JPH0350978B2 - - Google Patents

Info

Publication number
JPH0350978B2
JPH0350978B2 JP8306884A JP8306884A JPH0350978B2 JP H0350978 B2 JPH0350978 B2 JP H0350978B2 JP 8306884 A JP8306884 A JP 8306884A JP 8306884 A JP8306884 A JP 8306884A JP H0350978 B2 JPH0350978 B2 JP H0350978B2
Authority
JP
Japan
Prior art keywords
measurement
cell
thermal conductivity
gas
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8306884A
Other languages
Japanese (ja)
Other versions
JPS59208447A (en
Inventor
Rotsushaa Herumuuto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEREUSU INSUTSURUMENTSU GmbH
Original Assignee
HEREUSU INSUTSURUMENTSU GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEREUSU INSUTSURUMENTSU GmbH filed Critical HEREUSU INSUTSURUMENTSU GmbH
Publication of JPS59208447A publication Critical patent/JPS59208447A/en
Publication of JPH0350978B2 publication Critical patent/JPH0350978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は通気培養槽中の熱伝導度測定セルの自
動ゼロ点調整方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for automatic zero point adjustment of a thermal conductivity measurement cell in an aerated culture tank.

この明細書で対象とする通気培養槽は、例えば
ドイツ特許第2924446号明細書(米国特許第
4336329号明細書)に記載されている。しかし、
本発明細書に記載の培養槽の構造、実施態様に限
定されるものではない。
The aerated culture tank covered by this specification is described, for example, in German Patent No. 2924446 (U.S. Patent No.
4336329). but,
The present invention is not limited to the structure and embodiment of the culture tank described in the specification.

(従来の技術) 従来、測定装置、特に作動室のCO2濃度の測定
のための測定装置では時々装置のゼロ点を調整す
ることが一般に必要であり、場合によつてはゼロ
点を修正することが必要であつた。
(Prior Art) Conventionally, in measuring devices, in particular measuring devices for the measurement of CO 2 concentration in the working chamber, it is generally necessary from time to time to adjust the zero point of the device, and in some cases to correct the zero point. It was necessary.

(発明が解決しようとする課題) 通気培養槽のガス濃度測定においては、数日、
数週および数カ月におよぶ長い測定サイクルが使
用され、槽内の雰囲気は所定の処理条件を維持す
るために連続してチエツクされねばならない。槽
内のガス雰囲気の調節は熱伝導度測定セルにより
行われるが、セルの長期の使用によつてガス濃度
測定センサーが汚染や老化するため、正確な値を
示さないようになることがある。従つて、セルが
槽内のガス濃度を正しく示さない出力信号を与え
ないように、セルの出力信号を時々修正する必要
がある。培養槽は無菌状態にするためにシールさ
れねばならないので、例えばセルを校正
(calibration)する場合に、測定側に直接アクセ
スすることは不可能である。従つて、セルは自己
修正または自己適応するものでなければならな
い。数週または数カ月のような長い測定サイクル
の場合、このような長時間の操作中に測定セルを
テストする系および方法、即ち、同じ条件(雰囲
気)下で測定側の出力信号を照合側の出力信号と
比較する手段の提供が特に重要である。
(Problem to be solved by the invention) When measuring gas concentration in an aerated culture tank, it takes several days.
Long measurement cycles lasting weeks and months are used and the atmosphere within the tank must be checked continuously to maintain the desired process conditions. The gas atmosphere inside the tank is controlled by a thermal conductivity measuring cell, but the gas concentration measuring sensor may become contaminated or aged due to long-term use of the cell, and may no longer indicate an accurate value. Therefore, it is necessary to modify the output signal of the cell from time to time so that the cell does not provide an output signal that is incorrectly indicative of the gas concentration within the bath. Since the culture vessel has to be sealed in order to be sterile, direct access to the measurement side is not possible, for example when calibrating the cell. Therefore, cells must be self-modifying or self-adaptive. In the case of long measurement cycles, such as weeks or months, a system and method for testing the measuring cell during such long-term operation, i.e. the output signal of the measuring side and the output of the reference side under the same conditions (atmosphere). Of particular importance is the provision of a means to compare the signals.

