JPS62145659A - Cooler for fuel cell - Google Patents

Cooler for fuel cell

Info

Publication number
JPS62145659A
JPS62145659A JP60285835A JP28583585A JPS62145659A JP S62145659 A JPS62145659 A JP S62145659A JP 60285835 A JP60285835 A JP 60285835A JP 28583585 A JP28583585 A JP 28583585A JP S62145659 A JPS62145659 A JP S62145659A
Authority
JP
Japan
Prior art keywords
cooling
pipe
cooling pipe
flow
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60285835A
Other languages
Japanese (ja)
Other versions
JPH0687421B2 (en
Inventor
Yoshio Koyama
小山 由夫
Kenichi Hashizume
健一 橋詰
Yoshiyuki Azebiru
畔蒜 義行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60285835A priority Critical patent/JPH0687421B2/en
Publication of JPS62145659A publication Critical patent/JPS62145659A/en
Publication of JPH0687421B2 publication Critical patent/JPH0687421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance reliability, by providing the inlet port of each cooling pipe with an intermediate pipe of larger fluid passage cross section than the cooling pipe to prevent the flow of cooling water in the cooling pipe from becoming unstable. CONSTITUTION:A main feed pipe 11 is provided with a main flow rate control valve 21 and connected to a main outflow pipe 17 through a pump and a steam separator so that a cooler is constituted. Each of a plurality of cooling pipes 7 provided in parallel with each other is connected to an intermediate pipe 8 of larger fluid passage cross section than the cooling pipe, at the inlet port of the cooling pipe between an inlet manifold 9 and a cooling plate 5. In the intermediate pipe 8, the cooling pipe 7 extending from the cooling plate 5 and another cooling pipe 7 extending from the inlet manifold 9 are laid on each other in the longitudinal direction of the intermediate pipe and opened at the ends of the cooling pipes near the opposite ends of the intermediate pipe so that a small fluid passage cross section, a large fluid passage cross section and another small fluid passage cross section communicate with each other in the direction of an arrow in the drawing, at the inlet port of the cooling pipe extending from the cooling plate.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、燃料電池冷却装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a fuel cell cooling device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、エネルギの有効利用の観点から発電装置として燃
料電池が見立され、その開発が活発化している。
In recent years, fuel cells have been considered as a power generation device from the viewpoint of effective energy use, and their development has become active.

一般に、燃料電池は積層された電極板に、例えば酸化材
としての酸素と燃料としての水素を供給し、燃料の反応
によって生ずるエネルギを電気エネルギに変換するもの
である。
In general, a fuel cell supplies stacked electrode plates with, for example, oxygen as an oxidant and hydrogen as a fuel, and converts the energy generated by the reaction of the fuel into electrical energy.

ところで、燃料電池では上記反応により発熱を伴うが、
燃料電池の発電効率を高めるためには、電極板の発熱を
除去冷却するとともに、全体を均一な温度に保持する必
要がある。
By the way, in a fuel cell, heat is generated due to the above reaction, but
In order to increase the power generation efficiency of a fuel cell, it is necessary to remove heat generated from the electrode plates and cool them, as well as to maintain the entire body at a uniform temperature.

このための燃料電池冷却装置として、例えば特公昭58
−33670号公報及び特開昭52−13638号公報
に記載のようなものがある。これは、例えば第8図に示
すものと略同様なものであり、この第8図を例に説明す
る。すなわち、上下方向に積層された多数の電極板10
1からなる電極板群103には、適宜な間隔で複数の冷
却板105が介設されている。この電極板群103は複
数段備えられているが第8図では1段のみ示し、他の段
は省略しているものである。電極板群103の冷却板1
05には複数の冷却管107が並列状態で貢通接続され
ており、各冷却管107の入l]側には入口マユホール
ド109が接続されている。入口側マニホールl” 1
09には、主供給配管111が接続され、この両者によ
り入口配管113が構成されている。また、各冷却管1
07の出口側は出口マニホールド115と接続されてい
る。
As a fuel cell cooling device for this purpose, for example,
There are those described in JP-A-33670 and JP-A-52-13638. This is approximately the same as that shown in FIG. 8, for example, and will be explained using FIG. 8 as an example. That is, a large number of electrode plates 10 stacked in the vertical direction
A plurality of cooling plates 105 are interposed at appropriate intervals in the electrode plate group 103 consisting of 1. This electrode plate group 103 is provided in a plurality of stages, but only one stage is shown in FIG. 8, and the other stages are omitted. Cooling plate 1 of electrode plate group 103
A plurality of cooling pipes 107 are connected in parallel to the cooling pipe 05, and an inlet eyebrow hold 109 is connected to the inlet side of each cooling pipe 107. Inlet side manihole l” 1
A main supply pipe 111 is connected to 09, and both constitute an inlet pipe 113. In addition, each cooling pipe 1
The outlet side of 07 is connected to an outlet manifold 115.

