JPS62146487A - Differential amplifier - Google Patents

Differential amplifier

Info

Publication number
JPS62146487A
JPS62146487A JP60288717A JP28871785A JPS62146487A JP S62146487 A JPS62146487 A JP S62146487A JP 60288717 A JP60288717 A JP 60288717A JP 28871785 A JP28871785 A JP 28871785A JP S62146487 A JPS62146487 A JP S62146487A
Authority
JP
Japan
Prior art keywords
voltage
bit line
fet
transistor
amplification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60288717A
Other languages
Japanese (ja)
Other versions
JPH0636317B2 (en
Inventor
Yasuo Kobayashi
康夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60288717A priority Critical patent/JPH0636317B2/en
Priority to EP86113900A priority patent/EP0218238B1/en
Priority to DE8686113900T priority patent/DE3680064D1/en
Priority to US06/917,137 priority patent/US4825110A/en
Publication of JPS62146487A publication Critical patent/JPS62146487A/en
Publication of JPH0636317B2 publication Critical patent/JPH0636317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Static Random-Access Memory (AREA)

Abstract

PURPOSE:To remove a current path after completion of differential amplification and to reduce power consumption by transferring a load FET to an off state based on a slight voltage difference. CONSTITUTION:When a cell stores '0', a slight voltage difference is generated between a bit line B and a dummy bit line DB after precharging, and when an activating signal SE is applied to an NMOSFET 5, FETs 3, 4 are turned on, the voltage of an output node N2 is proportionally divided by the ON resistance ratio of a PMOSFET 2 and FETs 4, 5, the FET 3 is turned off, and the voltage of the output node N1 is restored. Thereby, the output circuit outputs a signal '0' stored based on the voltage difference between the N1 and N2. At that time, a CMOSFET 11 is inverted in accordance with the voltage drop of the line B, the voltage of a common drain N3 is boosted, the FET 2 is transferred to OFF, and when the difference between the gate voltage and the VCC becomes a threshold VTH or less, the FET 2 is completely turned off.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は差動増幅器に係わり、特に、消費電力の低減を
図った差動増幅器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a differential amplifier, and more particularly to a differential amplifier with reduced power consumption.

〔従来の技術〕[Conventional technology]

第6図は従来の差動増幅器を示す電気回路図であシ、1
,2はそのソースを電源電圧■ccに接続されたPチャ
ンネル型MOSトランジスタ(以下、PMO8という)
であシ、これらPMO81,2のゲートは接地され、そ
のオン抵抗を利用して負荷として機能している。PMO
8I、2のドレインは、Nチャンネル型MOSトランジ
スタ(以下、NMO8という)3,4のドレインに接続
されており、NMO83,4のソースはNMO86を介
して接地されている。NMO83,4のゲートは、図示
していないスタティック型記憶セルアレイのビット線B
とダミービットD、B線とにそれぞれ接続されておシ、
PMO8I、2とNMO83,4との共通ドレインは出
力ノードN1.N2として機能し、図示していない出力
回路に接続されている。また、NMO85のゲートは図
示していない制御回路の活性化信号端子に接続されてい
る。
Figure 6 is an electrical circuit diagram showing a conventional differential amplifier.
, 2 is a P-channel MOS transistor (hereinafter referred to as PMO8) whose source is connected to the power supply voltage ■cc.
The gates of these PMOs 81 and 2 are grounded, and function as a load using their on-resistances. P.M.O.
The drains of 8I, 2 are connected to the drains of N-channel MOS transistors (hereinafter referred to as NMO8) 3, 4, and the sources of NMO83, 4 are grounded via NMO86. The gates of NMO83 and NMO4 are connected to bit line B of a static type memory cell array (not shown).
and the dummy bit D and B lines respectively,
The common drain of PMO8I,2 and NMO83,4 is output node N1. It functions as N2 and is connected to an output circuit (not shown). Further, the gate of the NMO 85 is connected to an activation signal terminal of a control circuit (not shown).

