JPS621488Y2 - - Google Patents

Info

Publication number
JPS621488Y2
JPS621488Y2 JP1981092941U JP9294181U JPS621488Y2 JP S621488 Y2 JPS621488 Y2 JP S621488Y2 JP 1981092941 U JP1981092941 U JP 1981092941U JP 9294181 U JP9294181 U JP 9294181U JP S621488 Y2 JPS621488 Y2 JP S621488Y2
Authority
JP
Japan
Prior art keywords
tooth profile
curve
trochoid
theoretical
peaks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981092941U
Other languages
Japanese (ja)
Other versions
JPS5723456U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981092941U priority Critical patent/JPS621488Y2/ja
Publication of JPS5723456U publication Critical patent/JPS5723456U/ja
Application granted granted Critical
Publication of JPS621488Y2 publication Critical patent/JPS621488Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Retarders (AREA)
  • Gears, Cams (AREA)
  • Gear Transmission (AREA)

Description

【考案の詳細な説明】 この出願の考案は、修整歯形を有する歯車に関
する。詳しくは、実際の歯形に理論歯形を用いる
ことによつて、理想的なかみ合いが確保されるよ
うな歯形をもつた歯車を提供することを目的とす
るものである。
[Detailed Description of the Invention] The invention of this application relates to a gear having a modified tooth profile. Specifically, the purpose is to provide a gear having a tooth profile that ensures ideal meshing by using a theoretical tooth profile as an actual tooth profile.

従来、遊星歯車減速機における曲線板等の歯車
の歯形は、背隙(バツクラツシユ)を確保する為
理論曲線から修整して使用するのを常としてい
る。
Conventionally, the tooth profile of a gear such as a curved plate in a planetary gear reducer is usually modified from a theoretical curve in order to ensure back clearance.

第1図は、従来の遊星歯車減速機における曲線
板の歯形であつて、1は曲線板で最も外側の点線
2は曲線板1のトロコイド理論歯形である。3は
外ピンであつて、曲線板1の歯形がかみ合つてい
る。そして、曲線板1の実際の歯形は、実線で示
した2′であつて、理論曲線2から法線方向内側
に距離δだけ平行に切り込んだトロコイド包絡歯
形を使用し、これによつてバツクラツシユを確保
している。
FIG. 1 shows the tooth profile of a curved plate in a conventional planetary gear reducer, where 1 is the curved plate and the outermost dotted line 2 is the theoretical trochoid tooth profile of the curved plate 1. 3 is an outer pin with which the tooth profile of the curved plate 1 is engaged. The actual tooth profile of the curved plate 1 is 2' shown by a solid line, and a trochoid envelope tooth profile is used, which is cut parallel to the theoretical curve 2 by a distance δ inward in the normal direction. It is secured.

しかし、第1図より明らかなように、この方法
だと歯形は理論歯形でないから、外ピン3と歯形
2′が理論噛合(完全噛合)しない。その結果、
不規則な噛合が生ずるのは避けられなかつた。
However, as is clear from FIG. 1, with this method, the tooth profile is not a theoretical tooth profile, so the outer pin 3 and the tooth profile 2' do not mesh theoretically (completely mesh). the result,
Irregular occlusion was inevitable.

さて本考案者は、このような従来の歯形修正の
欠点を解決するために、理論曲線を歯車中心に対
し位相角△だけ回転移動させることによつて、
バツクラツシユをとることを考案し、本件出願と
同時に出願した。以下にその概略を説明する(第
2図参照)。
Now, in order to solve the drawbacks of the conventional tooth profile modification, the inventor of the present invention has solved the problem by rotating the theoretical curve by a phase angle △ with respect to the gear center.
We devised a method of taking a backlash and filed the application at the same time as the present application. The outline will be explained below (see Fig. 2).

図において、点線2は曲線板1の歯形(図では
歯形の谷部)を形成するトロコイド理論曲線であ
る。そしてこの理論曲線2を曲線板中心Oのまわ
りに△ψ左に回転変位させて得られる曲線2′よ
りなる下り面と理論曲線2を曲線板中心Oの右△
ψだけ回転変位して得られる曲線2″よりなる上
り面とで歯形の谷部を構成すると、曲線2′と
2″は歯形の山部と谷部で鋭角的に交わる。この
場合当然のことであるが、曲線2′と2″の2つの
曲線は、それぞれトロコイド理論曲線である。こ
れらの山部と谷部で交わつた部分は荷重の伝達に
はほとんど寄与しない部分であるが、このまゝに
残しておくと、その加工精度や弾性変形により、
相手歯形(外ピン)と異常噛合を起す原因とな
る。又創形法による歯形研削においても、砥石車
に尖点を持たせることは困難である。
In the figure, the dotted line 2 is a trochoid theoretical curve that forms the tooth profile of the curved plate 1 (the trough of the tooth profile in the figure). Then, the theoretical curve 2 is rotationally displaced △ψ to the left around the curved plate center O, and the downward surface formed by the curve 2' and the theoretical curve 2 are set to the right △ of the curved plate center O.
When the trough of the tooth profile is formed by the upward surface formed by the curve 2'' obtained by rotational displacement by ψ, the curves 2' and 2'' intersect at an acute angle at the peak and trough of the tooth profile. In this case, as a matter of course, the two curves 2' and 2'' are trochoid theoretical curves.The areas where these peaks and valleys intersect are areas that hardly contribute to load transmission. However, if you leave it as is, due to its processing accuracy and elastic deformation,
This may cause abnormal meshing with the mating tooth profile (outer pin). Also, in tooth profile grinding using the shaping method, it is difficult to provide a grinding wheel with a sharp point.