この出口マニホールド115には、主流出配管117が
接続されており、この両者により出口配管119が構成
されている。前記主供給配管111には主流量調節弁1
21が設けられ、図示しないポンプ及び茎気分離器を介
して主供給配管111と主流出配管117とが接続され
ている。従って、ポンプ駆動により供給される冷却流体
としての冷却水は、主流量調節弁121で流量調整され
て主供給配管111から入口マユホールド109を介し
て冷却板105の冷却管107に供給される。
A main outlet pipe 117 is connected to this outlet manifold 115, and both constitute an outlet pipe 119. The main supply pipe 111 has a main flow control valve 1.
21 is provided, and the main supply pipe 111 and the main outlet pipe 117 are connected via a pump and a stem gas separator (not shown). Therefore, the cooling water as a cooling fluid supplied by the pump drive is adjusted in flow rate by the main flow control valve 121 and is supplied from the main supply pipe 111 to the cooling pipe 107 of the cooling plate 105 via the inlet eyebrow hold 109.

冷却板105内の冷却管107では、冷却水は電極板1
01の発熱を吸収して冷却する一方で沸騰され、茎気相
と液相との二相流となって冷却管107の出口側から出
口マニホールド115を介して主流出配管117へ流出
されるようになっていところで、上記のようなだλ料電
池冷却装置においては、冷却、5(5体としての冷却水
の沸騰蒸発が水平に設けられた冷却管107内で生し、
しかも、複数の冷却管107が入口マユホールド’ l
 O9に並列状態で接続されているため、冷却管107
内の冷却水の流れが不安定(/A、動不安定現象)にな
り易かった。この流υJ不安定現象が生ずると、電極板
の温度不均一が生し、機器の信頼性も著しく低下してし
まう。
In the cooling pipe 107 in the cooling plate 105, the cooling water flows through the electrode plate 1.
While absorbing the heat generation of 01 and cooling it, it is boiled and becomes a two-phase flow of a stem vapor phase and a liquid phase and flows out from the outlet side of the cooling pipe 107 via the outlet manifold 115 to the main outlet pipe 117. However, in the above-mentioned λ fuel cell cooling device, cooling, 5 (boiling evaporation of cooling water as 5 bodies occurs in the horizontally provided cooling pipe 107,
Moreover, a plurality of cooling pipes 107 are connected to the inlet eyebrow hold.
Since it is connected in parallel to O9, the cooling pipe 107
The flow of cooling water inside the tank was likely to become unstable (/A, dynamic instability phenomenon). When this flow υJ instability phenomenon occurs, the temperature of the electrode plate becomes non-uniform, and the reliability of the device is also significantly reduced.

このような流動不安定現象は、上記燃料電池と類似の構
成からなるボイラにおいて、従来から知られている。こ
のボイラにおける流動不安定現象の防止対策としては、
一般に流体の入口側に大きい流動抵抗を与えるだめの固
定絞り(ラモント/ズル)を設けたものがあり、二相流
の圧力損失に対し、固定絞りの圧力損失が支配的になる
ようにしている。
Such an unstable flow phenomenon has been known in the past in boilers having a configuration similar to that of the fuel cell described above. Measures to prevent flow instability in this boiler include:
Generally, there is a device that has a fixed restrictor (Lamont/Zull) on the inlet side of the fluid that provides a large flow resistance, so that the pressure loss of the fixed restrictor becomes dominant against the pressure loss of two-phase flow. .