上記構成に係る従来例の動作を第7図のチャートを参照
しつつ、アクセスされたセルに論理″′0”が記憶され
ていたとして説明する。
The operation of the conventional example of the above configuration will be explained with reference to the chart of FIG. 7, assuming that the accessed cell stores a logic "'0".

ビット線Bとダミービット線DBとのプリチャージ後、
アクセスされたセルおよびダミーセルがビット線Bとダ
ミービット線DBに接続されると、ビット線Bの電圧は
徐々に降下するが、ダミービット線DBは電源電圧路V
CCに留る。ここで、NMO85に活性化信号SEが印
加されると、NMO83,4はNMO85を介して接地
され、NMO84のゲート・ソース間の電圧差がNMO
83のゲート・ソース間の電圧差よシ大きくなるので、
NMOS 4のチャンネルコンダクタンスがNMO83
のそれより大きくなることから、出力ノードN2の電圧
は急速に低下しPMO82,NMO84,5のオン抵抗
比で定まる電圧に安定するものの、ビット線Bの電圧降
下によpNMO83がオフ状態に移行するので、出力ノ
ードN1の電圧は電源電圧VCCに向って回復する。こ
うしてビット線Bとダミービット線DBとの電圧差は増
幅されて出力ノードN1゜N2に表われ、出力回路から
外部装置、例えばマイクロプロセッサに送られる。
After precharging bit line B and dummy bit line DB,
When the accessed cell and the dummy cell are connected to the bit line B and the dummy bit line DB, the voltage of the bit line B gradually drops, but the dummy bit line DB is connected to the power supply voltage path V.
Stay on CC. Here, when the activation signal SE is applied to the NMO 85, the NMOs 83 and 4 are grounded via the NMO 85, and the voltage difference between the gate and source of the NMO 84 becomes
Since the voltage difference between the gate and source of 83 becomes larger,
The channel conductance of NMOS 4 is NMO83
Since the voltage at the output node N2 decreases rapidly and stabilizes at a voltage determined by the on-resistance ratio of PMO82, NMO84, and 5, pNMO83 shifts to the off state due to the voltage drop on bit line B. Therefore, the voltage at the output node N1 recovers toward the power supply voltage VCC. In this way, the voltage difference between the bit line B and the dummy bit line DB is amplified and appears at the output nodes N1 and N2, and is sent from the output circuit to an external device, such as a microprocessor.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

上記構成に係わる差動増幅器にあっては、差動増幅開始
後、いずれか一方のNMO83,4(アクセスされたセ
ルが論理″″O”を記憶しているならNMO84)が、
セルからの情報の読出が終了するまでオン状態を維持し
、電源電圧VCCからPMO82およびNMO84,5
を介して接地に電流通路が形成されるので、第8図に示
されているように長期間にわた)電源電流が流れ、消費
電力が大きくなるという問題点があった。
In the differential amplifier having the above configuration, after the start of differential amplification, one of the NMOs 83 and 4 (NMO 84 if the accessed cell stores logic ""O")
The on state is maintained until the reading of information from the cell is completed, and the PMO 82 and NMO 84, 5 are connected to the power supply voltage VCC.
Since a current path is formed to ground through the power supply, the power supply current flows for a long period of time as shown in FIG. 8, resulting in an increase in power consumption.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点に鑑み、増幅用トランジスタの活性
化後一定期間経過すると、微少電圧差に基き、オン状態
を維持する増幅用トランジスタに接続されている負荷ト
ランジスタをオフ状態に移行させる閉止手段を設け、電
源電圧と接地電圧との間に形成される電流通路を遮断す
るようにしたことを要旨とする。
In view of the above problems, the present invention provides a closing means for shifting a load transistor connected to an amplification transistor that maintains an on state to an off state based on a minute voltage difference after a certain period of time has passed after activation of the amplification transistor. The gist is that the current path formed between the power supply voltage and the ground voltage is interrupted.

