
JPS61244966A JPS61244966A (en) 1986-10-31
JPH0215743B2 true JPH0215743B2 (en) 1990-04-13

Family

ID=13889746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8653785A Granted JPS61244966A (en) 1985-04-24 1985-04-24 Gear having relative curvature at contact point

Country Status (1)

Country Link
JP (1) JPS61244966A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109838A1 (en) 2005-04-08 2006-10-19 Tsutomu Miyaoku Gear with cornu's spiral tooth profile
JP2007527981A (en) * 2004-03-11 2007-10-04 アイエムエス ギアー ゲーエムベーハー Automotive engine accessory drive device with gear drive
WO2010023995A1 (en) 2008-08-25 2010-03-04 株式会社オーバル Axial flow positive displacement flowmeter
JP2012122602A (en) * 2010-12-09 2012-06-28 Takashi Matsuda Involute tooth profile internal gear pair out of pitch circle making large dedendum width and small relative curvature of tooth profile at engaging point without varying positive/negative of sliding rate during engagement
CN112283318A (en) * 2020-09-10 2021-01-29 中国人民解放军陆军军事交通学院 High-strength bevel gear tooth form design method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130560A (en) 1998-10-27 2000-05-12 Fuji Kiko Co Ltd Cycloidal gear with small-numbered teeth
JP6160975B1 (en) * 2016-04-25 2017-07-12 中村鉄工株式会社 gear

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527981A (en) * 2004-03-11 2007-10-04 アイエムエス ギアー ゲーエムベーハー Automotive engine accessory drive device with gear drive
WO2006109838A1 (en) 2005-04-08 2006-10-19 Tsutomu Miyaoku Gear with cornu's spiral tooth profile
US8100028B2 (en) 2005-04-08 2012-01-24 Tsutomu Miyaoku Cornu's spiral tooth gear
WO2010023995A1 (en) 2008-08-25 2010-03-04 株式会社オーバル Axial flow positive displacement flowmeter
JP2012122602A (en) * 2010-12-09 2012-06-28 Takashi Matsuda Involute tooth profile internal gear pair out of pitch circle making large dedendum width and small relative curvature of tooth profile at engaging point without varying positive/negative of sliding rate during engagement
CN112283318A (en) * 2020-09-10 2021-01-29 中国人民解放军陆军军事交通学院 High-strength bevel gear tooth form design method

Also Published As

Publication number Publication date
JPS61244966A (en) 1986-10-31

Similar Documents

Publication Publication Date Title
EP0292559B1 (en) Gear having small relative curvature at contact point
EP0588870B1 (en) Zero transmission error gearing
US8201471B2 (en) Gears and gearing apparatus
EP0227152B1 (en) Face gear transmission
JP3483570B2 (en) Negative overtaking toothed gears with flexible meshing
US20020134184A1 (en) Non-involute gears with conformal contact
US4270401A (en) Gear teeth
US3982445A (en) High torque gearing
JPS62278368A (en) Low-noise vibrating gear
US7849758B2 (en) Toothed member and a gearseat relating thereto
JP2001519013A (en) Gear shape configuration
US4850237A (en) Tooth profile in meshing mechanism
EP0622566A1 (en) Flexing contact type gears of non-profile-shifted two-circular-arc composite tooth profile
EP0656490B1 (en) Gear device having tooth profile reducing local frictional heat value and method of producing such a gear device
JP2003503649A (en) Helical and spur gear drives with pinion tooth surface and conjugate gear tooth surface with double crowning
US4140026A (en) Conformal gearing
JPH0215743B2 (en)
US3937098A (en) High torque gearing
WO1980000365A1 (en) High-torque low-noise gearing
JPH05340463A (en) Tooth shape correction method for spur gear and tooth shape correction spur gear pair
JPH1194052A (en) Gear
JP3673404B2 (en) Screw rotor for oil-cooled screw compressor
JPH05332404A (en) Flexure mesh type gear meshing structure
RU2108509C1 (en) Gear train
JP3068699U (en) Gear pump gears

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees