JPH03239897A - Vaporizer device of low-temperature liquefied gas - Google Patents
Vaporizer device of low-temperature liquefied gasInfo
- Publication number
- JPH03239897A JPH03239897A JP3273690A JP3273690A JPH03239897A JP H03239897 A JPH03239897 A JP H03239897A JP 3273690 A JP3273690 A JP 3273690A JP 3273690 A JP3273690 A JP 3273690A JP H03239897 A JPH03239897 A JP H03239897A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- space
- low
- water chamber
- liquefied gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000006200 vaporizer Substances 0.000 title claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 66
- 239000007788 liquid Substances 0.000 claims abstract description 29
- 230000008016 vaporization Effects 0.000 claims description 13
- 238000009834 vaporization Methods 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 claims 1
- 239000003949 liquefied natural gas Substances 0.000 description 57
- 239000007789 gas Substances 0.000 description 47
- 239000013535 sea water Substances 0.000 description 44
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 22
- 239000003345 natural gas Substances 0.000 description 11
- 238000009835 boiling Methods 0.000 description 5
- 230000008646 thermal stress Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000010420 art technique Methods 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、液化天然ガスなどのような低温液化ガスを気
化するための装置およびその気化装置を待機中に冷却す
る新規な冷却装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus for vaporizing low temperature liquefied gas such as liquefied natural gas and a novel cooling apparatus for cooling the vaporizer during standby.
従来の技術
第1の先行技術は第6図に示されている。この先行技術
では、−155℃の液化天然ガスが入口lから中間熱媒
体式気化器2の伝熱管3に供給され、気化される。この
気化器2内には、′フロンまたはプロパンなどの液相4
と気相5とが形成されている。気化器2において気化さ
れた一50℃の気化した液化天然ガスは、加温器6の入
ロアに供給され、この加温器6を通って出口8からは、
0℃の気化した液化天然ガスが得られる。熱源としての
海水は、入口9から加温器6の伝熱管10を通り、さら
に気化器2の液相4に設けられている伝熱管11を通っ
て出口12から排出される。Prior Art A first prior art is shown in FIG. In this prior art, liquefied natural gas at -155° C. is supplied from an inlet 1 to a heat exchanger tube 3 of an intermediate heat medium type vaporizer 2 and is vaporized. Inside this vaporizer 2, there is a liquid phase 4 such as chlorofluorocarbon or propane.
and a gas phase 5 are formed. The liquefied natural gas at -50°C vaporized in the vaporizer 2 is supplied to the input lower of the warmer 6, passes through the warmer 6, and exits from the outlet 8.
Vaporized liquefied natural gas at 0°C is obtained. Seawater as a heat source passes through the heat exchanger tube 10 of the warmer 6 from the inlet 9, further passes through the heat exchanger tube 11 provided in the liquid phase 4 of the vaporizer 2, and is discharged from the outlet 12.
このような第6図に示される先行技術では、海水の流量
確認が容易であり、伝熱管10の内面への着氷厚みが薄
く、また液化天然ガスのトン当りの海水使用量は少なく
てすむという利点がある。In the prior art shown in FIG. 6, it is easy to confirm the flow rate of seawater, the thickness of ice on the inner surface of the heat transfer tube 10 is small, and the amount of seawater used per ton of liquefied natural gas is small. There is an advantage.
その反面、加温器6の伝熱管10の本数を多くして、加
温器6の胴径を大きくし、また管板を厚くせざるを得す
、大形化し、建設費がかさむ。気化器2の構成を簡単に
して、この気化器2から加温器6の入ロアに導かれる気
化した液化天然ガスの温度を低くして、気化器2と加温
器6との合計のコストを低減することが望まれるけれど
も、この人ロアの温度を低くしすぎると、伝熱管10内
に着氷し、伝熱効率が低下し、したがってコストの低減
には限界がある。On the other hand, it is necessary to increase the number of heat transfer tubes 10 of the warmer 6, increase the body diameter of the warmer 6, and thicken the tube plate, resulting in an increase in size and construction cost. By simplifying the structure of the vaporizer 2 and lowering the temperature of the vaporized liquefied natural gas led from the vaporizer 2 to the input lower of the warmer 6, the total cost of the vaporizer 2 and the warmer 6 can be reduced. Although it is desired to reduce the temperature, if the temperature of the lower part is made too low, ice will form inside the heat transfer tubes 10, and the heat transfer efficiency will decrease, so there is a limit to the cost reduction.
第2の先行技術は第7図に示されており、気化器2は第
6図に示される気化器2に対応し、対応する部分には同
一の参照符を付す、入口1からの液化天然ガスは中間熱
媒体式気化器2の伝熱管3を経て気化され、たとえば−
40℃未溝の気化された液化天然ガスは入口14から加
温器15内に供給され、出口16からは0℃の気化した
液化天然ガスが得られる。気化器2には、熱源としての
海水が入口17から伝熱管11に導かれ、その海水は出
口18から排出される。また加温器15には入口19か
ら海水が供給され、伝熱管20を経て出口21から排出
される。海水は、気化器2と加温器15とにはたとえば
2;1の流量比率で供給される。A second prior art is shown in FIG. 7, in which the vaporizer 2 corresponds to the vaporizer 2 shown in FIG. The gas is vaporized through the heat exchanger tube 3 of the intermediate heat medium type vaporizer 2, for example -
Vaporized liquefied natural gas at 40° C. is supplied from the inlet 14 into the warmer 15, and vaporized liquefied natural gas at 0° C. is obtained from the outlet 16. In the vaporizer 2, seawater as a heat source is introduced into the heat transfer tube 11 from an inlet 17, and the seawater is discharged from an outlet 18. Further, seawater is supplied to the warmer 15 from an inlet 19, passes through a heat transfer tube 20, and is discharged from an outlet 21. Seawater is supplied to the vaporizer 2 and the warmer 15 at a flow rate ratio of, for example, 2:1.