〔実施例〕〔Example〕

第1図は本発明の第1実施例を示す電気回路図であり、
従来例と同一構成部分には、同一符号を付し、説明は省
略する。
FIG. 1 is an electrical circuit diagram showing a first embodiment of the present invention,
Components that are the same as those of the conventional example are given the same reference numerals, and explanations thereof will be omitted.

11.12は、ゲートがビット線Bとダミービット線D
Bとにそれぞれ接続された相補形MOSインバータ(以
下CMO8という)であシ、CMO8II。
11.12, the gate is connected to bit line B and dummy bit line D
Complementary MOS inverters (hereinafter referred to as CMO8) connected to B and CMO8II, respectively.

12の各共通ドレインN3.N4はPMO82,1のゲ
ートに交叉接続されている。これらCMO8II。
12 common drains N3. N4 is cross-connected to the gate of PMO 82,1. These CMO8II.

12は全体として閉止手段13を構成している。12 constitutes a closing means 13 as a whole.

かかる第1実施例の動作を第2図のチャートを参照しつ
つ、ビット線Bに接続されたセルが論理゛Onを記憶し
ている場合につき説明する。
The operation of the first embodiment will be explained with reference to the chart of FIG. 2, assuming that the cell connected to the bit line B stores the logic "On".

プリチャージ後、セルに接続されたビット線Bとダミー
ビット線DBとにわずかな電圧差が生じ、しかも、活性
化信号SRがNMO85に印加されると、NMO83,
4はオン状態に移行し、出力ノードN2の電圧はPMO
82、NMO84,5のオン抵抗比で按分される電圧値
に安定するが、NMO83は、ビット線Bの電圧降下に
伴い徐々にオフ状態に向い、出力ノードN1の電圧も電
源電圧VCCに復帰しようとする。したがって、図示し
ていない出力回路は出力ノードNil  N2の電圧差
に基き、アクセスされたセルに記憶されていた論理′O
#を表わす信号を出力する。
After precharging, a slight voltage difference occurs between the bit line B connected to the cell and the dummy bit line DB, and when the activation signal SR is applied to the NMO85, the NMO83,
4 transitions to the on state, and the voltage at the output node N2 is PMO
82 and NMO84, the voltage stabilizes at a voltage proportionally divided by the on-resistance ratio of 5, but NMO83 gradually turns to the off state as the voltage of bit line B drops, and the voltage of output node N1 also returns to the power supply voltage VCC. shall be. Therefore, the output circuit (not shown) outputs the logic 'O' stored in the accessed cell based on the voltage difference of the output node Nil N2.
Outputs a signal representing #.

ここで、0MO812はダミービット線1)Bが略電源
電圧VCCに留るので、共通ドレインN4は接地電位と
なシ、PMO8はオン状態を維持するものの、0MO8
11はビット線Bの電圧降下に従い反転し、共通ドレイ
ンN3の電圧は上昇し始める。
Here, since the dummy bit line 1)B of 0MO812 remains at approximately the power supply voltage VCC, the common drain N4 is not at ground potential, and although PMO8 maintains the on state, 0MO8
11 is inverted as the voltage on bit line B drops, and the voltage on common drain N3 begins to rise.

その結果、PMO82はオフ状態に向って移行し、共通
ドレインN3の電゛圧、すなわち、PMO82のゲート
電圧と電源電圧VCCとの差がPMO82の閾値VTR
を割ると、PMO82はオフ状態となる。したがって、
差動増幅器の消費電流は第3図に示されているようにP
MO82のオフ状態への移行に伴い激減し、NMO83
のオフ状態への移行によシ「0」となる。
As a result, the PMO 82 moves toward the off state, and the voltage at the common drain N3, that is, the difference between the gate voltage of the PMO 82 and the power supply voltage VCC, becomes the threshold value VTR of the PMO 82.
When the PMO 82 is divided, the PMO 82 is turned off. therefore,
The current consumption of the differential amplifier is P as shown in Figure 3.
With the transition of MO82 to the off state, it decreases sharply, and NMO83
The transition to the off state causes the signal to become "0".