本発明の目的は、測定系に、従つてCO2濃度に
及ぼす、場合により起こりうるゼロ点変動の影響
を排除するために、該ゼロ点変動を簡単に自動的
に調整する方法を提供するにある。
The object of the invention is to provide a simple and automatic method for adjusting zero point fluctuations in order to eliminate their possible influence on the measuring system and thus on the CO 2 concentration. be.

(課題を解決するための手段) 本発明の課題は、熱伝導度測定セルにより調節
可能なCO2ガスを作働室雰囲気中に含有する通気
培養槽における熱伝導度測定セルのゼロ点を調整
する方法において、 (a) 校正段階中に、作働室雰囲気を連続的に測定
セルの測定値に当てながら、測定セルの照合側
を作働室雰囲気に曝気し、 (b) 前記校正段階にて得られた出力信号またはズ
レ修正値として照合側および測定側双方の出力
信号の差を測定し、記憶し、そして (c) 測定段階において、記憶された(正または負
の)ズレ修正値を、測定セルの照合側が次の測
定サイクルにおいて照合ガスに曝気されるとき
に、測定セルの測定側から得られる出力信号に
代数的に加える、 ことを特徴とする熱伝導度測定セルのゼロ点調整
方法を提供することにより達成される。
(Means for Solving the Problem) The problem of the present invention is to adjust the zero point of the thermal conductivity measurement cell in an aerated culture tank containing CO 2 gas in the working chamber atmosphere, which can be adjusted by the thermal conductivity measurement cell. (a) during the calibration step, the reference side of the measuring cell is aerated to the working chamber atmosphere while the working chamber atmosphere is continuously exposed to the measured values of the measuring cell; (b) during said calibration step; (c) measure and store the difference between the output signals of both the verification side and the measurement side as the output signal or deviation correction value obtained during the measurement step; , algebraically added to the output signal obtained from the measurement side of the measurement cell when the reference side of the measurement cell is aerated with reference gas in the next measurement cycle. This is achieved by providing a method.

なお、上記(c)において、「代数的に加える」と
は、正のズレ修正値が得られた場合は足す(プラ
スする)ことであり、負のズレ修正値の場合は引
く(マイナスする)ことを意味する。
In addition, in (c) above, "algebraically adding" means adding (plus) when a positive misalignment correction value is obtained, and subtracting (minus) when a negative misalignment correction value is obtained. It means that.

本発明の上記以外の構成要件は、特許請求の範
囲第2項ないし第4項および実施例の記載並びに
図の説明に記述のとおりである。本発明の思想を
逸脱することなく、本発明の実施態様を改変でき
ることは自明のことである。
Constituent features of the present invention other than those described above are as described in claims 2 to 4, the description of the embodiments, and the explanation of the drawings. It is obvious that the embodiments of the invention may be modified without departing from the spirit of the invention.

特に、既知の構成要件、例えばドイツ特許第
2924446号明細書から既知の構成要件との全ての
組み合わせは本発明に含まれるものである。
In particular, known features, e.g. German patent no.
All combinations with elements known from document 2924446 are included in the invention.

本発明による方法は、普通の電子工学を用いて
操作を開始するように実施例では行われる。その
後に熱伝導度検出器での測定で始まる測定段階が
行われ、次いで測定結果の読み取りが行われる。
The method according to the invention is carried out in an embodiment using conventional electronics to initiate the operation. A measurement phase then takes place, starting with a measurement with a thermal conductivity detector and then reading the measurement results.

次に校正段階が行われ、校正段階後ゼロ点修正
が行われる。最後にこれらの処理をプログラム
化、例えば小型電子計算機またはマイクロプロセ
ツサーによりプログラム化し、ゼロ点はOKかど
うかを反問させ、イエスまたはノーと答えさせ、
イエスの場合には上記の操作を繰り返し、ノーと
答えた場合にはその直後に行う工程として誤差を
測定し、次いで修正信号を発信させる。修正信号
を記憶し、記憶した信号を前に行われた最も近い
校正段階の後に戻してゼロ点修正を行う。
A calibration step is then performed, and after the calibration step a zero point correction is performed. Finally, these processes are programmed, for example, by a small computer or microprocessor, and the child is asked whether the zero point is OK and the answer is yes or no.
If the answer is yes, repeat the above operation, and if the answer is no, the next step is to measure the error and then send a correction signal. The correction signal is stored and the stored signal is returned after the nearest previous calibration step to perform the zero point correction.