このような第7図に示される先行技術では、気化器2お
よび加温器15の胴径が小さくなり、また海水の圧力損
失が少ないという利点があるけれども、その欠点として
は、加温器15の入口14における気化した液化天然ガ
スの温度が一40℃未満では加温器15の参照符22で
示す海水出口21付近での伝熱管20内の着氷が大きく
なり、たとえば出口21から排出される海水の温度が2
℃であっても、その伝熱管20内には2mm以上の厚み
で氷が付着するという問題があり、したがって熱交換効
率を向上するために出口海水温度を上げる必要があり、
そのようにすると海水の使用量が増えるという問題があ
る。The prior art shown in FIG. 7 has the advantage that the body diameters of the vaporizer 2 and the warmer 15 are small, and the pressure loss of the seawater is small. If the temperature of the vaporized liquefied natural gas at the inlet 14 is lower than 140° C., ice formation in the heat exchanger tubes 20 near the seawater outlet 21 indicated by the reference numeral 22 of the warmer 15 increases, and, for example, ice is discharged from the outlet 21. The seawater temperature is 2
℃, there is a problem that ice adheres to a thickness of 2 mm or more inside the heat exchanger tube 20, so it is necessary to increase the outlet seawater temperature in order to improve heat exchange efficiency.
If this is done, there is a problem that the amount of seawater used will increase.
このような第6図および第7図の先行技術ではまた、中
間熱媒体式気化器2内には中間熱媒体が貯留され、した
がって開放点検時にはその中間熱媒体を出入しなければ
ならず、煩わしく、また保全費が高くなる。In the prior art shown in FIGS. 6 and 7, the intermediate heat medium is stored in the intermediate heat medium type vaporizer 2, and therefore the intermediate heat medium must be taken in and out during open inspection, which is troublesome. , maintenance costs will also increase.
このような中間熱媒体を用いないさらに他の先行技術は
第8図に示されている。上下に延びる胴23内には伝熱
管24が設けられ、海水が管路25から入口側水室26
に供給され、伝熱管24内を通って出口側水室27に流
れる。もう1つの胴28にもまた伝熱管29が設けられ
、海水の管路30から入口側水室31および伝熱管29
を経て出口側水室32に流れる。気化されるべき液化天
然ガスは管路33から、胴23の内周面と伝熱管24の
外周面との間の空間34に導入され、その後管路35か
ら、もう1つの胴28の内周面と伝熱管29との間の空
間36に導かれ、管路37から気化された液化天然ガス
が導出される。Yet another prior art technique that does not use such an intermediate heat transfer medium is shown in FIG. A heat transfer tube 24 is provided inside the shell 23 that extends vertically, and seawater flows from the tube 25 to the inlet side water chamber 26.
and flows into the outlet side water chamber 27 through the heat exchanger tube 24 . The other shell 28 is also provided with a heat exchanger tube 29, and from the seawater conduit 30 to the inlet side water chamber 31 and the heat exchanger tube 29.
The water flows to the outlet side water chamber 32 through the. The liquefied natural gas to be vaporized is introduced from the pipe 33 into the space 34 between the inner circumferential surface of the shell 23 and the outer circumferential surface of the heat transfer tube 24, and then from the pipe 35 into the inner circumference of the other shell 28. The vaporized liquefied natural gas is guided into the space 36 between the surface and the heat exchanger tube 29, and is led out from the pipe line 37.
このような第8図に示される先行技術では、管路25.
30に供給される海水の温度が低くなると、伝熱管24
.29の内壁の着氷が厚くなり、海水の圧力損失が大き
くなる。またこの先行技術では胴23.28の内面に液
化天然ガスが接触するので、胴23.28に伸縮管を設
けるか、または胴23.28の外周面に海水を流して、
胴23゜28と伝熱管24.29との温度差による収縮
対策を採る必要がある。In the prior art shown in FIG. 8, the conduit 25.
When the temperature of the seawater supplied to the heat exchanger tubes 24 becomes low,
.. 29's inner wall becomes thicker, and the pressure loss of seawater increases. In addition, in this prior art, since the liquefied natural gas comes into contact with the inner surface of the shell 23.28, a telescopic pipe is provided in the shell 23.28, or seawater is flowed on the outer circumferential surface of the shell 23.28.
It is necessary to take measures against shrinkage due to the temperature difference between the shell 23.28 and the heat exchanger tubes 24.29.
さらに他の先行技術は第9図に示されており、その第9
図における切断面線X−Xから見た断面は第10図に示
されている。この先行技術では、海水は管路41から管
路42において散水器43に供給されて、伝熱パネル4
4の外表面に流下される。液化天然ガスは管路45から
ヘッダ46を経て、伝熱パネル44を上昇し、ヘッダ4
7から気化された液化天然ガスは管路48を経て導出さ
れる。Yet another prior art is shown in FIG.
A cross section taken along the section line XX in the figure is shown in FIG. In this prior art, seawater is supplied from a pipe 41 to a water sprinkler 43 in a pipe 42, and the heat transfer panel 4
It flows down onto the outer surface of 4. The liquefied natural gas passes through the header 46 from the pipe 45, ascends the heat transfer panel 44, and reaches the header 4.