ところで、燃料電池にあっては、冷却板105をできる
だけ薄く構成したいという要求があり、その結果、冷却
板105を貫通する冷却管107のi冬が数mmに限定
される。このため、従来よりボイラに使用される固定絞
り(ラモン1へノズル)を冷却管107に介設すると、
固定絞り部が細くなりすぎて、目詰まりを生ずる恐れが
あり、信頼性に欠けるという問題点があった。
By the way, in a fuel cell, there is a demand for making the cooling plate 105 as thin as possible, and as a result, the length of the cooling pipe 107 that penetrates the cooling plate 105 is limited to several mm. For this reason, if a fixed throttle (nozzle to Ramon 1) conventionally used in boilers is inserted in the cooling pipe 107,
There was a problem in that the fixed throttle part became too thin and could become clogged, resulting in a lack of reliability.

〔発明の目的〕[Purpose of the invention]

この発明は、上記問題点に鑑みて創案されたものであっ
て、冷却板に設けられた冷却管における冷却水の流動不
安定現象を防止することができるとともに、信頼性の高
い燃料電池冷却装置の提供を目的とする。
This invention was devised in view of the above-mentioned problems, and is capable of preventing the phenomenon of unstable flow of cooling water in cooling pipes provided on a cooling plate, and providing a highly reliable fuel cell cooling device. The purpose is to provide.

J発明の概要〕 上記目的を達成するために、この発明は、上下方向に積
層された複数の電極板に介設され、内部に冷却流体を流
通可能な複数の冷却管を有する冷JJI扱と、前記各冷
却管の入口側が接続され各冷却管へ冷却流体を供給可能
な入口配管と、前記冷却管の出口側が接続され各冷却管
から冷却流体を流出させる出口配管とを備えた燃料電池
冷却装置において、前記各冷却管の入口側に該冷却管よ
り流路面債の大きな中間管を介設する構成とした。
J Summary of the Invention] In order to achieve the above object, the present invention provides a cold JJI device which has a plurality of cooling pipes interposed between a plurality of vertically stacked electrode plates and through which a cooling fluid can flow. , a fuel cell cooling system comprising: an inlet pipe to which the inlet side of each of the cooling pipes is connected and capable of supplying cooling fluid to each cooling pipe; and an outlet pipe to which the outlet side of the cooling pipe is connected to which the cooling fluid flows out from each cooling pipe. In the apparatus, an intermediate pipe having a larger flow path surface area than the cooling pipe is interposed on the inlet side of each of the cooling pipes.

〔発明の効果〕〔Effect of the invention〕

この発明の構成によれば、入口配管から冷却管に供給さ
れた冷却水は冷却管及び中間管での摩擦損失を得る他に
、中間管での流路の急拡大、冷却管での急縮小により大
きな損失を得ることができるので、この圧力損失が二相
流の圧力損失に対して支配的となる。このため、仮に、
冷却管の入口側になんらかの外乱が生じても冷却水の流
動は安定した状態に維持されるので、並列に設けられた
他の冷却管に影響を与えることがない。したがって、並
列に設けられた各冷却管の流量を略均−にすることがで
き、電極板を略均−な温度に冷却することができる。
According to the configuration of this invention, the cooling water supplied from the inlet pipe to the cooling pipe not only receives friction loss in the cooling pipe and the intermediate pipe, but also undergoes rapid expansion of the flow path in the intermediate pipe and sudden contraction in the cooling pipe. Since a larger loss can be obtained, this pressure loss becomes dominant over the pressure loss of the two-phase flow. For this reason, if
Even if some disturbance occurs on the inlet side of the cooling pipe, the flow of cooling water is maintained in a stable state, so that it does not affect other cooling pipes installed in parallel. Therefore, the flow rates of the cooling pipes provided in parallel can be made approximately equal, and the electrode plates can be cooled to approximately equal temperatures.