図は本発明の実施例の説明図である。 The figure is an explanatory diagram of an embodiment of the present invention.

第1図は本発明の操作工程図である。第2A図
および第2B図は熱伝導度測定セルおよびそれに
接続するラインを示す概略説明図である。
FIG. 1 is an operational process diagram of the present invention. FIGS. 2A and 2B are schematic explanatory diagrams showing a thermal conductivity measurement cell and lines connected thereto.

該測定セルは、測定側2bと照合側2aを有し
ている。第2A図および第2B図においてガスの
流れの方向は矢印で示した。即ち、第2A図およ
び第2B図において、測定段階におけるガスの流
れは破線で示し、校正段階におけるガスの流れは
実線で示した。
The measuring cell has a measuring side 2b and a verification side 2a. In FIGS. 2A and 2B, the direction of gas flow is indicated by arrows. That is, in FIGS. 2A and 2B, the gas flow during the measurement stage is shown by a broken line, and the gas flow during the calibration stage is shown by a solid line.

測定段階では、ガス雰囲気は入口管2mより測
定セルに導入され、熱伝導度検出器2の測定側2
bは絶えず作働室のガス雰囲気と接触しガス濃度
が測定される。一方照合側2aには空気ポンプ2
6により滅菌フイルター27および電磁弁29ま
たはY字形部材31を経て空気が導かれる。
During the measurement stage, the gas atmosphere is introduced into the measurement cell through the 2m inlet pipe, and the gas atmosphere is introduced into the measurement cell through the 2m inlet pipe,
b is constantly in contact with the gas atmosphere in the working chamber, and the gas concentration is measured. On the other hand, the air pump 2 is on the verification side 2a.
6 directs the air through a sterilization filter 27 and a solenoid valve 29 or Y-shaped element 31.

校正段階では、空気ポンプ26が止められ、回
転フアン30により雰囲気ガスが照合側2aへ導
入される。第2A図ではガス雰囲気の一部の流れ
は回転フアン30の作動により導管28および開
いた電磁弁29を経て熱伝導度検出器2の照合側
2aに達する。第2B図では回転フアン30によ
りガス雰囲気の一部の流れは熱伝導度検出器2の
照合側2a、Y字形部材31および絞り弁毛細管
32を経て吸引される。
In the calibration stage, the air pump 26 is stopped and atmospheric gas is introduced into the verification side 2a by the rotating fan 30. In FIG. 2A, a portion of the gas atmosphere flows through the conduit 28 and the open solenoid valve 29 to the reference side 2a of the thermal conductivity detector 2 due to the actuation of the rotating fan 30. In FIG. 2B, a portion of the gas atmosphere is sucked through the reference side 2a of the thermal conductivity detector 2, the Y-shaped member 31 and the throttle valve capillary 32 by means of the rotating fan 30.

ガス雰囲気の導入により照合側2aから得られ
る出力信号と測定側2bからの出力信号との差が
測定され、これが記憶される。もし、端子2sで
の出力信号の差がゼロでないときは、例えば照合
側に対して正または負のズレ(偏差)修正値(即
ち、両出力信号の差)が得られ、この偏差値がつ
ぎの測定サイクルに用いられる。測定側または照
合側のどちらかのズレのため、ゼロ点修正信号が
得られ、そして新たな校正段階入るまでに、該修
正信号は次の測定のために使用される。
The difference between the output signal obtained from the verification side 2a and the output signal from the measurement side 2b by introducing the gas atmosphere is measured and stored. If the difference between the output signals at the terminal 2s is not zero, for example, a positive or negative deviation correction value (i.e., the difference between both output signals) for the verification side is obtained, and this deviation value is then used for measurement cycles. Due to deviations on either the measurement side or the reference side, a zero point correction signal is obtained and is used for the next measurement before entering a new calibration phase.

このように、測定段階中はガス雰囲気は測定側
に適用され、そして照合ガスは照合側に適用され
ており、校正段階においてはガス雰囲気を連続的
に測定セルの測定側に当てながら、測定セルの照
合側をガス雰囲気に曝気して出力信号を測定、記
憶するので、測定中に操作を中断する必要がな
い。
Thus, during the measurement phase the gas atmosphere is applied to the measurement side and the reference gas is applied to the reference side, and during the calibration phase the gas atmosphere is applied continuously to the measurement side of the measurement cell while Since the reference side of the sensor is exposed to a gas atmosphere and the output signal is measured and stored, there is no need to interrupt operation during measurement.