The liquefied natural gas vaporized from 7 is led out through a pipe 48.
このような第9図および第10図に示される先行技術で
は、管路41を経て供給される海水の温度が上昇し、こ
れに応じて海水流量を絞ると、その海水は散水器43か
らパネル44の全面にわたって均一な厚みで水の膜を形
成することができないという問題がある。また第6図お
よび第7図の先行技術でもまた、海水流量を極端に減ら
すと、伝熱管10,11.20のうち、上部の伝熱管に
は海水が流れなくなってしまう。In the prior art shown in FIGS. 9 and 10, when the temperature of the seawater supplied through the pipe 41 rises and the seawater flow rate is throttled accordingly, the seawater flows from the sprinkler 43 to the panel. There is a problem in that it is not possible to form a water film with a uniform thickness over the entire surface of 44. Also, in the prior art shown in FIGS. 6 and 7, if the seawater flow rate is extremely reduced, seawater will no longer flow into the upper heat transfer tube of the heat transfer tubes 10, 11, 20.
また第9図および第10図に示される先行技術では、機
器の大容量化と高圧化に対しては、伝熱パネル44の枚
数を増すとともに、各ヘッダ4647への均一な液化天
然ガスの流量配分のための対策を採る必要がある。Furthermore, in the prior art shown in FIGS. 9 and 10, in order to increase the capacity and pressure of equipment, the number of heat transfer panels 44 is increased, and the flow rate of liquefied natural gas to each header 4647 is uniform. Measures need to be taken for allocation.
また第9図および第10図の先行技術では、待機状態で
は、散水器43による海水の散水を停止し、管路45か
ら液化天然ガスをわずかな流量で供給することによって
、管路45,48、ヘッダ46.47および伝熱パネル
44の冷却を行う必要がある。そのため下部のヘッダ4
6内では、液化天然ガスの高沸点成分の濃縮が起こり、
再立ち上げ時に、管路48から得られる気化した液化天
然ガスの成分が変化し、その発熱量が変動するという問
題がある。Furthermore, in the prior art shown in FIGS. 9 and 10, in the standby state, the sprinkling of seawater by the water sprinkler 43 is stopped, and liquefied natural gas is supplied from the pipe 45 at a small flow rate, so that the pipes 45, 48 , headers 46, 47, and heat transfer panels 44 must be cooled. Therefore, the header 4 at the bottom
6, concentration of high-boiling components of liquefied natural gas occurs,
At the time of restarting, there is a problem in that the components of the vaporized liquefied natural gas obtained from the pipe line 48 change, and the calorific value thereof fluctuates.
なお前述の第6図および第7図に示される先行技術では
、配管系の冷却のために少量の液化天然ガスを流す必要
があるが、構造上、液化天然ガスの仕切室が保冷されて
いるので、液化天然ガスの高沸点成分の濃縮が起こりに
くく、したがって再立ち上げ時に得られる気化した液化
天然ガスの発熱量の変動の問題は殆ど生じないという利
点はあるけれども、海水を、計画流量の約1〜2割程度
常時、流しておく必要がある。さらにまたこの第6図お
よび第7図の先行技術では、長期間にわたって待機状態
とするとき、伝熱管内ある“いは仕切室内に海水が澱み
、海生生物が付着成長したり、管板と伝熱管10,11
.20の溶接部分に腐食が生じるおそれがあり、特に伝
熱管内面への異物のつまり、海生生物の付着が、伝熱管
10,11゜20の着氷閉塞の原因となるので、これを
防ぐために定期的に一定の海水を流し、海生生物の繁殖
期にはその付着の有無および溶接部分の健全性を調べる
必要がある。In addition, in the prior art shown in FIGS. 6 and 7 described above, it is necessary to flow a small amount of liquefied natural gas to cool the piping system, but due to the structure, the liquefied natural gas compartment is kept cool. This has the advantage that concentration of the high boiling point components of liquefied natural gas is unlikely to occur, and therefore there is almost no problem of fluctuations in the calorific value of vaporized liquefied natural gas obtained at restarting. Approximately 1 to 20% of the water needs to be kept flowing at all times. Furthermore, in the prior art shown in FIGS. 6 and 7, when the heat transfer tubes are left in a standby state for a long period of time, seawater stagnates inside the heat exchanger tubes or inside the partition chambers, causing marine organisms to grow attached to the tubes or to damage the tube sheets. Heat exchanger tubes 10, 11
.. There is a risk of corrosion occurring in the welded parts of the heat exchanger tubes 10, 11, 20, and in particular, foreign matter clogging or adhesion of marine life to the inner surface of the heat exchanger tubes can cause ice formation and blockage of the heat exchanger tubes 10, 11 and 20, so in order to prevent this, It is necessary to periodically flush a certain amount of seawater and check for the presence of adhesion and the health of the welded parts during the breeding season of marine organisms.
