JPS6214729A - Environmental control apparatus of plant growing chamber - Google Patents
Environmental control apparatus of plant growing chamberInfo
- Publication number
- JPS6214729A JPS6214729A JP60155589A JP15558985A JPS6214729A JP S6214729 A JPS6214729 A JP S6214729A JP 60155589 A JP60155589 A JP 60155589A JP 15558985 A JP15558985 A JP 15558985A JP S6214729 A JPS6214729 A JP S6214729A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- predicted
- plant growing
- concentration
- solar radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/25—Greenhouse technology, e.g. cooling systems therefor
Landscapes
- Cultivation Of Plants (AREA)
- Greenhouses (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、温室、ビニールハウス専の植物育成室内の温
度及びCO2淵度濃度物の育成に最適な状態に制御する
植物育成室の環境制御装置に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an environmental control device for a plant growing room that controls the temperature in a greenhouse or a greenhouse dedicated to growing a plant to the optimum state for growing CO2-concentrated substances. Regarding.
[発明の技術向背■]
植物の光合成速度は光飽和点まで日射の強さにほぼ比例
し、温度の上昇とともに速くなる。この場合、光合成速
度に応じて空気中のco2i農IIIを高める必要があ
る。斯かる事情に着目して、従来の植物育成室の環境1
1制御装置は、日射量を日射;d検出器により測定し、
その測定値に基いて植物育成室内の温度調節装置及びC
O2供給装置の運転を制御することにより光合成速度を
高めるように構成していた。[Technical background of the invention ■] The photosynthetic rate of plants is approximately proportional to the intensity of solar radiation up to the light saturation point, and increases as the temperature rises. In this case, it is necessary to increase CO2i Agriculture III in the air according to the photosynthesis rate. Focusing on such circumstances, the environment of the conventional plant growing room 1
1. The control device measures the amount of solar radiation using a solar radiation detector;
Based on the measured values, the temperature control device and C
It was configured to increase the photosynthesis rate by controlling the operation of the O2 supply device.
[背景技術の問題点]
ところで温度調節装置やCO2供給装置の運転を開始し
てから植物育成室内全域の温度、CO2澗度が設定値に
至るまでにはある程度の時間を要するという事情がある
。これにも拘らず上記従来構成では、現時刻以前の日射
間の測定値に基いて温度調節装置及びCO2供給装置の
運転を制御する構成であるため、温僚、CO2濃麿が絶
えず時間的に遅れて調節される結果となり、適時制御を
行い得ないという問題点があった。[Problems with Background Art] By the way, there is a situation in which it takes a certain amount of time for the temperature and CO2 degree in the entire area of the plant growing room to reach the set values after the operation of the temperature control device and the CO2 supply device is started. Despite this, in the conventional configuration described above, the operation of the temperature control device and the CO2 supply device is controlled based on the measured value of solar radiation before the current time, so the temperature and CO2 concentration are constantly increased over time. There is a problem in that the adjustment is delayed and timely control cannot be performed.
[発明の目的コ
本発明は上記事情を考慮してなされたもので、従ってそ
の目的は、植物育成室の室内空気の温度及びCO2C=
度を時間遅れなく調節できて、植物育成室内の環境を絶
えず最適状態に維持できる植物育成室の環境制御装置を
提供するにある。[Purpose of the Invention] The present invention has been made in consideration of the above circumstances, and therefore, its purpose is to reduce the temperature of indoor air in a plant growing room and CO2C=
To provide an environment control device for a plant growing room which can adjust the temperature without time delay and constantly maintain the environment in the plant growing room in an optimum state.
[発明の概要]
本発明は、温度調節装置を、植物育成室内の温度と、そ
の温度測定前の日射量に基き予測した予測温度とに基き
制御するように構成すると共に、CO2供給装置を、前
記植物育成室内のCO2m度と、そのCOz’t=度測
定前の日rJJ[F]にtJき予測した予測CO271
4度とに基き制御するように構成したものであり、これ
により光合成作用の促進に最適な室内空気の温度及びC
OZ tm度を予測しながら調節するようにしたもので
ある。[Summary of the Invention] The present invention configures a temperature control device to be controlled based on the temperature in a plant growing room and a predicted temperature predicted based on the amount of solar radiation before measuring the temperature, and a CO2 supply device, CO2 m degree in the plant growing room and its COz't = predicted CO271 predicted by tJ on the day rJJ [F] before degree measurement
This system is designed to control the indoor air temperature and temperature based on 4 degrees Celsius, which is the optimum indoor air temperature and temperature for promoting photosynthesis.
The adjustment is made while predicting the degree of OZ tm.