本考案は、このような問題点を有する修整され
たトロコイド理論歯形の山と谷部における尖部の
逃げ構造に関するもので、以下にその数種類の実
施例について詳細に説明する。
The present invention relates to a tip relief structure at the peaks and valleys of a corrected trochoid theory tooth profile having such problems, and several embodiments thereof will be described in detail below.

第3図〜第5図は、谷部の逃げ構造に関する実
施例である。
FIGS. 3 to 5 are examples of valley relief structures.

さて、第3図の実施例は、トロコイド理論修整
曲線2′,2″の谷部にできる尖部Bを直線と円弧
とで接線的に連続させたものである。
Now, in the embodiment shown in FIG. 3, the peaks B formed at the valleys of the trochoid theory correction curves 2' and 2'' are tangentially continued by a straight line and a circular arc.

第4図は、同じく谷部の尖部Bを円弧のみで逃
げたものである。
In FIG. 4, the apex B of the trough is also shown with only a circular arc.

第5図は、互に曲線の異なる2円弧で結んだも
のである。
In FIG. 5, two circular arcs with different curves are connected.

第6図〜第9図は、山部の逃げ構造の実施例を
示すものである。
FIGS. 6 to 9 show examples of relief structures for the peaks.

さて第6図は、トロコイド理論曲線2′,2″の
山部にできる尖部Cを円弧のみで結んだものであ
る。
Now, in FIG. 6, the peaks C formed at the peaks of the trochoid theoretical curves 2' and 2'' are connected only by circular arcs.

第7図は、トロコイド理論曲線2′,2″を2個
の円弧と直線で結んだものである。
FIG. 7 shows the trochoid theoretical curves 2' and 2'' connected by two circular arcs and a straight line.

第8図は、トロコイド理論曲線2′,2″を2本
の直線と円弧で結んでいる。
In FIG. 8, trochoid theoretical curves 2' and 2'' are connected by two straight lines and a circular arc.

第9図は、トロコイド理論曲線2′,2″を異な
る半径の2円弧で結んでいる。
In FIG. 9, trochoid theoretical curves 2' and 2'' are connected by two circular arcs with different radii.

以上は、山及び谷部の逃げ構造に於けるいくつ
かの円弧と直線との組み合せ方を示したが、勿論
これ以外にも考えられる。そして、それらのどれ
を採るかは、歯形曲線のトロコイド理論範囲(第
2図におけるA)と谷、及び山部の法線方向のバ
ツクラツシユの量(大きさ)によつて決定される
ものである。
The above has shown some combinations of circular arcs and straight lines in the relief structure of peaks and valleys, but of course other combinations are possible. Which of these is chosen is determined by the trochoid theoretical range of the tooth profile (A in Figure 2) and the amount (size) of bumps in the normal direction of the valleys and peaks. .

本考案は、以上の如く構成されており、歯形曲
線に尖点が現れないため、歯面の切削、研削加工
が容易である。
The present invention is constructed as described above, and since no cusp appears on the tooth profile curve, cutting and grinding of the tooth surface is easy.

又、このように尖点部を逃げることにより、法
線方向のバツクラツシユが自由にとれる効果があ
る。その結果、歯形修整された歯車の加工精度や
弾性変形による異常噛合の防止が可能であつて、
歯車伝導装置の効率向上、寿命の延長等に寄与す
るところ大である。
Also, by escaping the apex in this way, there is an effect that the backlash in the normal direction can be freely taken. As a result, it is possible to improve the machining accuracy of gears with modified tooth profiles and to prevent abnormal meshing due to elastic deformation.
This greatly contributes to improving the efficiency and extending the life of gear transmission devices.