第3図は熱伝導度検出器2をバイパス1に備え
た、ドイツ特許公報第2924446号明細書によりそ
れ自体既知の培養槽を示すものである。本発明の
方法は、この培養槽における測定セルのゼロ点調
整に適用される得る。
FIG. 3 shows a culture tank known per se from German Patent Publication No. 2924446, with a thermal conductivity detector 2 in the bypass 1. The method of the invention can be applied to the zero point adjustment of the measuring cell in this culture tank.

第3図に示すように通気培養槽は作働室10中
に電子的に調節された生物適合雰囲気を備え、こ
の雰囲気はビボ(vivo)条件に近似している。こ
の場合、雰囲気の組成、特に雰囲気のガス混合物
の成分および成分割合に関しては大幅に変えるこ
とができ、ガス混合物がCO2の外にさらに酸素
(または空気)および水蒸気を含んでいるときは
特にガスの相対湿度、温度およびそれらガスの含
有量を制御された範囲において変えることがで
き、それによつてヘンダーソン−ハツセルバツハ
の等式に従つて、例えばCO2を調節することによ
りPH値の調節も可能であり、且つ有利である。
As shown in FIG. 3, the aerated culture tank includes an electronically controlled biocompatible atmosphere in the working chamber 10, which approximates in vivo conditions. In this case, the composition of the atmosphere, especially with regard to the components and component proportions of the gas mixture of the atmosphere, can vary considerably, especially when the gas mixture further contains oxygen (or air) and water vapor besides CO2 . The relative humidity, temperature and content of these gases can be varied in a controlled range, thereby also making it possible to adjust the PH value, for example by adjusting CO2 , according to the Henderson-Hatsselbach equation. Yes, and advantageous.

作働室10に熱的に連結したバイパス1にCO2
ガスの濃度測定探子(熱伝導度検出器2)、循環
流の温度測定探子3、湿度測定探子4並びに必要
に応じ酸素ガス検出用電極およびPH値検出用電極
のような測定要素が配置される。特に、酸素ガス
検出用電極およびPH値検出用電極は他の場所、有
利には作働室10中の液状培地の中に配置しても
よい。
CO 2 in the bypass 1 thermally connected to the working chamber 10
Measuring elements such as a gas concentration measuring probe (thermal conductivity detector 2), a circulating flow temperature measuring probe 3, a humidity measuring probe 4, and, if necessary, an oxygen gas detection electrode and a pH value detection electrode are arranged. . In particular, the electrodes for detecting oxygen gas and the electrodes for detecting the pH value may be arranged elsewhere, preferably in the liquid medium in the working chamber 10.

作働室は例えば下記に詳細に説明するように、
CO2、空気または酸素あるいは窒素の給源から減
圧弁を経て選択的に制御された状態で通気され、
これらのガスは個々にあるいは一緒にして導管8
の滅菌フイルター8aおよび培養槽の二重ケーシ
ング11中の予熱器9を経てバイパス1に導入さ
れ、バイパス1で導管7からの水蒸気は培養槽の
外部の蒸発器20中で過熱されて滅菌された後冷
却されたものである。
The working room may be, for example, as described in detail below.
CO 2 is selectively vented in a controlled manner from a source of air or oxygen or nitrogen via a pressure reducing valve;
These gases can be passed individually or together to conduit 8.
The water vapor from the conduit 7 in the bypass 1 was superheated and sterilized in the evaporator 20 outside the culture tank. It was then cooled down.