[発明の実施例1
以下、本発明の一実施例を図面を参照して説明する。ま
ず全体の電気的構成を示す第2図において、1は植物育
成室(図示せず)内の日111Fjfjlを測定する日
射通測定器、2は植物育成室の室内空気の温度を測定す
る温石測定器、3は室内空気中のCO211度を測定す
るC 02測定器である。これら各測定器1,2.3に
より後述する測定時間間隔ごとに日Ots徴、温度及び
CO2濃度が間欠的に測定され、各測定器1.2.3か
らの出ノ〕信号はアナログマルヂブレクサ4及びA/D
変換器5を順に介してマイクロコンピュータ6に入力さ
れる。[Embodiment 1 of the Invention Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, in Fig. 2 showing the overall electrical configuration, 1 is a solar radiation measuring device that measures the day 111Fjfjl in the plant growing room (not shown), and 2 is a hot stone measuring device that measures the temperature of the indoor air in the plant growing room. The device 3 is a CO2 measuring device that measures 11 degrees of CO2 in indoor air. These measuring instruments 1, 2.3 intermittently measure the temperature and CO2 concentration at each measurement time interval, which will be described later, and the output signals from each measuring instrument 1.2.3 are analog Brexa 4 and A/D
The signals are sequentially input to the microcomputer 6 via the converter 5.
7はマイクロコンピュータ6に時間信号を入力するff
¥π1である。8は植物育成室内に温風を供給する暖房
装置、9は植物育成室内に冷J虱を供給する冷房装置で
、この冷房装置つと上記暖房装置8とにより温度調節装
置が構成されている。10は植物育成室内にCO2を供
給するC 02供給装置、11は植物育成室の室内空気
を対流させるためのファン装置である。そして、これら
暖房装置8゜冷房装置9.CO2供給装置10及びファ
ン装置11の運転がリレー12を介してマイクロコンピ
ュータ6により後述するように制御される。ff 7 inputs a time signal to the microcomputer 6
It is ¥π1. Reference numeral 8 denotes a heating device for supplying hot air into the plant growing room, and numeral 9 a cooling device for supplying cold air into the plant growing room.This cooling device and the heating device 8 constitute a temperature control device. 10 is a C02 supply device that supplies CO2 into the plant growing room, and 11 is a fan device that causes convection of indoor air in the plant growing room. These heating devices 8 degrees cooling devices 9. The operation of the CO2 supply device 10 and the fan device 11 is controlled by the microcomputer 6 via the relay 12 as described later.
ここで、マイクロコンピュータ6の構成を第1図に基い
て説明する。13は各測定器1.2.3の測定時間間隔
を設定する測定時間間隔設定手段で、これにより使用者
が植物育成室の内容積に基いて測定時間間隔を適宜設定
する。14は植物の光合成作用を促進させる室内空気の
最適温度を予測する光合成ml予測手段で、これは日射
量検出器1により測定した平均日射量に基いて前記最適
温度を予測するものである。具体的には、第3図に示づ
“ように例えばt2時における平均日射mが82で、こ
の12時の次の測定時間である13時における平均日射
量が83であったとすると、t4時の予測日IJffi
をSa” を次の(1)式で計算する。Here, the configuration of the microcomputer 6 will be explained based on FIG. 1. Reference numeral 13 denotes a measurement time interval setting means for setting the measurement time interval of each measuring device 1.2.3, which allows the user to appropriately set the measurement time interval based on the internal volume of the plant growth chamber. Reference numeral 14 denotes a photosynthesis ml prediction means for predicting the optimal temperature of indoor air that promotes the photosynthetic action of plants, and this predicts the optimal temperature based on the average solar radiation measured by the solar radiation detector 1. Specifically, as shown in Figure 3, if the average solar radiation m at t2 o'clock is 82, and the average solar radiation m at 13 o'clock, which is the next measurement time at 12 o'clock, is 83, then at t4 o'clock Forecast date of IJffi
Sa'' is calculated using the following equation (1).
Sa ’ −(tt j2)十52
13−12 ・・・・・・(1)そし
て、この予測日Q’JffiSa’ に基き13時に次
の測定時間における予測温度03′を次の(2)式で計
算する。Sa' - (tt j2) 152 13-12 (1) Then, based on this predicted date Q'JffiSa', the predicted temperature 03' at the next measurement time at 13:00 is calculated by the following equation (2). Calculate with.
θ3 ’ =SV4 +aS4 ’ −−(2)こ
こで、S V 4はt4時の温度W単価(第4図参照)
、aは定数である。一方、第1図において、15は光合
成物質の転流作用を促進する室内空気の最適温度を予測
する転流温度予測手段で、これは転流促進時間帯(第4
図参照)において日の出からの積算日射量に基き上述と
同様にして予測積算日射量を計算し、この予測積算日射
3に基き予測温度を割算するものである。更に、第1図
において、16は室内空気中の最適COZ 14度を予
測するCOz W度予測手段で、前述した測定時間間隔
をL(第3図参照)とするとCO2Ffn度予測手段1
.6は過去の時間り毎の積算日射岳に係数を乗じて予測
CO2濃度を計算する。17は暖房装首制御手段で、光
合成促進時間帯(第4図参照)においては湿度測定器2
により測定した植物育成室内の温度と光合成温度予測手
段14により予測した予測温度とに基いて暖房装置8及
びファン装置11の運転を制御するものである。具体的
には、例えばt3時において温度測定器2により測定し
た植物育成室内TI′)温度を03とすると、前述した
(2)式の予測温度03′に基き暖房装置8及びファン
装置11を次の(3)式で示すΔt1時間だけ運転する
ものである。θ3' = SV4 +aS4' --(2) Here, SV4 is the temperature W unit price at t4 (see Figure 4)
, a are constants. On the other hand, in FIG. 1, 15 is a translocation temperature prediction means for predicting the optimum temperature of indoor air that promotes the translocation effect of photosynthetic substances, and this is a translocation promotion time period (fourth
(see figure), the predicted cumulative solar radiation is calculated in the same manner as described above based on the cumulative solar radiation from sunrise, and the predicted temperature is divided based on this predicted cumulative solar radiation 3. Furthermore, in FIG. 1, 16 is a COzW degree prediction means for predicting the optimum COZ of 14 degrees in indoor air, and if the aforementioned measurement time interval is L (see FIG. 3), then the CO2Ffn degree prediction means 1
.. Step 6 calculates the predicted CO2 concentration by multiplying the cumulative Mt. Hiroshidake for each past hour by a coefficient. Reference numeral 17 is a heating head control means, which controls the humidity measuring device 2 during the photosynthesis promotion time period (see Figure 4).
The operation of the heating device 8 and the fan device 11 is controlled based on the temperature in the plant growing room measured by the above method and the predicted temperature predicted by the photosynthetic temperature predicting means 14. Specifically, for example, if the temperature in the plant growing room TI') measured by the temperature measuring device 2 at time t3 is 03, then the heating device 8 and the fan device 11 are The operation is performed for Δt1 time as shown in equation (3).
△tr=Kt(03′−03) ・・・・・・(3)こ
こで、K1は植物育成室の内容積及び暖房装置8の能力
によって決まる定数である。但し、次の(4)式の関係
にある場合には暖房装置8のオン・オフが切換えられる
ことはなく、これにより暖房装置8のオン・オフ切換え
が過度になることを防止している。Δtr=Kt(03'-03) (3) Here, K1 is a constant determined by the internal volume of the plant growth chamber and the capacity of the heating device 8. However, if the following equation (4) holds true, the heating device 8 will not be switched on and off, thereby preventing the heating device 8 from being switched on and off excessively.
03′−Δθ1くθ、〈θ31+Δθ1・・・・・・(
4)
ここで、Δθ1は予め設定された制御温度幅である(第
4図参照)。一方、転流促進り間借においては、暖房装
置制御手段17は測定した植物育成室内の温度と転流温
度予測手段15により予測した予測温度に基いて上述と
同様にして暖房装置8及びファン装置11の運転を制御
する。18は冷房装置制御手段で、これは温度測定器2
により測定した植物育成室内の温度と、光合成温度予測
手段14.転流温度予測手段15によりY測した予測温
度に阜いて冷F7J装置9及びファン装置11の運転を
制御するものである。19はCO2供給装置制御手段で
、これはCO2測定器3により測定したCO2m度とC
O2予測手段16により予測した予測CO2淵度に基い
てCO2供給装置10及びファン装置11の運転を制御
するものである。03'−Δθ1×θ, 〈θ31+Δθ1・・・・・・(
4) Here, Δθ1 is a preset control temperature range (see FIG. 4). On the other hand, in the commutation promotion room rental, the heating device control means 17 controls the heating device 8 and the fan device 11 in the same manner as described above based on the measured temperature inside the plant growing room and the predicted temperature predicted by the commutation temperature prediction means 15. control the operation of 18 is a cooling device control means, which is a temperature measuring device 2
The temperature inside the plant growing room measured by the photosynthetic temperature prediction means 14. The operation of the cold F7J device 9 and the fan device 11 is controlled based on the predicted temperature measured by the commutation temperature prediction means 15. 19 is a CO2 supply device control means, which controls the CO2m degree and C measured by the CO2 measuring device 3.
The operation of the CO2 supply device 10 and the fan device 11 is controlled based on the predicted CO2 depth predicted by the O2 prediction means 16.