さらに他の先行技術はたとえば特開昭56−30585
に開示されており、これは第11図に示されている。水
平に延びる胴51の一端部に形成された入口側水室52
から海水などの水を供給し、この水は自伝熱管53を経
て胴51の他端部に形成された出口側水室54から排出
され、このとき人口55から圧送される液体の液化天然
ガスを気化する。入口55からの液化天然ガスは、自伝
熱管53とともに二重管を構成する外伝熱管56の外周
を通って出口空間57に導かれ、ここでたとえば−10
℃程度の気体とされ、この出口空間57からのガスは流
量制御弁58から、その液化天然カスのたとえば約5%
程度が管路59に導かれる。出口空間57にある気化し
た液化天然ガスは自伝熱管53と外伝熱管56との間の
空間を通って、もう1つの出口空間60から管路61を
経て前述の管路59のガスとともに管路62から供給さ
れる。入口側水室52と出口側水室54とを仕切る管板
63,64には自伝熱管53の両端部がそれぞれ固定さ
れる。Further, other prior art is, for example, Japanese Patent Application Laid-open No. 56-30585.
and is shown in FIG. An inlet water chamber 52 formed at one end of the horizontally extending body 51
This water is discharged from the outlet side water chamber 54 formed at the other end of the body 51 through the autobiographical heat tube 53, and at this time, liquid liquefied natural gas pumped from the body 55 is supplied. Vaporize. The liquefied natural gas from the inlet 55 is guided to the outlet space 57 through the outer periphery of the external heat exchanger tube 56 which forms a double tube together with the autobiographical heat tube 53, where the liquefied natural gas is
The gas from the outlet space 57 is discharged from the flow rate control valve 58 at about 5% of the liquefied natural scum.
degree is led to conduit 59. The vaporized liquefied natural gas in the outlet space 57 passes through the space between the autobiographical heat transfer tube 53 and the external heat exchanger tube 56, and from another outlet space 60 via the conduit 61 to the conduit 62 together with the gas in the aforementioned conduit 59. Supplied from. Both ends of the autobiographical heat tube 53 are fixed to tube plates 63 and 64 that partition the inlet-side water chamber 52 and the outlet-side water chamber 54, respectively.
発明が解決すべき課題
このような第11図に示される先行技術の新たな問題は
、出口空間60から管路61および供給される気化した
液化天然ガスの温度は、たとえば80℃程度であり、そ
の温度が低すぎるということである。管路61から供給
される気化した液化天然ガスの温度は、好ましくは、常
温程度でなければならない。Problems to be Solved by the Invention A new problem with the prior art shown in FIG. That temperature is too low. The temperature of the vaporized liquefied natural gas supplied from the pipe line 61 should preferably be around room temperature.
またこの第11図に示される先行技術では、胴51は液
体の液化天然ガスによって低温に冷却され、縮小し、こ
れに対して自伝熱管53は、その中を流れる水によって
伸長する。したが゛って胴51と自伝熱管53とに熱応
力が作用して自伝熱管5−3が座屈してしまうおそれが
ある。Also, in the prior art shown in FIG. 11, the shell 51 is cooled to a low temperature by liquid liquefied natural gas and contracts, whereas the autothermal tube 53 is expanded by the water flowing therein. Therefore, there is a possibility that thermal stress acts on the body 51 and the autobiographical heat tube 53, causing the autobiographical heat tube 5-3 to buckle.
さらにまたこの先行技術では、管路59の途中には、低
温度の気化した液化天然ガスの流量を制御する流量制御
弁58を必要とするという問題がある。Furthermore, this prior art has a problem in that a flow control valve 58 is required in the middle of the pipe line 59 to control the flow rate of the low-temperature vaporized liquefied natural gas.
本発明の目的は、熱源に液体の温度が低くても着氷など
の問題を生じることを防ぎ、しかも構成が簡略化され、
さらに待機状態において低温液化ガスまたは熱源液体を
流す必要をなくし、さらにまた保守が容易であり、また
常温ないしは常温に近い気化した低温液化ガスを得るこ
とができ、さらに熱応力による損傷を防ぐことができる
ようにした改良された低温液化ガスの気化装置を提供す
ることである。An object of the present invention is to prevent problems such as icing from occurring even if the temperature of the liquid in the heat source is low, and to simplify the configuration.
Furthermore, it eliminates the need to flow low-temperature liquefied gas or heat source liquid in a standby state, is easy to maintain, can obtain low-temperature liquefied gas vaporized at or near room temperature, and can prevent damage due to thermal stress. It is an object of the present invention to provide an improved low-temperature liquefied gas vaporization device that can perform the following steps.
低温液化ガスの気化装置では、それが待機中であるとき
、たとえば常温程度に昇温していると、新たに気化すべ
き液体の低温液化ガスを供給したとき激しい沸騰を生じ
る。この問題を解決するために、気化装置を待機状態で
は、低温に冷却しておく必要がある。In a low-temperature liquefied gas vaporizer, when it is on standby, for example, when the temperature has risen to around room temperature, intense boiling occurs when the low-temperature liquefied gas of the liquid to be vaporized is newly supplied. To solve this problem, it is necessary to cool the vaporizer to a low temperature when it is on standby.
本発明の他の目的は、低温液化ガスの気化装置を待機状
態としたときにそれを冷却しておくための新規な冷却装
置を提供することである。Another object of the present invention is to provide a novel cooling device for cooling a low-temperature liquefied gas vaporization device when it is in a standby state.