以上の説明においては、遊星歯車減速機の曲線
板を例にをとつて説明してきたが、サイクロイド
系歯車やトロコイド系歯形を利用したポンプ又は
モーター等にも応用することが可能である。
In the above explanation, the curved plate of a planetary gear reducer has been taken as an example, but it can also be applied to pumps or motors using cycloidal gears or trochoidal tooth profiles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、公知の歯車における歯形修整例を示
す。第2図は、新規な修整歯形の構造を示す。第
3図〜第5図は、本考案に係る修整歯形の谷部に
おける尖部の逃げ構造の実施例を示す。第6図〜
第9図は、本考案に係る修整歯形の山部における
尖部の逃げ構造の実施例を示す。 図において;1……曲線板、2……(歯形の)
トロコイド理論曲線、2′,2″……修整後のトロ
コイド理論歯形、A……(修整歯形の理論かみ合
いが行われる)下り面及び上り面、B……谷部の
尖部、C……山部の尖部。
FIG. 1 shows an example of tooth profile modification in a known gear. FIG. 2 shows the structure of the new modified tooth profile. FIGS. 3 to 5 show examples of relief structures for the peaks in the valleys of the modified tooth profile according to the present invention. Figure 6~
FIG. 9 shows an embodiment of the relief structure of the peak of the modified tooth profile according to the present invention. In the figure; 1... curved plate, 2... (tooth profile)
Trochoid theoretical curve, 2', 2''...Theoretical trochoid tooth profile after modification, A...Downward and upward surfaces (on which theoretical meshing of the modified tooth profile is performed), B...Apex of valley, C...Mountain The apex of the part.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 下り面と上り面で形成される歯形を有し、該歯
形の下り面は1つのトロコイド理論曲線2を歯車
の中心0のまわりに△ψ左に回転変位させで得ら
れる曲線2′で構成し、又歯形の上り面は前記ト
ロコイド理論曲線2を歯車の中心0のまわりに右
に△ψだけ回転変位させて得られる曲線2″で構
成し、前記曲線2′と曲線2″が交わる歯形の山部
並びに谷部に生じた尖部を連続曲線にて削り落し
て逃げたことを特徴とするトロコイド系歯形歯
車。
It has a tooth profile formed by a descending surface and an ascending surface, and the descending surface of the tooth profile consists of a curve 2' obtained by rotationally displacing one trochoid theoretical curve 2 to the left around the center 0 of the gear. , and the upward surface of the tooth profile is formed by a curve 2'' obtained by rotationally displacing the trochoid theoretical curve 2 by △ψ to the right around the center 0 of the gear, and the tooth profile where the curves 2' and 2'' intersect is A trochoidal tooth gear characterized by having peaks formed in the peaks and valleys shaved off in a continuous curve.
JP1981092941U 1981-06-25 1981-06-25 Expired JPS621488Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981092941U JPS621488Y2 (en) 1981-06-25 1981-06-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981092941U JPS621488Y2 (en) 1981-06-25 1981-06-25

Publications (2)

Publication Number Publication Date
JPS5723456U JPS5723456U (en) 1982-02-06
JPS621488Y2 true JPS621488Y2 (en) 1987-01-14

Family

ID=29454888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981092941U Expired JPS621488Y2 (en) 1981-06-25 1981-06-25

Country Status (1)

Country Link
JP (1) JPS621488Y2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082531A (en) * 1983-10-12 1985-05-10 Kiyoshi Aoshima Direction changing device
JPH0649630B2 (en) * 1985-04-05 1994-06-29 株式会社荏原製作所 Fermenter operating method
WO2005072067A2 (en) * 2004-01-30 2005-08-11 Nabtesco Corporation Eccentric oscillating-type planetary gear device
JP4498816B2 (en) * 2004-05-12 2010-07-07 ナブテスコ株式会社 Eccentric oscillation type planetary gear unit
JP4498823B2 (en) * 2004-05-18 2010-07-07 ナブテスコ株式会社 Eccentric oscillation type planetary gear unit

Also Published As

Publication number Publication date
JPS5723456U (en) 1982-02-06

Similar Documents

Publication Publication Date Title
CA1099990A (en) Hydrostatic gear machine
JP3942249B2 (en) Flexible meshing gear system having a three-dimensional non-interfering wide-area meshing tooth profile
CN109773279B (en) Circular arc tooth line gear machining method
US3982445A (en) High torque gearing
JP4165810B2 (en) Wave gear device having a three-dimensional displacement meshing tooth profile
EP0974017A1 (en) Gear form constructions
JPS621488Y2 (en)
JP2003503649A (en) Helical and spur gear drives with pinion tooth surface and conjugate gear tooth surface with double crowning
US2960884A (en) Rounded tooth tips for pointed rotoid teeth
IE820254L (en) Meshing screw rotary machine
CN109084006B (en) Trigonometric function shape modifying method for cycloid gear and cycloid pin gear speed reducer
CN111322373A (en) Gear pair design method based on claw helix rack knife
CN111637200B (en) Helical gear planetary transmission mechanism
JPH034757B2 (en)
CN110802280B (en) Involute spiral bevel gear tooth surface design method
JP2768912B2 (en) Three-dimensional tooth surface modification structure for helical and helical gears
CN107327559A (en) A kind of helical gear of circular arc parabola Multi-contact
JPH021612B2 (en)
US3824873A (en) Rolling contact gearing
JPS621489Y2 (en)
US4627770A (en) Gear cutter
CN104265858B (en) Circular arc bevel gear tooth surface design method based on spherical tooth profiles of different tooth profile angles
US3946620A (en) Gear with a trochoidal curved disk
CN109812544B (en) Arc tooth surface gear transmission pair and design method
JPH1194052A (en) Gear