次に、上記構成の作用について説明する。各測定器1,
2.3ににり時間間隔し毎に測定された平均口rJJf
fiSh 、室内空気の温度θに、及びCozcJ度c
bの各信号はアナログマルチプレクサ4及びA/D変換
器5を順に介してマイクロコンピュータ6に入力され、
このマイクロコンピユークロのROMに記憶された制御
用プログラムに従って処理される。以下、この制御用プ
ログラムのフローヂャートを示す第5図乃至第8図に基
いて説明する。まず第5図に示すように、ステップP1
において現時刻tbが光合成促進時間帯であるか否かを
判断し、その判断結果がrYEsJとなったとぎ即ち光
合成促進時間帯であるときにはステップP2においてL
時間後(次の測定時刻)の予測日射fiisll+ +
1 ’ を(1)式に基いて演Wする。Next, the operation of the above configuration will be explained. Each measuring device 1,
2.3 Average mouth rJJf measured at each time interval
fiSh, indoor air temperature θ, and CozcJ degrees c
Each signal b is input to the microcomputer 6 via the analog multiplexer 4 and the A/D converter 5 in order,
Processing is performed according to a control program stored in the ROM of this microcomputer. The following will explain the control program based on FIGS. 5 to 8, which show flowcharts of the control program. First, as shown in FIG.
In step P2, it is determined whether or not the current time tb is in the photosynthesis promotion time zone, and when the determination result is rYEsJ, that is, in the photosynthesis promotion time zone, L is determined in step P2.
Predicted solar radiation fiisll+ after hours (next measurement time)
1' is expressed based on equation (1).
その後、ステップP3において上乗迂温度Δθ員を次の
(5)式に基いて演算する。Thereafter, in step P3, the upper and lower temperatures Δθ are calculated based on the following equation (5).
Δθk =aSb +1 ’ (aは定数)・(5
)そして、ステップP4において次の(6)式の関係に
なっているか否かを判断する。Δθk =aSb +1' (a is a constant)・(5
) Then, in step P4, it is determined whether the relationship expressed by the following equation (6) is satisfied.
SVk+t+Δθh〉θo ・・・・・・(6)
ここで、SVb+tは温度基準値(第4図参照)、0口
は予め設定された温度上限値である。このステップP4
でrYEsJと判断されると、ステップP5でθN=θ
Uとされ、一方rNOJと判断されると、ステップP6
t−θi =SVIII +1+Δθhとされる。その
後、ステップP7において予測COZ CJ度Cζ′を
過去の時間り毎の積算口射畠に係数を乗じて演口し、ス
テップP8.P9で予測CO2CJ度C輌′が予め設定
ざ机たCO2濶度上限値Cuを越えている場合にはct
t’=cUとする。一方、ステップP1でrNOJと判
断されてステップPIOで現時刻tが転流促進時間帯で
あると判断されると、ステップP11で日の出からの1
?lF3日射母に阜いてL時間後の予測偵鈴日射?Sζ
+1“を演停した後、前述したステップP3乃至P9を
実行する。また、ステップP10で「N○」と判断され
た場合、即ち転流促進時間帯を経過してから翌日の光合
成促進時間帯に至るまでの間は、ステップP12おいて
θb’=svh+1とし、次いでステップP7乃至P9
を実行する。SVk+t+Δθh〉θo (6)
Here, SVb+t is a temperature reference value (see FIG. 4), and 0 is a preset upper limit temperature value. This step P4
If rYEsJ is determined in step P5, θN=θ
If it is determined to be U, and rNOJ, then step P6
It is assumed that t-θi =SVIII +1+Δθh. Thereafter, in step P7, the predicted COZ CJ degree Cζ' is calculated by multiplying the cumulative mouth ejection rate for each past time period by a coefficient, and in step P8. At P9, if the predicted CO2CJ degree C' exceeds the preset CO2 degree upper limit Cu, ct
Let t'=cU. On the other hand, if rNOJ is determined in step P1 and the current time t is determined to be the commutation promotion time period in step PIO, step P11 determines that 1 from sunrise.
? Predicted solar radiation after L hours based on lF3 solar radiation mother? Sζ
+1", the steps P3 to P9 described above are executed. Also, if it is determined as "N○" in step P10, that is, after the translocation promotion time period has elapsed, the next day's photosynthesis promotion time period is executed. Until it reaches θb'=svh+1 in step P12, then steps P7 to P9
Execute.
そして、暖房装置8は上記予測温度θh′と実測温度o
hとに基いて第6図に示すように制御される−0即ち、
ステップP13で室内空気の温度θ坂を測定して、ステ
ップP14でこの実測温度θ負が暖房装置8の運転停止
レベル(θh′+△θa)を越えているか否かを判断す
る。ここで、Δθaは予め設定された制御温度幅(第4
図参照)である。ステップP14でrYESJと判断さ
れると、ステップP15で暖房装置8が停止される。The heating device 8 then uses the predicted temperature θh′ and the actual measured temperature o.