冷却水が流れる冷却管の流路断面積が減少されないため
、目詰まり等を生ずる恐れがなく、信頼性が向上される
Since the cross-sectional area of the cooling pipe through which the cooling water flows is not reduced, there is no risk of clogging, etc., and reliability is improved.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を第1図乃至第3図に基づい
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は界れ[電池冷却装置の斜視図を示し基本的には
上記第8図のものと略同様である。すなわち、上下方向
に禎層された多数の電極板1からなる電極板群3には、
適宜な間隔で複数の冷却板5が介設されている。この電
極板群3は複数段備えられているが、第1図では1段の
み示し、他の段は省略している。電極板群3の各冷却板
5には、複数の冷却管7が並列状態で貫通接続されてお
り、各冷却管7の入口側には入口マニホールド9が接続
されている。この入口マニホールド9には、主供給配管
11が接続されており、この両者により入口配管13が
構成されている。また、各冷却管7の出口側には出口マ
ニホールド15が接続されている。この出口マニホール
ド15は、主流出配管17に接続されており、この両者
により出口配管19が構成されている。
FIG. 1 shows a perspective view of the battery cooling device, which is basically substantially the same as that in FIG. 8 above. That is, in the electrode plate group 3 consisting of a large number of electrode plates 1 layered in the vertical direction,
A plurality of cooling plates 5 are interposed at appropriate intervals. Although this electrode plate group 3 is provided in a plurality of stages, only one stage is shown in FIG. 1, and the other stages are omitted. A plurality of cooling pipes 7 are connected through each cooling plate 5 of the electrode plate group 3 in parallel, and an inlet manifold 9 is connected to the inlet side of each cooling pipe 7. A main supply pipe 11 is connected to this inlet manifold 9, and both constitute an inlet pipe 13. Furthermore, an outlet manifold 15 is connected to the outlet side of each cooling pipe 7. This outlet manifold 15 is connected to a main outlet pipe 17, and both constitute an outlet pipe 19.

前記主供給配管11には、主流量調整弁21が設けられ
、図示しないポンプ及び蒸気分離器を介して主供給配管
11と主流出配管17とが接続され、冷7.11装置が
G、%成されている。
The main supply pipe 11 is provided with a main flow rate regulating valve 21, and the main supply pipe 11 and the main flow outlet pipe 17 are connected via a pump and a steam separator (not shown), and the cold 7.11 device is controlled by G, %. has been completed.

前記並列的に設けられたiJ数の冷All穆7の冷却板
5への入L1側、ずなわら、入l]マニホールドつと冷
却板5との間において各冷却管7!こ番よ冷却)27よ
り流路面積の大きな中間管8が介設されている。中間管
8内には人口マニホールド9側及び冷却板5側から延出
した冷却管7がそれぞれ中F1;1管8の長手方向に重
複して設りられており、その端部が中間管8内の互い違
いの位置に開口している。
Each cooling pipe 7 is connected between the manifold 1 and the cooling plate 5 on the inlet L1 side of the cooling plate 5 of the iJ number of cold pipes 7 provided in parallel. An intermediate tube 8 having a larger flow path area than the cooling section 27 is interposed. Inside the intermediate tube 8, cooling tubes 7 extending from the artificial manifold 9 side and the cooling plate 5 side are provided overlapping each other in the longitudinal direction of the intermediate tube 8, and their ends are connected to the intermediate tube 8. The openings are at alternate positions inside.

そして、冷却管7の入口側は第2図矢標図示の方向に、
流路面積が小−大−小となるように連通されている。
The inlet side of the cooling pipe 7 is directed in the direction indicated by the arrow in FIG.
They are communicated so that the flow path area becomes small, large, and small.

次に、上記のように構成された本発明の一実施例の作用
を述べる。
Next, the operation of one embodiment of the present invention configured as described above will be described.

外部から液相状態で供給される冷却流体としての冷却水
は、燃料電池の運転条件に応じて主流量調整弁21で総
流量が調整され、主供給配管11、各電極板群3の入口
マユホールト9を経て各冷却管7に流入する。
The total flow rate of the cooling water as a cooling fluid supplied from the outside in a liquid phase is adjusted by the main flow rate adjustment valve 21 according to the operating conditions of the fuel cell, and the total flow rate is adjusted by the main flow rate adjustment valve 21 according to the operating conditions of the fuel cell. 9 and flows into each cooling pipe 7.