培養槽10および二重ケーシング11は断熱層
11aにより囲まれ、さらに湿気を通さない被
覆、例えばアルミニウム箔で外部に対して遮蔽さ
れ、外部空気の滲透および冷温帯域が湿つて濡れ
ることがないように保護される。二重ケーシング
11内の中間室内の空気の循環は好ましくは二重
ケーシング11の断面全域に広がる送風流12に
より行われる。二重ケーシング11の内壁、従つ
て作働室10に付属する壁には加熱要素13、特
に電気加熱要素および冷却管14が好適には対称
的配列、即ちケーシング周囲全面に一様に分布さ
れている。二重ケーシング11はこのようにして
作働室10が極めて一様な温度になるのを保証
し、作働室の中は高温度であるにも拘わらず露点
には達しない。
The culture tank 10 and the double casing 11 are surrounded by a heat insulating layer 11a, and are further shielded from the outside with a moisture-proof coating, such as aluminum foil, to prevent the permeation of external air and the cold and warm zone from getting wet. protected. Circulation of the air in the intermediate chamber in the double casing 11 is preferably effected by an air flow 12 extending over the entire cross-section of the double casing 11. On the inner wall of the double casing 11, and thus on the wall attached to the working chamber 10, heating elements 13, in particular electric heating elements and cooling pipes 14 are preferably arranged in a symmetrical arrangement, ie uniformly distributed over the entire periphery of the casing. There is. The double casing 11 thus ensures that the working chamber 10 has a very uniform temperature, so that despite the high temperature inside the working chamber the dew point is not reached.

湿度調節は乾湿計により調節された適当な標準
回路を使用し、乾湿計はポンプ15と制御用導管
を介して結合し、ポンプ15は貯槽19から例え
ば脱イオン水を蒸発器20へ導入し、この蒸発器
20で水は蒸発され、100℃以上約500℃までの温
度に過熱することによつて滅菌した後、バイパス
1に導かれ、作働室10を循環する。乾湿計は乾
式温度計と湿式温度計、例えば抵抗温度計とから
なり、この場合湿式温度計は芯を備え、この芯は
吸引カツプ中に突出し、これら部品はバイパス1
に配置される。
Humidity regulation uses a suitable standard circuit regulated by a psychrometer, which is coupled via a control conduit to a pump 15 which introduces, for example, deionized water from a reservoir 19 into an evaporator 20; The water is evaporated in this evaporator 20 and sterilized by heating to a temperature of 100° C. to about 500° C., then led to the bypass 1 and circulated through the working chamber 10. A psychrometer consists of a dry thermometer and a wet thermometer, for example a resistance thermometer, in which case the wet thermometer has a wick which projects into the suction cup and these parts are connected to the bypass 1.
will be placed in

乾湿計は湿式温度計の測定探子が循環する媒体
の最適流通速度を定めるようなバイパスの、好ま
しくは断面積が狭まつた位置に設置される。バイ
パス1にはCO2ガスの濃度測定探子(熱伝導度検
出器2)および循環する流れの温度測定探子3が
配置される。
The psychrometer is placed in the bypass, preferably at a narrow cross-sectional area, such that the measuring probe of the wet thermometer determines the optimum flow rate of the circulating medium. A probe for measuring the concentration of CO 2 gas (thermal conductivity detector 2) and a probe for measuring the temperature of the circulating flow 3 are arranged in the bypass 1.

CO2の調節は、CO2濃度測定探子が熱伝導度測
定セルである調節回路中で行われる。該測定セル
は測定側2bと照合側2aとからなり、測定段階
では測定側は作働室内部のガス雰囲気に連続的に
さらされ、一方照合側は空気または既知の組成の
他のガス、即ち照合ガスで洗われている。
The CO 2 regulation takes place in a regulation circuit in which the CO 2 concentration measuring probe is a thermal conductivity measuring cell. The measuring cell consists of a measuring side 2b and a reference side 2a, in the measuring phase the measuring side is continuously exposed to the gas atmosphere inside the working chamber, while the reference side is exposed to air or another gas of known composition, i.e. Washed with reference gas.

作働室雰囲気の熱伝導度が変わつたら、測定探
子を別々に冷却することにより、該雰囲気中の
CO2の割合に応じた電気信号が発生する。この信
号は直接調節装置に送られ、例えばCO2の供給を
調節するバルブ36が操作される。
If the thermal conductivity of the working chamber atmosphere changes, cooling the measurement probe separately will reduce the thermal conductivity in the atmosphere.
An electrical signal is generated depending on the percentage of CO 2 . This signal is sent directly to a regulating device, for example to operate a valve 36 regulating the supply of CO2 .