-0, that is, controlled as shown in FIG. 6 based on h.
In step P13, the temperature θ slope of the indoor air is measured, and in step P14, it is determined whether the actually measured temperature θ exceeds the operation stop level (θh'+Δθa) of the heating device 8. Here, Δθa is the preset control temperature width (fourth
(see figure). If rYESJ is determined in step P14, the heating device 8 is stopped in step P15.
一方、「NO」と判断されると、ステップP16で実測
温度θ畑が暖房装置8の起動レベル(θ麹′−△θa)
よりも低いか否かが判断される。実測温度θaが起動レ
ベル以上のときには暖房装置8は起動されず、起動レベ
ルよりも低くなったとぎにのみステップP17乃至P2
1を実行して暖房装置8が起動される。ステップP17
乃至P21では、予測温度θh′と実測温度θ1との温
度差eaを求めた後、この温度差eaに定数Ka(これ
は植物育成室の内容積及び暖房装置8の能力によって予
め設定される)を乗じて運転時間Δ1゛aを決定し、こ
の運転時間△taだけ暖房装置8及びファン装置11を
運転する。このとき、運転時間Δtaが測定時間間隔り
よりも短い場合には△ta時間接暖房装置8が停止され
る。On the other hand, if the determination is "NO", the actual measured temperature θ field is set to the starting level of the heating device 8 (θ koji' - △θa).
It is determined whether or not it is lower than . When the actual temperature θa is equal to or higher than the activation level, the heating device 8 is not activated, and only when the measured temperature θa becomes lower than the activation level, steps P17 to P2 are performed.
1 is executed to start the heating device 8. Step P17
In steps P21 to P21, after determining the temperature difference ea between the predicted temperature θh' and the measured temperature θ1, a constant Ka (this is set in advance based on the internal volume of the plant growth chamber and the capacity of the heating device 8) is added to this temperature difference ea. The operating time Δ1'a is determined by multiplying by Δ1'a, and the heating device 8 and the fan device 11 are operated for this operating time Δta. At this time, if the operating time Δta is shorter than the measurement time interval, the heating and heating device 8 is stopped for the Δta time.
一方、冷房装置9は予測温度θ胸′ と実測温度θ輌と
に基いて第7図に示ずように制御される。On the other hand, the cooling device 9 is controlled as shown in FIG. 7 based on the predicted temperature θ' and the measured temperature θ.
即ち、ステップP22乃至P24に示すように実測温度
Okが冷房装置9の起Uルベル(θ1’+△Ob)を越
えているか否かを判断し、越えていない場合には冷房装
置9を停止状態にする。ここで、Δθbは予め設定され
た制御温度幅である。That is, as shown in steps P22 to P24, it is determined whether or not the measured temperature Ok exceeds the starting level (θ1'+ΔOb) of the cooling device 9, and if it does not, the cooling device 9 is stopped. Make it. Here, Δθb is a preset control temperature range.
一方、実測温度θ険が起動レベルを越えた場合にはステ
ップP25乃至P29を実行して冷房装置9が起動され
る。この場合、まず実測温度θhと予測温度θN′との
温度差ebを求めlこ後、この温度差ebに定数Kb
(これは植物育成室の内容積及び冷房装置9の能力に
よって予め設定される)を乗じて運転時間Δtbを決定
し、この運転時間△tbだけ冷房装置9及びファン装置
10を運転する。このとき、運転時間Δtbが測定時間
間隔りよりも短い場合にはΔtb時間時間開冷房装置9
止される。On the other hand, if the measured temperature θ exceeds the activation level, steps P25 to P29 are executed and the cooling device 9 is activated. In this case, first find the temperature difference eb between the measured temperature θh and the predicted temperature θN', and then add a constant Kb to this temperature difference eb.
(This is preset based on the internal volume of the plant growth chamber and the capacity of the cooling device 9) to determine the operating time Δtb, and the cooling device 9 and the fan device 10 are operated for this operating time Δtb. At this time, if the operating time Δtb is shorter than the measurement time interval, the cooling device 9 is opened for the Δtb time.
will be stopped.