そして、第2図に矢標で示すように、冷却管7の入口側
で、まず、人口マニホールド9から冷却管7への入口で
流路が急縮小し、冷却管7の出口で中間管8のPの位置
に流出して流路が急拡大し、中間管8のPからQの方向
にUターンして、Qの位置で再び急縮小して冷却管7内
に流入し、冷却板5側に流入する。冷却板5側に流入し
た冷却水は冷却管7内を通過する際に電極板lの発熱を
吸収して冷却する一方で、沸騰し、蒸気相と液相の二相
流体となって出口側に流出し出口マニホールド1.5か
ら主流出配管17に流れる。
Then, as shown by the arrow in FIG. It flows out to the position P of the intermediate pipe 8, the flow path suddenly expands, it makes a U turn from P to the direction Q of the intermediate pipe 8, it suddenly contracts again at the position Q, it flows into the cooling pipe 7, and the cooling plate 5 Flow into the side. The cooling water that has flowed into the cooling plate 5 side absorbs the heat generated by the electrode plate 1 as it passes through the cooling pipe 7 and is cooled, while at the same time boiling and becoming a two-phase fluid of a vapor phase and a liquid phase and flowing to the outlet side. and flows from the outlet manifold 1.5 to the main outlet pipe 17.

そして、冷却水は冷却管7の入口側を流れる際、人口マ
ニホールド9から冷却管7内に流入する際の流路の急縮
小による流動抵抗、冷却管7内での流動抵抗、中間管8
内での流動抵抗、PからQへUターンによる流動抵抗、
P、Qの位置での流路の急激な拡大、縮小による流動抵
抗、及び再度冷却管7内での流動抵抗を受ける。このた
め、冷却水は冷却管7の入口側で著しく大きな圧力損失
を生しるため、冷却板5内での二相流の圧力n】失にこ
のため、仮令何らかの外乱があったとしても、冷却管7
の入口側の冷却水の流動が影響を受けることなく安定し
た状態に維持される。したがって、並列に設けられた各
冷却管7の入口側の冷却水も外乱の影響を受けることが
なく安定した状態に維持されるので、各冷却管7内には
略同−流量の冷却水が流入することとなり、電極板1の
略均−な冷却を行うことができる。
When the cooling water flows through the inlet side of the cooling pipe 7, there is a flow resistance caused by the sudden contraction of the flow path when it flows into the cooling pipe 7 from the artificial manifold 9, a flow resistance within the cooling pipe 7, and a flow resistance caused by the intermediate pipe 8.
Flow resistance due to U-turn from P to Q,
Flow resistance occurs due to rapid expansion and contraction of the flow path at positions P and Q, and flow resistance within the cooling pipe 7 is experienced again. For this reason, the cooling water causes a significantly large pressure loss on the inlet side of the cooling pipe 7, so that the pressure of the two-phase flow within the cooling plate 5 is lost. Cooling pipe 7
The flow of cooling water on the inlet side is maintained in a stable state without being affected. Therefore, the cooling water on the inlet side of each cooling pipe 7 installed in parallel is not affected by disturbance and is maintained in a stable state, so that cooling water with approximately the same flow rate is in each cooling pipe 7. As a result, the electrode plate 1 can be cooled approximately evenly.