温度調節の場合には、温度測定探子3として白
金抵抗測定器Pt100およびPID特性を備えた調
節器が好ましく、この調節器は時間−温度プログ
ラム発信機に接続できる。冷却トラツプ5は除霜
加熱器5aおよび捕集とい5bが付属し、生成し
た凝縮水は水位検出器24aを備えた受器24に
導かれ、ここから必要に応じ時々ポンプ23によ
り吸引されて蒸発器20に導かれ、大気へ放出さ
れる。
In the case of temperature regulation, a platinum resistance measuring device Pt100 and a regulator with PID characteristics are preferred as temperature measuring probe 3, which regulator can be connected to a time-temperature program transmitter. The cooling trap 5 is equipped with a defrosting heater 5a and a collection gutter 5b, and the generated condensed water is guided to a receiver 24 equipped with a water level detector 24a, from which it is sometimes sucked by a pump 23 as needed and evaporated. It is guided into a container 20 and released into the atmosphere.

蒸発器20は、好ましくは管状炉の形態のもの
で、炉の周表面には所定の温度に加熱するための
電気加熱装置を備えている。更に、蒸発器20か
らバイパス1への水蒸気導入ラインには凝縮装置
25(管状コイル)および電磁弁22が備えられ
ている。
The evaporator 20 is preferably in the form of a tubular furnace, and the peripheral surface of the furnace is equipped with an electric heating device for heating to a predetermined temperature. Furthermore, the steam introduction line from the evaporator 20 to the bypass 1 is equipped with a condensing device 25 (tubular coil) and a solenoid valve 22.

(発明の効果) 本発明は種々の利点を有する。特に、CO2測定
セルによつて変動する結果を生じない。本発明の
方法によれば、周期的ゼロ点調整および作業温度
の変動に伴う再補正を必要としない。例えばガス
分析装置の交換により現存の通気培養槽にも装着
することが可能である。
(Effects of the Invention) The present invention has various advantages. In particular, it does not produce results that vary depending on the CO 2 measurement cell. The method of the invention eliminates the need for periodic zero adjustments and re-corrections due to variations in working temperature. For example, it is possible to install it in an existing aerated culture tank by replacing the gas analyzer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の操作工程図、第2A図は熱伝
導度測定セルおよび導管接続関係の概略図、第2
B図は第2A図の熱伝導度測定セルの改変実施態
様の概略図、第3図は熱伝導度測定セルを取り付
けた通気培養槽の概略説明図である。 1:バイパス、2:熱伝導度測定セル(検出
器)、2a:照合側、2b:測定側、2m:入口
管、2s:端子、3:温度測定探子、4:湿度測
定探子、5:冷却トラツプ、5a:除霜加熱器、
5b:捕集とい、6:送風機、6a:入口、6
b:出口、7:導管、8:導管、8a:滅菌フイ
ルター、9:予熱器、10:作働室、11:二重
ケーシング、11a:断熱層、12:送風流、1
3:加熱要素、14:冷却管、15:ポンプ、1
9:貯槽、20:蒸発器、22:電磁弁、23:
ポンプ、24:受器、24a:水位検出器、2
5:凝縮装置、26:空気ポンプ、27:滅菌フ
イルター、28:導管、29:電磁弁、30:回
転フアン、31:Y字形部材、32:絞り弁毛細
管、36:バルブ。
Figure 1 is an operational process diagram of the present invention, Figure 2A is a schematic diagram of the thermal conductivity measurement cell and conduit connections, and Figure 2A is a schematic diagram of the thermal conductivity measurement cell and conduit connections.
FIG. B is a schematic diagram of a modified embodiment of the thermal conductivity measurement cell of FIG. 2A, and FIG. 3 is a schematic explanatory diagram of an aerated culture tank equipped with a thermal conductivity measurement cell. 1: Bypass, 2: Thermal conductivity measurement cell (detector), 2a: Verification side, 2b: Measurement side, 2m: Inlet pipe, 2s: Terminal, 3: Temperature measurement probe, 4: Humidity measurement probe, 5: Cooling Trap, 5a: Defrost heater,
5b: Collection pipe, 6: Blower, 6a: Inlet, 6
b: Outlet, 7: Conduit, 8: Conduit, 8a: Sterilization filter, 9: Preheater, 10: Working chamber, 11: Double casing, 11a: Heat insulation layer, 12: Air flow, 1
3: heating element, 14: cooling pipe, 15: pump, 1
9: Storage tank, 20: Evaporator, 22: Solenoid valve, 23:
Pump, 24: Receiver, 24a: Water level detector, 2
5: condensing device, 26: air pump, 27: sterile filter, 28: conduit, 29: solenoid valve, 30: rotating fan, 31: Y-shaped member, 32: throttle valve capillary, 36: valve.