また、CO2供給装置10はCO2測定器3により測定
したC O2濃度chと前述した予測CO2濃度CL′
に基いて第8図に示すように制御される。即ち、ステッ
プP30乃至P32に示すように実測CO211度Ct
tがCO2供給装置10の運転停止レベル(Cに′+Δ
C)を越えているか否かを判断し、運転停止レベルを越
えている場合にはCO2供給装置10を停止状態にする
。ここで、ΔCは予め設定された制御温度幅である。一
方、ステップP31でrNOJと判断されると、ステッ
7P33T:実測cOz a+actt がCOz供給
装置10の起動レベル(Ck−ΔC)より6低いか否か
が判断され、低い場合にはステップP34乃至P38を
実行してCO2供給装置10が起動される。この場合、
まず予測CO2澗僚Ch′と実測温度CO2濃度cbと
の濃度差ecを求めた俊、この温度差ecに定数Kc
(これは植物育成室の内容積及びCO2供給装置10
の能力によって予め設定される)を乗じて運転時間Δt
cを決定し、この運転時間ΔtcだけCO2供給装置1
0及びファン装置11を運転する。このとき、運転時間
△tcが測定時間間隔しよりも短い場合にはΔt Cl
tニア間接CO2供給装置10が停止される。そして、
ステップP39.P40に示すように暖房装置8.冷房
装置9及びCO2供給装置10が全て停止した状態にあ
るときにはファン装置11が停止される。The CO2 supply device 10 also uses the CO2 concentration ch measured by the CO2 measuring device 3 and the predicted CO2 concentration CL' described above.
is controlled as shown in FIG. That is, as shown in steps P30 to P32, the actual measured CO211 degrees Ct
t is the operation stop level of the CO2 supply device 10 ('+Δ
It is determined whether or not the level exceeds C), and if the level exceeds the operation stop level, the CO2 supply device 10 is brought into a stopped state. Here, ΔC is a preset control temperature range. On the other hand, if rNOJ is determined in step P31, step 7P33T: It is determined whether the measured cOz a+actt is 6 lower than the activation level (Ck-ΔC) of the COz supply device 10, and if it is lower, steps P34 to P38 are executed. By executing this, the CO2 supply device 10 is activated. in this case,
First, Shun calculated the concentration difference ec between the predicted CO2 concentration Ch' and the measured temperature CO2 concentration cb, and added a constant Kc to this temperature difference ec.
(This is the internal volume of the plant growth room and the CO2 supply device 10.
Operating time Δt is calculated by multiplying by (preset according to the capacity of
c is determined, and the CO2 supply device 1 is operated for this operating time Δtc.
0 and the fan device 11 are operated. At this time, if the operating time Δtc is shorter than the measurement time interval, Δt Cl
The near indirect CO2 supply device 10 is stopped. and,
Step P39. As shown on page 40, heating device 8. When the cooling device 9 and the CO2 supply device 10 are all stopped, the fan device 11 is stopped.
以上述べた内容の制御用プログラムが時間間隔し毎に実
行され、これにより植物育成室内の環境が植物の育成に
最適な状態に維持される。The control program described above is executed at regular intervals, thereby maintaining the environment within the plant growing chamber in an optimal state for growing plants.
本実施例の場合、現時刻以前の日田の測定値に阜いて室
内空気の′g1度を制御する従来構成のものと(よ異な
り、暖房装置8及び冷房装置9を、実測した室内空気の
温度Ohと、実測した日射量に早き予測した予測日用字
31(+1’ により求めた予測温度θh′ とに)A
いて制御するように構成したので、光合成作用の淀准に
最適な温度を予測しながら暖房装置8及び冷房装置9が
制御されるようになり、これにより室内空気の温度を時
間遅れなく調節できる。そして、現時刻以前の臼射貧の
測定(直に阜いてCozE度を制御する従来構成のbの
とは異なり、CO2供給装置10を、実測したCO2濃
度cbと、実測した日射量に基き予測した予測CO2f
A度Ck′とに填き制御するように構成したので、光合
成作用の促進に最適なCO2濃度を予測しながらCO2
供給装置10が制御されるようになり、これによりCO
2濃度を時間遅れなく調節できる。In the case of this embodiment, unlike the conventional configuration in which the temperature of the indoor air is controlled based on Hita's measured value before the current time, the heating device 8 and the cooling device 9 are controlled at the temperature of the actually measured indoor air. Oh and the predicted daily usage character 31 (predicted temperature θh′ obtained by +1′) that was predicted based on the actually measured solar radiation amount A
Since the heating device 8 and the cooling device 9 are controlled while predicting the optimum temperature for the stagnation of photosynthesis, the indoor air temperature can be adjusted without time delay. Then, the CO2 supply device 10 is predicted based on the actually measured CO2 concentration cb and the actually measured amount of solar radiation, unlike the conventional configuration b, which directly controls the CozE degree by measuring the CO2 concentration before the current time. predicted CO2f
Since the structure is configured to control the amount of CO2 to increase the degree of A and Ck', CO2 is
The supply device 10 is now controlled, so that the CO
2 concentration can be adjusted without time delay.