ここで、本実施例と従来例との流動抵抗ΔPを具体的な
数値に基づいて比較してみる。冷却管7は内1条2■l
、外径4鰭のもの、中間管8は内径101のものを使用
し、また、冷却管7の重複部分の区さLlを40順、入
口マニホールド9と冷却板5との長さLOを50mmと
する。また、従来の冷却管107の入口例は本実施例の
冷却管7と同径のものを使用し、入口マユホールド10
9と冷却板105との距離LOは本実施例と同一の50
關とする。そして、両冷却管7.107の入口側に18
0 ’Cの冷却水を流速1 m/sで流すものとす入 
オず 太2′を包イ5+Iア1.十玉肴2の十占?!プ
?ス■入口マニホールド9と冷却板5との長さLO(5
0am)での流動抵抗ΔPO ΔPO=339  (Pa) ■冷却管70重複部分の良さLl(40mm・)での流
動抵抗ΔP1 ΔP1=271  (Pa) ■中間管8の長さLl(40mm)での流動抵抗ΔP2 ΔP2=0.8 (Pa) ■I)の位置での流路の急拡大による流動抵抗ΔΔP3
=392 (Pa) ■Pの位置でのUターンによる流U1抵抗ΔP4ΔP4
=12 (Pa) ■Qの位置でのUターンによる流動抵抗ΔP5ΔP5 
=12 (Pa) ■Qの位置での流路の急縮小による流動抵抗ΔΔP6=
186(Pa) 以上本実施例の合計は1212.8 (Pa)となろ。
Here, the flow resistance ΔP of this embodiment and the conventional example will be compared based on specific numerical values. Cooling pipe 7 has 1 line 2 ■l
, an outer diameter of 4 fins, an inner diameter of 101 for the intermediate tube 8, the length Ll of the overlapping portion of the cooling pipe 7 in the order of 40 mm, and the length LO of the inlet manifold 9 and the cooling plate 5 as 50 mm. shall be. Further, as an example of the inlet of the conventional cooling pipe 107, one having the same diameter as the cooling pipe 7 of this embodiment is used, and the inlet eyebrow hold 10
The distance LO between 9 and the cooling plate 105 is 50, which is the same as in this embodiment.
be concerned. 18 on the inlet side of both cooling pipes 7.107.
Cooling water at 0'C flows at a flow rate of 1 m/s.
Ozu Thick 2' Wrapped A5 + I A1. Ten fortune of Judama appetizer 2? ! P? ■ Length LO between inlet manifold 9 and cooling plate 5 (5
0am) Flow resistance ΔPO ΔPO=339 (Pa) ■Flow resistance ΔP1 at the overlapping portion of the cooling pipe 70 Ll (40 mm) ΔP1=271 (Pa) ■Length Ll of the intermediate pipe 8 (40 mm) Flow resistance ΔP2 ΔP2=0.8 (Pa) ■Flow resistance ΔΔP3 due to sudden expansion of the flow path at position I)
=392 (Pa) ■Flow U1 resistance due to U turn at position P ΔP4 ΔP4
=12 (Pa) ■Flow resistance ΔP5 due to U-turn at position Q ΔP5
=12 (Pa) ■Flow resistance ΔΔP6 due to sudden contraction of flow path at position Q
186 (Pa) The total of this example is 1212.8 (Pa).

これに対し、従来例のものでは上記■の部分のみの流動
抵抗となる。
On the other hand, in the conventional example, the flow resistance is only in the part (2) above.

したがって、本実施例は従来例のものの約3゜6伯の流
動抵抗となり、これからも、本実施例のものが従来例の
ものより大幅に圧力tn失が大きいことが判る。
Therefore, the flow resistance of this embodiment is about 3°6 times higher than that of the conventional example, and it can be seen from this that the pressure tn loss of this embodiment is significantly larger than that of the conventional example.

また、この装置において、冷却管7の流路断面ば減少さ
れていないので、目詰まり等の不都合を生ずる恐れがな
く、信頼性が向上される。
Further, in this device, since the cross section of the cooling pipe 7 is not reduced, there is no fear of clogging or other problems, and reliability is improved.

第4図乃至第7図はこの発明の他の実施例を示すもので
ある。なお、上記第1実施例に対応する構成は同一符号
をもって示し、詳i+IIな説明は省略する。
4 to 7 show other embodiments of the present invention. It should be noted that components corresponding to the first embodiment are indicated by the same reference numerals, and a detailed explanation will be omitted.

ます、第4図及び第5図の第2実施例は、中間管8内の
長平方向に直交してオリフィスi18を2個設けたもの
であり、オリフィス坂18の中心に設けられたオリフィ
ス穴18aは冷却管7と同一内径に形成されている。こ
のものは、冷却水の流路が小−大一小一大一小一大一小
と急拡大、急縮小が交互に繰り返されるので、流υJ低
抵抗増大して大きな 圧力損失となり、これにより冷却
管7内の冷却水の流動安定性が向上することとなる。
In the second embodiment shown in FIGS. 4 and 5, two orifices i18 are provided perpendicularly to the longitudinal direction in the intermediate pipe 8, and an orifice hole 18a is provided at the center of the orifice slope 18. is formed to have the same inner diameter as the cooling pipe 7. In this case, the cooling water flow path repeats rapid expansion and contraction from small to large to small to large to small to large to small, which increases the flow resistance and causes a large pressure loss. The flow stability of the cooling water in the cooling pipe 7 is improved.