Claims (1)

【特許請求の範囲】 1 熱伝導度測定セルにより調節可能なCO2ガス
を作働室雰囲気中に含有する通気培養槽における
熱伝導度測定セルのゼロ点を調整する方法におい
て、 (a) 校正段階中に、作働室雰囲気を連続的に測定
セルの測定側に当てながら、測定セルの照合側
を作働室雰囲気に曝気し、 (b) 前記校正段階にて得られた出力信号またはズ
レ修正値として照合側および測定側双方の出力
信号の差を測定し、記憶し、そして (c) 測定段階において、記憶された(正または負
の)ズレ修正値を、測定セルの照合側が次の測
定サイクルにおいて照合ガスに曝気されるとき
に、測定セルの測定側から得られる出力信号に
代数的に加える、 ことを特徴とする熱伝導度測定セルのゼロ点調整
方法。 2 測定セルの自動ゼロ点調整のために、校正用
のCO2含有量の連続測定を中断する特許請求の範
囲第1項記載の方法。 3 作働室雰囲気を構成するガスまたはガス混合
物の少なくとも一部を校正段階において、測定段
階とは逆方向に熱伝導度測定セル中を流通させる
特許請求の範囲第1項または第2項記載の方法。 4 熱伝導度測定セルの照合側を測定段階中空気
または他の既知の組成の照合ガスで連続的に洗気
することからなる特許請求の範囲第1項ないし第
3項のいずれかに記載の方法。
[Claims] 1. A method for adjusting the zero point of a thermal conductivity measuring cell in an aerated culture tank containing CO 2 gas in the working chamber atmosphere that can be adjusted by the thermal conductivity measuring cell, comprising: (a) calibration; During the step, the reference side of the measuring cell is aerated to the working chamber atmosphere while the working chamber atmosphere is continuously applied to the measuring side of the measuring cell; (b) the output signal or deviation obtained in the said calibration step; (c) during the measurement phase, the stored deviation correction value (positive or negative) is used by the reference side of the measuring cell for the next A method for zero point adjustment of a thermal conductivity measurement cell, characterized in that the zero point adjustment method of a thermal conductivity measurement cell is algebraically added to an output signal obtained from the measurement side of the measurement cell when aerated with reference gas in a measurement cycle. 2. The method according to claim 1, wherein continuous measurement of CO 2 content for calibration is interrupted for automatic zero point adjustment of the measurement cell. 3. The method according to claim 1 or 2, wherein at least a part of the gas or gas mixture constituting the working chamber atmosphere is passed through the thermal conductivity measurement cell in the calibration step in the opposite direction to the measurement step. Method. 4. A method according to any one of claims 1 to 3, comprising continuously flushing the reference side of the thermal conductivity measuring cell with air or other reference gas of known composition during the measurement step. Method.
JP8306884A 1983-04-26 1984-04-26 Method of adjusting zero point in thermal conductance measuring cell in aeration culture tank Granted JPS59208447A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3315085.0 1983-04-26
DE19833315085 DE3315085C2 (en) 1983-04-26 1983-04-26 Procedure for zero point control on thermal conductivity measuring cells in fumigation incubators

Publications (2)

Publication Number Publication Date
JPS59208447A JPS59208447A (en) 1984-11-26
JPH0350978B2 true JPH0350978B2 (en) 1991-08-05

Family

ID=6197395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8306884A Granted JPS59208447A (en) 1983-04-26 1984-04-26 Method of adjusting zero point in thermal conductance measuring cell in aeration culture tank

Country Status (5)