また、植物育成室の内容積が小さくなるに従って、室内
空気の温度やCO2濃度の調節速度が上胃する傾向にあ
ることを考慮して、本実施例では測定時間間隔りを植物
育成室の内容積に基いて設定しているから、植物育成室
の内容積に応じた最適な制御を行い得る。In addition, taking into consideration that the rate of adjustment of indoor air temperature and CO2 concentration tends to increase as the internal volume of the plant growing room decreases, in this example, the measurement time interval is set to the content of the plant growing room. Since the settings are based on the product, optimal control can be performed depending on the internal volume of the plant growth chamber.
更に、光合成促進時間帯に引き続いて転流促進時間帯を
設け、この転流促進時間帯において予測積算日射量3b
+1″を予測しながら暖房装置8及び冷房装置9を制御
するようにしたから、室内空気の温度を転流作用の促進
に最適な温度に時間遅れなく調節できて、転流作用を大
いに高めることができる。Furthermore, a translocation promotion time period is provided following the photosynthesis promotion time period, and the predicted cumulative solar radiation amount 3b is set during this translocation promotion time period.
Since the heating device 8 and the cooling device 9 are controlled while predicting +1'', the temperature of the indoor air can be adjusted without time delay to the optimum temperature for promoting the commutation effect, thereby greatly enhancing the commutation effect. I can do it.
尚、本実施例では暖房装置8.冷房装置9.CO2供給
装置10からU1出される温風、冷風、CO2ガスの拡
散を速めるためにファン装置11を設けたが、これに限
られず、上記多装ff18.9゜10にフッフンが内蔵
されている場合や植物育成室の内容積が小さく拡散速度
がさほど問題にならない場合にはファン装置11を設け
なくても良い。In this embodiment, the heating device 8. Cooling device9. Although the fan device 11 is provided in order to speed up the diffusion of hot air, cold air, and CO2 gas discharged from the CO2 supply device 10, the present invention is not limited to this. The fan device 11 may not be provided if the internal volume of the plant growth chamber is small and the diffusion rate is not a big problem.
また、本実施例では温度調節装δを暖房装置8ど冷房装
δ9とから構成したが、これに限られず、暖房装置8の
みから構成しても良い。Further, in the present embodiment, the temperature control device δ is composed of the heating device 8 and the cooling device δ9, but is not limited to this, and may be composed of only the heating device 8.
[発明の効果]
本発明は以上の説明から明らかなように、光合成作用の
促進に最適な温度及びCO2濃度を予測しながら温度調
節装置及びCO2供給装置が制御されるから、室内空気
の温度及びCO2濃度を時間遅れな≦調節できて、植物
育成室内の環境を絶えず最適状態に維持できるという優
れた効果を奏する。[Effects of the Invention] As is clear from the above description, the temperature control device and CO2 supply device of the present invention are controlled while predicting the temperature and CO2 concentration that are optimal for promoting photosynthesis. It has the excellent effect of being able to adjust the CO2 concentration with a time delay and constantly maintaining the environment in the plant growing room in an optimal state.
図面は本発明の一実施例を示したもので、第1図はブロ
ック図、第2図は電気的構成図、第3図は日射量の時間
的変化を示す図、第4図は予測制御の原理を示す図、第
5図乃至第8図はフローヂャートである。
図面中、1は日射測定器、2は温度測定器、3はCO2
測定器、8は暖房装置(温度調節装置)、9は冷房装置
(温度調節装置)、10はCO2供給装置である。
出願人 株式会社 東 芝
17へQIOI+
!l 凶
第 2 図
晴間
第30
′P、5 図
第 6 図
% 7 図
第 8 図The drawings show one embodiment of the present invention; Fig. 1 is a block diagram, Fig. 2 is an electrical configuration diagram, Fig. 3 is a diagram showing temporal changes in solar radiation, and Fig. 4 is a predictive control diagram. The diagrams 5 to 8 showing the principle of this are flowcharts. In the drawing, 1 is a solar radiation measuring device, 2 is a temperature measuring device, and 3 is a CO2
8 is a heating device (temperature adjustment device), 9 is a cooling device (temperature adjustment device), and 10 is a CO2 supply device. QIOI+ to applicant Toshiba Corporation 17! l Kyodai 2nd Figure Haruma 30'P, 5 Figure 6 Figure % 7 Figure 8
Claims (1)
装置と、前記植物育成室内にCO_2を供給するCO_
2供給装置とを備えたものであって、前記温度調節装置
を、前記植物育成室内の温度と、その温度測定前の日射
量に基き予測した予測温度とに基き制御するように構成
すると共に、前記CO_2供給装置を、前記植物育成室
内のCO_2濃度と、そのCO_2濃度測定前の日射量
に基き予測した予測CO_2濃度とに基き制御するよう
に構成したことを特徴とする植物育成室の環境制御装置
。 2、植物育成室内の温度及びCO_2濃度は間欠的に測
定され、その測定時間間隔は植物育成室の内容積に基き
設定されていることを特徴とする特許請求の範囲第1項
に記載の植物育成室の環境制御装置[Claims] 1. A temperature control device that changes the temperature of indoor air in a plant growing room, and a CO_2 supplying CO_2 into the plant growing room.