第4図は本発明の第2実施例でsb、第1実施例の構成
に加え、PMO8I、2に並列なPMOS14.15お
よび出力ノードNl、N2間に接続され*PMO816
t−有L、PMO814〜16 (7)各ゲートを制御
回路の活性化信号端子に接続したものである。
FIG. 4 shows a second embodiment of the present invention. In addition to the configuration of sb and the first embodiment, PMOS14.15 is connected in parallel to PMO8I, 2, and output nodes Nl and N2 are connected *PMO816.
t-L, PMO814-16 (7) Each gate is connected to the activation signal terminal of the control circuit.

上記第2実施例においては、活性化信号SEが新たな読
み出しサイクルの開始に先立ち低レベルに移行すると、
PMO814〜16がオン状態になシ、出力ノードが等
電圧に正確にプリチャージされる(第5図参照)。した
がって、増幅動作の高速化を図ることができ、アドレス
信号のエッヂでトリガパルスを発生させ、各部のリセッ
トを行なうスタティックメモリの高速低消費電力用のセ
ンスアンプとして使用できる。
In the second embodiment, when the activation signal SE goes low prior to starting a new read cycle,
When PMOs 814-16 are turned on, the output nodes are accurately precharged to equal voltages (see FIG. 5). Therefore, the speed of the amplification operation can be increased, and the sense amplifier can be used as a high-speed, low-power sense amplifier for a static memory that generates a trigger pulse at the edge of an address signal and resets each part.

〔効果〕〔effect〕

以上説明してきたように、本発明によれば、微少電圧差
に基き、オン状態を維持する増幅用ト・ランジスタに接
続されている負荷トランジスタをオフ状態に移行させる
閉止手段を設けたので、差動増幅完了後も電源電流を接
地させる電流経路を途去でき、消費電力の低減を図れる
という効果が得られる。
As explained above, according to the present invention, a closing means is provided to shift the load transistor connected to the amplification transistor that maintains the on state to the off state based on a minute voltage difference. Even after the dynamic amplification is completed, the current path for grounding the power supply current can be interrupted, resulting in the effect that power consumption can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の電気回路図、第2図は第
1実施例のタイミングチャート図、第3図は第1実施例
の電源電流の変化を示すグラフ、第4図は本発明の第2
実施例の電気回路図、第5図は第2実施例のタイミング
チャート、第6図は従来例の電気回路図、第7図は従来
例のタイミングチャート図、第8図は従来例の電源電流
の変化を示すグラフである。 B、DB・・・・・・微少電圧源、1,2・・・・・・
負荷トランジスタ、3,4・・・・・・増幅用トランジ
スタ、5・・・・・・活性化用トランジスタ、13・・
・・・・閉止手段、である。 代理人 弁理士  内 原   晋 茅1回 二テ                θvr¥f回 B              DB 金乙V
Fig. 1 is an electric circuit diagram of the first embodiment of the present invention, Fig. 2 is a timing chart of the first embodiment, Fig. 3 is a graph showing changes in power supply current of the first embodiment, and Fig. 4 is a graph showing changes in power supply current of the first embodiment. Second aspect of the present invention
The electrical circuit diagram of the embodiment, Fig. 5 is the timing chart of the second embodiment, Fig. 6 is the electrical circuit diagram of the conventional example, Fig. 7 is the timing chart of the conventional example, and Fig. 8 is the power supply current of the conventional example. It is a graph showing changes in. B, DB...Minor voltage source, 1,2...
Load transistor, 3, 4...Amplification transistor, 5...Activation transistor, 13...
...is a closing means. Agent Patent Attorney Shinka Uchihara 1st and 2nd θvr¥f times B DB Kin Otsu V

Claims (1)