なお、20はオリフィス坂18を設けるためのスペーサ
である。この第2実施例について入口マニホールド9と
冷却板5との区さLO(50sm)を従来例のものと同
一にした場合の流動tn失ΔPを具体的な数値で比較す
る。冷却管7の長さはL1+ L 2 = 20 am
として、その池中間管8の内径、外径、試験条件は第1
実施例のものと同一とする。
Note that 20 is a spacer for providing the orifice slope 18. Regarding this second embodiment, the flow tn loss ΔP when the distance LO (50 sm) between the inlet manifold 9 and the cooling plate 5 is the same as that of the conventional example will be compared with specific numerical values. The length of the cooling pipe 7 is L1 + L 2 = 20 am
The inner diameter, outer diameter, and test conditions of the pond intermediate pipe 8 are as follows.
It is the same as that of the example.

、1)冷)′11管7の長さし1←L2=20龍での流
動を氏抗Δ Pl ΔP1=136  (Pa) @中間管8での流路の急拡大による流動抵抗ΔΔP2”
409 (Pa) 0オリフイス18aでの流路の急縮小による流動抵抗Δ
P3 ΔP3=1379 (Pa) これに対し、従来例のものは上記のとおり339(Pa
)である。したがって、この第2実施例のものは従来例
のものの約6.2倍の流動抵抗となり、圧力損失は極め
て大きくなることがわかる。
, 1) '11 Length of pipe 7 1 ← L2 = 20 Flow resistance Δ Pl ΔP1 = 136 (Pa) @Flow resistance ΔΔP2 due to sudden expansion of flow path in intermediate pipe 8
409 (Pa) 0 Flow resistance Δ due to sudden contraction of the flow path at orifice 18a
P3 ΔP3=1379 (Pa) On the other hand, the conventional example has 339 (Pa) as mentioned above.
). Therefore, it can be seen that the flow resistance of the second embodiment is about 6.2 times that of the conventional example, and the pressure loss is extremely large.

第6図及び第7図の第3実施例は中間管8内の長手方向
に直交して隔壁30を2個設け、この隔壁30に支持さ
れて冷却管7と同一内径で、両端が開口した中間内管2
8を設けたものである。中間内管28は一端側をそれぞ
れ長手方向に重複させて千鳥足状に並んでいる。この第
3実施例は、冷却管7の入口側の流路が中間内管28の
重複分だけ長くなることに併せて、特に、冷却水の流路
が小−大一小一大一小一大一小と急拡大、急縮小が交互
に繰り返されるので、冷却水の流動抵抗が増大する上に
、中間内管28の重複部分で冷却水はUターンして流路
が逆になり流動抵抗が増大して圧力損失が大となるので
、これにより冷却水の流動安定性が向上することとなる
In the third embodiment shown in FIGS. 6 and 7, two partition walls 30 are provided perpendicularly to the longitudinal direction inside the intermediate pipe 8, and are supported by the partition walls 30, have the same inner diameter as the cooling pipe 7, and are open at both ends. Intermediate inner tube 2
8. The intermediate inner tubes 28 are arranged in a staggered manner with one end overlapping each other in the longitudinal direction. In this third embodiment, in addition to the fact that the flow path on the inlet side of the cooling pipe 7 is lengthened by the overlap of the intermediate inner pipe 28, the flow path of the cooling water is As large and small, rapid expansion and sudden contraction are repeated alternately, the flow resistance of the cooling water increases, and at the overlapping part of the intermediate inner pipe 28, the cooling water makes a U-turn and the flow path is reversed, causing flow resistance. This increases the pressure loss, which improves the flow stability of the cooling water.

【図面の簡単な説明】[Brief explanation of drawings]