課題を解決するための手段
本発明は、上下に延びる胴と、
胴の下部に入口側水室を形成する第1管板と、胴の上部
に出口側水室を形成する第2管板と、第1管板と第2管
板との間で上下に間隔をあけてそれぞれ配置される第3
および第4管板と、第1および第2管板間に延び、入口
側水室と出口側水室とを連通ずる自伝熱管と、
第3および第4管板間に延び、自伝熱管を半径方向に間
隔をあけて外囲する外伝熱管とを含み、第3および第4
管板間の空間の上部と、第2および第3管板間の空間と
を連通ずる流路を形成し、第3および第4管板間の空間
の下部に、液体の低温液化ガスの入口を設け、
第1および第4管板間の空間の下部にガス出口を設ける
ことを特徴とする低温液化ガスの気化装置である。Means for Solving the Problems The present invention comprises: a vertically extending body; a first tube plate forming an inlet water chamber in the lower part of the body; and a second tube plate forming an outlet water chamber in the upper part of the body. , a third tube sheet disposed between the first tube sheet and the second tube sheet with an interval in the vertical direction.
and a fourth tube sheet; an autobiographical heat tube extending between the first and second tube sheets and communicating the inlet side water chamber and the outlet side water chamber; a third and a fourth outer heat exchanger tube surrounding the outer heat exchanger tube at intervals in the direction;
A flow path is formed that communicates the upper part of the space between the tube sheets with the space between the second and third tube sheets, and the lower part of the space between the third and fourth tube sheets is provided with an inlet for low-temperature liquefied gas. This is a low-temperature liquefied gas vaporization device, characterized in that the gas outlet is provided at the lower part of the space between the first and fourth tube sheets.
ま、た本発明は、第3および第4管板間に、上下に間隔
をあけて第5および第6管板を設け、これらの第5およ
び第6管板に、前記外伝熱管の上下に分断した端部を設
けることを特徴とする。Furthermore, the present invention provides fifth and sixth tube sheets that are vertically spaced apart between the third and fourth tube sheets, and the fifth and sixth tube sheets are provided with grooves above and below the external heat transfer tubes. It is characterized by having a divided end.
さらにまた本発明は、出口側水室内に紫外線の光源を設
けることを特徴とする。Furthermore, the present invention is characterized in that an ultraviolet light source is provided in the water chamber on the outlet side.
また本発明は、上下に延びる胴と、
胴の上部に入口側水室を形成する第1管板と、胴の下部
に出口側水室を形成する第2管板と、第1管板と第2管
板との間に上下に間隔をあけて上から下に順にそれぞれ
配置される第3、第4および第5管板と、
第1および第2管板間に延び、入口側水室と出口側水室
とを連通ずる自伝熱管と、
第3および第5管板間に延び、自伝熱管を半径方向に間
隔をあけて外囲する第2外伝熱管と、第5管板から下方
に延び、第2管板との間に上下の間隔を有し、自伝熱管
を半径方向に間隔をあけて外囲する第2外伝熱管とを含
み、
第3および第4管板間の空間の上部と、第2および第5
管板間の空間の上部とを連通ずる通路を形成し、
第3および第4管板間の空間の下部に、液体の低温液化
ガスの入口を設け、
第1および第3管板間の空間の上部に、ガス出口を設け
ることを特徴とする低温液化ガスの気化装置である。The present invention also provides a structure that includes a vertically extending body, a first tube plate forming an inlet side water chamber in the upper part of the body, a second tube plate forming an outlet side water chamber in the lower part of the body, and a first tube plate. third, fourth, and fifth tube sheets arranged in order from top to bottom with vertical intervals between the second tube sheet; and an inlet side water chamber extending between the first and second tube sheets. a second external heat transfer tube extending between the third and fifth tube sheets and surrounding the autobiographical heat tube at intervals in the radial direction; a second external heat exchanger tube extending from the second tube sheet and having a vertical spacing between the second tube sheet and surrounding the autobiographical heat tube with a radial spacing therebetween; and the second and fifth
forming a passage communicating with the upper part of the space between the tube sheets, and providing an inlet for liquid low-temperature liquefied gas at the lower part of the space between the third and fourth tube sheets, and the space between the first and third tube sheets; This is a low-temperature liquefied gas vaporization device characterized by providing a gas outlet at the top of the liquefied gas.
さらにまた本発明は、低温液化ガスの気化装置と、その
気化装置に液体の低温液化ガスを圧送する低温液化ガス
供給源との間に、立上り管を介在し、
この立上り管内に液面が保たれるように、前記供給源か
らの低温液化ガスを立上り管に供給する手段を設け、こ
れによって待機中の気化装置に、気化した低温液化ガス
を供給して気化装置を冷却することを特徴とする低温液
化ガスの気化装置のための冷却装置である。Furthermore, in the present invention, a riser is interposed between a low-temperature liquefied gas vaporizer and a low-temperature liquefied gas supply source that pumps liquid low-temperature liquefied gas to the vaporizer, and a liquid level is maintained in the riser. A means for supplying the low temperature liquefied gas from the supply source to the riser pipe is provided so that the low temperature liquefied gas is supplied from the supply source to the standby pipe, thereby supplying the vaporized low temperature liquefied gas to the standby vaporizer to cool the vaporizer. This is a cooling device for a low-temperature liquefied gas vaporization device.
作 用
本発明に従えば、上下に延びる胴の下部に設けられた入
口側水室から海水などの水を供給し、胴の上部の出口側
水室から排出する。液体の気化されるべき低温液化ガス
は、第3および第4管板間の空間の下部から供給され、
外伝熱管と接触して気化され、その気化されたガスは第
2管板と第3管板間の空間から、自伝熱管と外伝熱管と
の間の空間を経て第1および第4管板間の空間に導かれ
、さらに第1および第4管板間の空間の下部から常温程
度の気化した低温液化ガスが排出される。Function According to the present invention, water such as seawater is supplied from the inlet side water chamber provided at the lower part of the body extending vertically, and is discharged from the outlet side water chamber at the upper part of the body. The low temperature liquefied gas to be vaporized is supplied from the lower part of the space between the third and fourth tube sheets,
It is vaporized by contact with the external heat transfer tube, and the vaporized gas flows from the space between the second tube sheet and the third tube sheet, through the space between the autobiographical heat transfer tube and the external heat transfer tube, and then to the space between the first and fourth tube sheets. The vaporized low-temperature liquefied gas at about room temperature is guided into the space and further discharged from the lower part of the space between the first and fourth tube sheets.