【特許請求の範囲】[Claims]  1対の微少電圧差源と、電源電圧と接地電圧との間に
それぞれ直列に配設された2組の負荷トランジスタと増
幅用トランジスタとの組と、2つの増幅用トランジスタ
と接地電圧との間に設けられ増幅用トランジスタを活性
化させる活性化用トランジスタとを有し、1対の微少電
圧源を2つの増幅用トランジスタのゲートにそれぞれ接
続された差動増幅器において、前記増幅用トランジスタ
の活性化後一定期間経過すると、微少電圧差に基き、オ
ン状態を維持する増幅用トランジスタに接続されている
負荷トランジスタをオフ状態に移行させる閉止手段を有
することを特徴とする差動増幅器。
A pair of minute voltage difference sources, two sets of load transistors and amplification transistors arranged in series between the power supply voltage and the ground voltage, and between the two amplification transistors and the ground voltage. Activation of the amplification transistor in a differential amplifier having an activation transistor provided in the amplification transistor for activating the amplification transistor, and a pair of micro voltage sources connected to the gates of the two amplification transistors, respectively. 1. A differential amplifier comprising: a closing means for switching a load transistor connected to an amplifying transistor that is maintained in an on state to an off state based on a minute voltage difference after a certain period of time has elapsed.
JP60288717A 1985-10-09 1985-12-20 Differential amplifier Expired - Lifetime JPH0636317B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60288717A JPH0636317B2 (en) 1985-12-20 1985-12-20 Differential amplifier
EP86113900A EP0218238B1 (en) 1985-10-09 1986-10-07 Differential amplifier circuit
DE8686113900T DE3680064D1 (en) 1985-10-09 1986-10-07 DIFFERENTIAL AMPLIFIER CIRCUIT.
US06/917,137 US4825110A (en) 1985-10-09 1986-10-09 Differential amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60288717A JPH0636317B2 (en) 1985-12-20 1985-12-20 Differential amplifier

Publications (2)

Publication Number Publication Date
JPS62146487A true JPS62146487A (en) 1987-06-30
JPH0636317B2 JPH0636317B2 (en) 1994-05-11

Family

ID=17733771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60288717A Expired - Lifetime JPH0636317B2 (en) 1985-10-09 1985-12-20 Differential amplifier

Country Status (1)

Country Link
JP (1) JPH0636317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134877A (en) * 2015-01-22 2016-07-25 株式会社メガチップス Differential output buffer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137245A (en) * 1978-04-03 1979-10-24 Rockwell International Corp Sense amplifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137245A (en) * 1978-04-03 1979-10-24 Rockwell International Corp Sense amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016134877A (en) * 2015-01-22 2016-07-25 株式会社メガチップス Differential output buffer

Also Published As

Publication number Publication date
JPH0636317B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
KR940012398A (en) How Sense Amplifiers, Integrated Circuit Memory, and Integrated Circuit Memory Sense Amplifiers Work for Integrated Circuit Memory
KR100266633B1 (en) Level shift circuit
KR0146387B1 (en) Flip flop type amplitude circuit
KR100190763B1 (en) Differential amplifier
KR20020091618A (en) Sense amplifier in semiconductor memory device
JPS60201591A (en) Semiconductor integrated circuit device
US4617477A (en) Symmetrical output complementary buffer
JPH10163846A (en) Driving circuit
JP2968826B2 (en) Current mirror type amplifier circuit and driving method thereof
JPS62146487A (en) Differential amplifier
JP3609260B2 (en) Semiconductor device amplifier circuit
JP3255159B2 (en) Semiconductor integrated circuit
JPS589514B2 (en) Semiconductor memory common data line load circuit
JP3085769B2 (en) Differential amplifier circuit
KR100366523B1 (en) Sense amplifying circuit
JP3255158B2 (en) Semiconductor integrated circuit
JP3927312B2 (en) Input amplifier
JPH0743938B2 (en) Differential amplifier
JPH09245482A (en) Logic circuit and semiconductor memory
JPH07130187A (en) Level shift circuit
KR20030000843A (en) Dual power supply circuit for sense amplifier
JP2529305B2 (en) Intermediate level setting circuit
KR100291188B1 (en) Sense Amplifiers in Semiconductor Memory Devices
JPS63171497A (en) Semiconductor integrated circuit device
JP2000201065A (en) Logical circuit