M  I  Ir71 ’II、y MA り阿2+す
Δ110t−FLP+ =? L kbk−計1骨)市
・l八却装置の第1実施例を示し、第1図は全体斜視図
、第2図は冷却管の入口側を示す第1図の部分断面図、
第3図は第2図のm−rn線断面図、第4図及び第5図
は第2実施例を示し、第4図は第2図に対応する断面図
、第5図は第3図に対応する断面図、第6図及び第7図
は第3実施例を示し、第6図は第2図に対応する断面図
、第7図は第3図に対応する1川面図、第8図は従来例
の全体断面図である。 1・・電極板    5・・冷却板 7・・冷却管    8・・中間管 13・・入口配管  19・・出口配管第3図 第4図 第5図 弁 −e−田 第6図 第7図
M I Ir71 'II, y MA Ria2+suΔ110t-FLP+ =? L kbk - 1 bone in total) The first embodiment of the city/l eight unit is shown, Figure 1 is an overall perspective view, Figure 2 is a partial sectional view of Figure 1 showing the inlet side of the cooling pipe,
FIG. 3 is a sectional view taken along line m-rn in FIG. 2, FIGS. 4 and 5 show the second embodiment, FIG. 4 is a sectional view corresponding to FIG. 2, and FIG. 6 and 7 show the third embodiment, FIG. 6 is a sectional view corresponding to FIG. 2, FIG. 7 is a river surface view corresponding to FIG. 3, and FIG. The figure is an overall sectional view of a conventional example. 1. Electrode plate 5. Cooling plate 7. Cooling pipe 8. Intermediate pipe 13. Inlet piping 19. Outlet piping Figure 3 Figure 4 Figure 5 Valve -e-field Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 上下方向に積層された複数の電極板に介設され、内部に
冷却流体を流通可能な複数の冷却管を有する冷却板と、
前記各冷却管の入口側が接続され各冷却管へ冷却流体を
供給可能な入口配管と、前記冷却管の出口側が接続され
各冷却管から冷却流体を流出させる出口配管とを備えた
燃料電池冷却装置において、前記各冷却管の入口側に該
冷却管より流路面積の大きな中間管を介設したことを特
徴とする燃料電池冷却装置。
a cooling plate that is interposed between a plurality of vertically stacked electrode plates and has a plurality of cooling pipes through which a cooling fluid can flow;
A fuel cell cooling device comprising: an inlet pipe to which the inlet side of each cooling pipe is connected and capable of supplying cooling fluid to each cooling pipe; and an outlet pipe to which an outlet side of the cooling pipe is connected and allows cooling fluid to flow out from each cooling pipe. A fuel cell cooling device characterized in that an intermediate pipe having a larger flow area than the cooling pipe is interposed on the inlet side of each of the cooling pipes.
JP60285835A 1985-12-20 1985-12-20 Fuel cell cooling device Expired - Lifetime JPH0687421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60285835A JPH0687421B2 (en) 1985-12-20 1985-12-20 Fuel cell cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60285835A JPH0687421B2 (en) 1985-12-20 1985-12-20 Fuel cell cooling device

Publications (2)

Publication Number Publication Date
JPS62145659A true JPS62145659A (en) 1987-06-29
JPH0687421B2 JPH0687421B2 (en) 1994-11-02

Family

ID=17696694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60285835A Expired - Lifetime JPH0687421B2 (en) 1985-12-20 1985-12-20 Fuel cell cooling device

Country Status (1)

Country Link
JP (1) JPH0687421B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106585A (en) * 1989-09-20 1991-05-07 Amada Co Ltd Laser beam machining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03106585A (en) * 1989-09-20 1991-05-07 Amada Co Ltd Laser beam machining method

Also Published As

Publication number Publication date
JPH0687421B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US7264234B2 (en) Gas humidifier
JPS6016705B2 (en) Fuel cell device and its operation method
US6776809B2 (en) Fuel reforming apparatus
ES2898199T3 (en) Bypass Shell and Tube Kit
JP5461756B2 (en) Evaporator
JP3603274B2 (en) Fuel evaporator
JPS62145659A (en) Cooler for fuel cell
JPS5911076B2 (en) Liquefied natural gas vaporization equipment
JPH044572A (en) Vapor generator of fuel cell power generation system
JPH07326378A (en) Fuel cell
JP2741935B2 (en) Low temperature liquefied gas vaporizer
JPS61147467A (en) Cooling device for fuel cell
JP2006032290A (en) Fuel cell power generating device
JPH07294162A (en) Heat exchanging device
CN214948933U (en) Water vapor generator
JPH04144069A (en) Fuel cell
JPH0711968B2 (en) Fuel cell cooling device
JPH10223237A (en) Cooling plate structure of fuel cell
JPS58157061A (en) Layer-built fuel cell
JPH03239897A (en) Vaporizer device of low-temperature liquefied gas
US20020197195A1 (en) Apparatus, systems and methods for facilitating the accurate calculation of a steam-carbon ratio in a hydrocarbon reformer
WO2023047937A1 (en) Liquid hydrogen vaporizer, and generation method for generating hydrogen
CN201265944Y (en) Heating equipment of quick heating type electric water heater
CN112747297A (en) Water vapor generator
JPS60177566A (en) Fuel cell power generating system