また本発明に従えば、外伝熱管を上下に分断して第3お
よび第4管板間に上下に間隔をあけて設けた第5および
第6管板に取付けることによって、胴の第5および第6
管板間では、気化した低温液化ガスによって昇温して伸
長し、したがって内外の伝熱管とによって生じる熱応力
を小さくすることができる。Further, according to the present invention, by dividing the external heat transfer tube into upper and lower parts and attaching it to the fifth and sixth tube sheets that are vertically spaced between the third and fourth tube sheets, 6
Between the tube sheets, the temperature increases and expands due to the vaporized low-temperature liquefied gas, and therefore the thermal stress caused by the inner and outer heat exchanger tubes can be reduced.
胴は上下に延び、また自伝熱管は上下に延びるので、出
口側水室内に紫外線の光源を設けることによって、内転
熱管内に生物などが付着することを防ぐことができる。Since the body extends vertically and the autobiographical heat tube extends vertically, by providing an ultraviolet light source in the water chamber on the outlet side, it is possible to prevent living things from adhering to the internal heat tube.
さらに本発明に従えば、上下に延びる胴の上下の端部に
入口側水室と出口側水室と第1および第2管板によって
形成し、第1および第2管板間で上下に間隔をあけて配
置した第3、第4、第5管板によって空間を形威し、第
3および第4管板間の空間の下部から気化すべき液体の
低温液化ガスを供給して昇温し、次に第2および第5管
板間の空間に供給してさらに昇温し、そのガスを自伝熱
管と外伝熱管との間の空間を経て第2および第5空間内
に供給して昇温し、さらに第3および第4管板間におけ
る自伝熱管と外伝熱管との間の空間を経て、第1および
第3管板間の空間に導いて昇温して外部に常温程度の気
化したガスを供給する。Furthermore, according to the present invention, the upper and lower ends of the vertically extending body are formed by an inlet side water chamber, an outlet side water chamber, and the first and second tube sheets, and a space is vertically spaced between the first and second tube sheets. A space is formed by the third, fourth, and fifth tube sheets arranged with a gap between them, and low-temperature liquefied gas of the liquid to be vaporized is supplied from the lower part of the space between the third and fourth tube sheets to raise the temperature. Next, the gas is supplied to the space between the second and fifth tube sheets to further raise the temperature, and the gas is supplied into the second and fifth spaces through the space between the autobiographical heat tube and the external heat transfer tube to raise the temperature. Then, through the space between the autobiographical heat transfer tube and the external heat exchanger tube between the third and fourth tube sheets, the gas is introduced into the space between the first and third tube sheets, where the temperature rises, and the vaporized gas at about room temperature is released outside. supply.
本発明に従えば、低温液化ガスの気化装置に、立上り管
に貯留されている低温液化ガスを気化した低温のガスを
供給するようにしたので、気化装置が常に低温に冷却さ
れており、そのため気化すべき低温液化ガスを供給した
ときに、激しい沸騰が生じることを防ぐことができる。According to the present invention, the low-temperature liquefied gas vaporizer is supplied with low-temperature gas obtained by vaporizing the low-temperature liquefied gas stored in the riser, so that the vaporizer is always cooled to a low temperature. It is possible to prevent violent boiling from occurring when low-temperature liquefied gas to be vaporized is supplied.
実施例
第1図は、本発明の他の実施例の縦断面図である。上下
に延びる鉛直軸線を有する大略的に直円筒状の胴65の
下部には、第1管板66によって入口側水室67が形成
され、胴65の上部には、第2管板68によって出口側
水室69が形成される。入口側水室67には管路70か
らゴミを除去するストレーナ71を介して海水などの熱
源用液体が圧送され、出口側水室65から管路71を介
して、その海水が排出される。Embodiment FIG. 1 is a longitudinal sectional view of another embodiment of the present invention. An inlet side water chamber 67 is formed by a first tube plate 66 in the lower part of the body 65, which has a generally right cylindrical shape and has a vertical axis extending vertically, and an outlet side water chamber 67 is formed in the upper part of the body 65 by a second tube plate 68. A side water chamber 69 is formed. A heat source liquid such as seawater is pumped into the inlet water chamber 67 from a pipe 70 through a strainer 71 for removing dust, and the seawater is discharged from the outlet water chamber 65 through a pipe 71.
第1管板66と第2管板68との間で、上下に間隔をあ
けて第3および第4管板72.73がそれぞれ配置され
る。第3および第4管板72,73間に、上下に間隔を
あけて、第5および第6管板74.75が設けられる。Between the first tube sheet 66 and the second tube sheet 68, third and fourth tube sheets 72 and 73 are arranged vertically with an interval between them. Fifth and sixth tube sheets 74 and 75 are provided vertically spaced apart between the third and fourth tube sheets 72 and 73.
これらの管板6668.72.73.74.75は、胴
65に溶接などによって気密に固定される。These tube sheets 6668, 72, 73, 74, 75 are airtightly fixed to the shell 65 by welding or the like.