Country Link
JP (1) JPS59208447A (en)
DE (1) DE3315085C2 (en)
FR (1) FR2545219A1 (en)
GB (1) GB2138949B (en)
SE (1) SE8402259L (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2237880A (en) * 1989-10-24 1991-05-15 British Gas Plc Determining concentration of pollutant gas in an atmosphere
DE4143092A1 (en) * 1991-12-27 1993-07-01 Bayer Ag GAS TRACK MEASURING SYSTEM
US5623105A (en) * 1992-10-21 1997-04-22 Prolong Systems, Inc. Oxygen/carbon dioxide sensor and controller for a refrigerated controlled atmosphere shipping container
CH686055A5 (en) * 1993-10-14 1995-12-15 Apv Schweiz Ag A method for carrying out an automatic, periodic zero adjustment.
JP3325673B2 (en) * 1993-10-25 2002-09-17 アークレイ株式会社 Method for correcting component concentration in breath and breath analyzer
US5418131A (en) * 1994-04-13 1995-05-23 General Signal Corporation Humidity compensated carbon dioxide gas measurement and control
DE19637520C1 (en) * 1996-09-13 1998-03-12 Heraeus Instr Gmbh Method for zero point adjustment of a thermal conductivity measuring cell for CO¶2¶ measurement in a fumigation incubator
US6588250B2 (en) * 2001-04-27 2003-07-08 Edwards Systems Technology, Inc. Automatic calibration mode for carbon dioxide sensor
JP2004113153A (en) 2002-09-27 2004-04-15 Sanyo Electric Co Ltd Co2 incubator
JP2008220235A (en) * 2007-03-12 2008-09-25 Sanyo Electric Co Ltd Culture apparatus
CN109946429A (en) * 2019-03-27 2019-06-28 合肥皓天智能科技有限公司 A kind of novel intelligent carbon dioxide control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2924446C2 (en) * 1979-06-18 1982-09-16 W.C. Heraeus Gmbh, 6450 Hanau Method and device for culturing cells and tissues of humans and animals or of microorganisms
DE3047601A1 (en) * 1980-12-17 1982-07-22 Leybold-Heraeus GmbH, 5000 Köln Thermal conductivity detector in gas analyser - is preceded by heat exchanger to stabilise temp. of incoming gas to that of detector casing

Also Published As

Publication number Publication date
GB2138949B (en) 1986-08-28
FR2545219A1 (en) 1984-11-02
GB8410531D0 (en) 1984-05-31
DE3315085A1 (en) 1984-10-31
JPS59208447A (en) 1984-11-26
GB2138949A (en) 1984-10-31
SE8402259D0 (en) 1984-04-25
SE8402259L (en) 1984-10-27
DE3315085C2 (en) 1985-09-05

Similar Documents

Publication Publication Date Title
US4336329A (en) Method and apparatus for treatment of biological substances, particularly for cultivation of biological cells and tissues, or of microorganisms
US5694835A (en) Humidity measurement arrangement and cooking oven provided therewith
JPH0350978B2 (en)
US6010243A (en) Method of zero-point setting of a thermal conductivity detector system in a chamber, especially for CO2 measuring in a controlled atmosphere incubator
US4098650A (en) Method and analyzer for determining moisture in a mixture of gases containing oxygen
US7028913B2 (en) Process for humidifying the useful space in an incubator and in a controlled atmosphere incubator
JP4920726B2 (en) Gas corrosion test equipment
KR20210044710A (en) Test chamber and method for conditioning air
JP2002148230A (en) Automatic humidity step-controlled thermoanalyzer
US4461167A (en) Psychrometer for measuring the humidity of a gas flow
CN113607295A (en) Low-temperature air temperature and humidity measurement and calculation method
JPH0444231B2 (en)
JP2893086B2 (en) Control method of atmosphere in culture chamber in incubator
US4559823A (en) Device and method for measuring the energy content of hot and humid air streams
CA2370154C (en) Method of determining the salt content of liquids and device for practicing the method
CN113587976A (en) Wide temperature range air temperature and humidity sampling and measuring device
JPS60114758A (en) Temperature controlling method of heating type sensor
JP2967062B2 (en) Mushroom artificial cultivation method and automatic control device for mushroom cultivation environment
JPS62238449A (en) Apparatus for detecting co2 concentration in culture box
WO2010125998A1 (en) Vapor measurement device
JPH0643173Y2 (en) Atmosphere gas humidifier for heat treatment furnace
Stern Determination of Body Volume by Helium Dilution: With Special Reference to the Influence of Gases, Heat, and Moisture Emitted by Transpiration and Respiration
JPH03137707A (en) Temperature control method for thermostat for heating sample treatment
JPS59222220A (en) Humidity regulator of carrier gas
JPH0522505B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term