2 supply device, the temperature adjustment device is configured to be controlled based on the temperature in the plant growth chamber and a predicted temperature predicted based on the amount of solar radiation before the temperature measurement, Environmental control of a plant growing room, characterized in that the CO_2 supply device is configured to be controlled based on the CO_2 concentration in the plant growing room and a predicted CO_2 concentration predicted based on the amount of solar radiation before measuring the CO_2 concentration. Device. 2. The plant according to claim 1, wherein the temperature and CO_2 concentration in the plant growth chamber are measured intermittently, and the measurement time interval is set based on the internal volume of the plant growth chamber. Environmental control device for growth room
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60155589A JPS6214729A (en) | 1985-07-15 | 1985-07-15 | Environmental control apparatus of plant growing chamber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60155589A JPS6214729A (en) | 1985-07-15 | 1985-07-15 | Environmental control apparatus of plant growing chamber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6214729A true JPS6214729A (en) | 1987-01-23 |
Family
ID=15609338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60155589A Pending JPS6214729A (en) | 1985-07-15 | 1985-07-15 | Environmental control apparatus of plant growing chamber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6214729A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0394620A (en) * | 1989-09-08 | 1991-04-19 | Iseki & Co Ltd | Complexed environment-controlling device in protected horticulture |
JP2007018275A (en) * | 2005-07-07 | 2007-01-25 | Fuji Electric Holdings Co Ltd | Sunlight hour estimating device |
JP2010511402A (en) * | 2006-12-07 | 2010-04-15 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Control equipment for greenhouse |
JP2018014904A (en) * | 2016-07-26 | 2018-02-01 | 株式会社オーガニックnico | Environment control apparatus for use in agricultural house |
-
1985
- 1985-07-15 JP JP60155589A patent/JPS6214729A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0394620A (en) * | 1989-09-08 | 1991-04-19 | Iseki & Co Ltd | Complexed environment-controlling device in protected horticulture |
JP2007018275A (en) * | 2005-07-07 | 2007-01-25 | Fuji Electric Holdings Co Ltd | Sunlight hour estimating device |
JP2010511402A (en) * | 2006-12-07 | 2010-04-15 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Control equipment for greenhouse |
JP2018014904A (en) * | 2016-07-26 | 2018-02-01 | 株式会社オーガニックnico | Environment control apparatus for use in agricultural house |
CN107656564A (en) * | 2016-07-26 | 2018-02-02 | 株式会社有机尼科 | The warm indoor environment control device of agricultural |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ATE118112T1 (en) | DATA STORAGE APPARATUS WITH DIRECT OVERWRITE REVERSIBLE PHASE CHANGE MEDIA AND DIRECT OVERWRITE METHOD. | |
JPS6214729A (en) | Environmental control apparatus of plant growing chamber | |
JPH0866126A (en) | Controller for greenhouse | |
GB2378265A (en) | Method for regulating the air temperature of an incubator | |
JPH05227942A (en) | Apparatus for culturing | |
JP2602932B2 (en) | Heating and cooling timer | |
JPH0350978B2 (en) | ||
JP2017172926A (en) | Control device for ventilation system of poultry house | |
JP2967062B2 (en) | Mushroom artificial cultivation method and automatic control device for mushroom cultivation environment | |
JPH02299541A (en) | Method for automatically controlling after ripening processing of banana and apparatus therefor | |
JP2536494B2 (en) | Sample-only heat flux type differential scanning calorimeter | |
SU1097261A1 (en) | Apparatus for for automatic controlling of sterilization when making preseres | |
KR100264509B1 (en) | Humidity control system confined space by continuous monitoring of wet-bulb temperature | |
RU94028500A (en) | AUTOMATIC TEMPERATURE CONTROL SYSTEM IN GREENHOUSE | |
Hopmans | In situ plant water relations monitoring for greenhouse climate control with computers | |
JPS56117038A (en) | Air conditioner | |
Gu et al. | Microwave Immunohistochemistry: Advances in Temperature Control | |
Kalogerakis et al. | Implementation and demonstration of a quasi‐steady‐state controller for yeast fermentation | |
JPH03221743A (en) | Air-conditioner | |
SU787456A1 (en) | Method of microorganism culturing process control | |
JPS5914526B2 (en) | How to operate a batch heat treatment furnace | |
JPH078228B2 (en) | Incubator | |
Sutcliffe et al. | Temperature control system for a silicon pulling furnace | |
Eisler Jr et al. | Continuous microbial cultures maintained by electronically-controlled device | |
SU610803A1 (en) | Method of automatic control of thermal conditions of glass making process in tank furnaces |