第1および第2管板66.68間には、複数本の内圧熱
管77が設けられ、この内圧熱管77によって入口側水
室68と出口側水室6つとが連通される。第3および第
4管板72.73間には、内圧熱管77を半径方向に間
隔をあけて外囲する外伝熱管78.79が設けられ、こ
の外伝熱管78.79は、上下に分断されており、第5
および第6管板74.75に気密に固定される。第3お
よび第5管板72.74間の空間の上部は、連絡管80
によって第2および第3管板間の空間82に連通される
。第4および第6管板73.75間の空間83の上部は
、前記空間81の下部に、もう1つの連絡管84によっ
て連通される。空間83の下部には管路85を介して気
化されるべき液体の低温液化ガス、たとえば液化天然ガ
スが圧送され、気化した常温程度の液化天然ガスは第1
および第4管板66.73間の空間86の下部がら管路
87を介して外部に取り出される。A plurality of internal pressure heat tubes 77 are provided between the first and second tube plates 66 and 68, and the inlet side water chamber 68 and six outlet side water chambers are communicated through the internal pressure heat tubes 77. External heat transfer tubes 78.79 are provided between the third and fourth tube plates 72.73 and surround the internal pressure heat tubes 77 at intervals in the radial direction, and the external heat transfer tubes 78.79 are divided into upper and lower parts. 5th
and is airtightly fixed to the sixth tube plate 74,75. The upper part of the space between the third and fifth tube sheets 72, 74 is connected to the connecting pipe 80.
communicates with the space 82 between the second and third tube sheets. The upper part of the space 83 between the fourth and sixth tube sheets 73, 75 is communicated with the lower part of the space 81 by another connecting pipe 84. Low-temperature liquefied gas to be vaporized, for example, liquefied natural gas, is fed under pressure to the lower part of the space 83 through a pipe 85, and the vaporized liquefied natural gas at room temperature is transferred to the first
The lower part of the space 86 between the fourth tube sheets 66 and 73 is taken out to the outside via a conduit 87.
空間8.1,83.86には、邪魔板88,89゜90
が形成されて、液体または気体のジグザグの経路を形成
して、熱交換効率の向上を図っている。In spaces 8.1, 83.86, baffle plates 88, 89°90
is formed to form a zigzag path for liquid or gas to improve heat exchange efficiency.
第2図は、第1図に示す実施例の気化される液化天然ガ
スの温度変化を示すとともに、熱源として用いられる水
の温度変化を示す。気化°されるべき液化天然ガスは、
約−160℃であり、管路85から空間83に入る。こ
の空間83において、外伝熱管79と内圧熱管77との
間の空間91には、たとえば−25℃の昇温された天然
ガスが導かれており、ここで熱交換して、管路84がら
は、約−75℃の気化した液化天然ガスが空間81に導
かれる。この内外伝熱管77.79間の空間91を流れ
る天然ガスは、内圧熱管77を通る水がら貰う熱以上に
、液化天然ガスに熱を奪われて、約−40℃まで下って
空間86に導がれる。この空間91を流れる天然ガスは
、このように急に温度が下るけれども、内転熱管77内
を流れる水とは対向流で熱交換するので、外伝熱管7’
)vi下下端付付近は、たとえば約4℃の海水などの水
と熱交換することになり、したがって伝熱特性上、内圧
熱管77の管壁温度が海水の凝固温度である約2°C以
上となり、内転熱管77内に着氷を生じることはない。FIG. 2 shows the temperature change of the liquefied natural gas to be vaporized in the embodiment shown in FIG. 1, and also shows the temperature change of the water used as a heat source. The liquefied natural gas to be vaporized is
The temperature is approximately -160° C. and enters the space 83 from the conduit 85. In this space 83, natural gas whose temperature has been raised to, for example, -25° C. is introduced into a space 91 between the external heat transfer tube 79 and the internal pressure heat tube 77, where it exchanges heat and is discharged from the pipe line 84. , vaporized liquefied natural gas at about −75° C. is introduced into space 81 . The natural gas flowing through the space 91 between the inner and outer heat exchanger tubes 77 and 79 has more heat absorbed by the liquefied natural gas than the heat received from the water passing through the internal pressure heat tube 77, and the temperature drops to about -40°C and is introduced into the space 86. I can escape. Although the temperature of the natural gas flowing through this space 91 suddenly drops in this way, it exchanges heat with the water flowing inside the inner heat transfer tube 77 in a counter flow, so
) vi The vicinity of the lower end will exchange heat with water such as seawater at about 4°C, and therefore, due to heat transfer characteristics, the tube wall temperature of the internal pressure heat tube 77 should be about 2°C or higher, which is the solidification temperature of seawater. Therefore, no ice builds up inside the internal heat transfer tube 77.
空間81に入った低温の気化した天然ガスは、外伝熱管
78の外周面に接触し、内圧熱管77と外伝熱管78と
の間の空間92を流れる天然ガスによって徐々に昇温さ
れ、約−20℃となって連絡管80から空間82に入る
。空間82がらの天然ガスは内外の伝熱管77.78間
の空間92に流れ込み、外伝熱管78を介して低温の天
然ガスと熱交換し、また内圧熱管77を介して海水と熱
交換し、こうして徐々に温度が下り、空間92内の天然
ガスは、約−25℃前後まで下る。この空間92内に流
れる天然ガスは、内圧熱管77との海水と対向流で熱交
換するので、その内転熱管77内に着氷を生じることは
ない。The low-temperature vaporized natural gas that has entered the space 81 comes into contact with the outer circumferential surface of the external heat transfer tube 78 and is gradually heated by the natural gas flowing through the space 92 between the internal pressure heat tube 77 and the external heat transfer tube 78 to a temperature of about -20 ℃ and enters the space 82 from the connecting pipe 80. The natural gas in the space 82 flows into the space 92 between the inner and outer heat exchanger tubes 77 and 78, and exchanges heat with low-temperature natural gas through the outer heat exchanger tube 78 and with seawater through the internal pressure heat tube 77, thus The temperature of the natural gas in the space 92 gradually decreases to around -25°C. Since the natural gas flowing in this space 92 exchanges heat with the seawater in a counterflow with the internal pressure heat tube 77, no ice builds up inside the inner heat tube 77.
さらにまた海水を内転熱管77内に流しているので、停
電などの理由によって、海水の供給が途絶えたときには
、管路85からの液化天然ガスの供給を遮断し、入口側
水室69に設けた点検用の開孔部93から空気が流入し
、内転熱管77内の海水は、入口側水室67の下部に設
けられた排水弁94を介して排出される。こうして内転
熱管77内の海水は凍結しない。Furthermore, since seawater is flowing into the internal heat transfer pipe 77, when the supply of seawater is cut off due to a power outage or other reason, the supply of liquefied natural gas from the pipe line 85 is cut off, and the water chamber 69 on the inlet side is Air flows in through the opening 93 for inspection, and the seawater in the inner heat transfer tube 77 is discharged through a drain valve 94 provided at the lower part of the inlet water chamber 67. In this way, the seawater inside the inner heat transfer tube 77 does not freeze.
空間81において、内外伝熱管77.78間の空間92
からの天然ガスは管板74.75間の空間194から、
空間83における内外の伝熱管77.79間の空間91
に入り、さらに、空間86で昇温され管路87から常温
程度の天然ガスが排出される。空間83.81では、低
温の液体または気体の液化天然ガスに胴65が接触して
昇温するけれども、管板74.75間の空間194では
、気化した液化天然ガスに胴65が接触して、伸長し、
こうして胴65の熱応力を緩和するための伸縮管を必要
としない、また本発明では、内外の伝熱管77.78の
本数を少なくして、構成を簡略化することができるとと
もに、小形化が可能であリ、しかも保守が容易となる。In the space 81, a space 92 between the inner and outer heat exchanger tubes 77 and 78
Natural gas from the space 194 between the tube sheets 74, 75,
Space 91 between inner and outer heat exchanger tubes 77 and 79 in space 83
The natural gas is further heated in the space 86 and discharged from the pipe 87 at about room temperature. In the space 83.81, the shell 65 comes into contact with low-temperature liquid or gaseous liquefied natural gas and its temperature increases, but in the space 194 between the tube sheets 74.75, the shell 65 comes into contact with vaporized liquefied natural gas. , elongate,
In this way, there is no need for an expandable tube to relieve thermal stress in the shell 65, and in the present invention, the number of internal and external heat transfer tubes 77, 78 can be reduced, simplifying the configuration and reducing the size. This is possible, and maintenance is easy.
出口側水室69の上部には、紫外線の光源96が設けら
れ、これによって海生生物などの繁殖、付着を抑制する
ことができる。しかも運転停止中の待機時には、開孔部
93から空気が流入し、内転熱管77内の海水は入口側
水室67から排水弁94を経て排出されるので、光源か
らの紫外線が内転熱管77の下部まで行きわたり、これ
によって湿潤状態の内転熱管77の内面への海生生物の
付着成長を抑制することができる。光源96に反射板を
取付けて、紫外線がさらに行きわたるようにしてもよい
。まだ入口側水室67にストレーナ71を設けて、海水
に含まれているゴミなどの異物の流入を防止することが
できる。An ultraviolet light source 96 is provided at the upper part of the outlet side water chamber 69, thereby suppressing the breeding and adhesion of marine organisms and the like. Moreover, during standby when the operation is stopped, air flows in through the opening 93 and seawater in the inner heat tube 77 is discharged from the inlet side water chamber 67 through the drain valve 94, so that ultraviolet rays from the light source are absorbed into the inner heat tube. 77, thereby suppressing the adhesion and growth of marine organisms on the inner surface of the internal heat tube 77 in a moist state. A reflector may be attached to the light source 96 to further spread the ultraviolet rays. A strainer 71 may be provided in the water chamber 67 on the inlet side to prevent foreign matter such as dirt contained in the seawater from flowing into the seawater.
紫外線の光源96に代えて、電子線などを放射する手段
を設けてもよい。Instead of the ultraviolet light source 96, a means for emitting an electron beam or the like may be provided.
第3図は、本発明の他の実施例の縦断面図である。この
実施例は前述の第1図および第2図の実施例に類似し、
対応する部分には同一の参照符を付す。注目すべきはこ
の実施例では、前述の第5および第6管板74.75が
省略され、外伝熱管78.79が分断されずに、直管状
に延びる。このような実施例もまた本発明の精神に含ま
れる。FIG. 3 is a longitudinal sectional view of another embodiment of the invention. This embodiment is similar to the embodiments of FIGS. 1 and 2 described above;
Corresponding parts are given the same reference numerals. It should be noted that in this embodiment, the aforementioned fifth and sixth tube plates 74, 75 are omitted, and the external heat exchanger tubes 78, 79 are not divided and extend in a straight tube shape. Such embodiments are also within the spirit of the invention.
第4図は、本発明のさらに他の実施例の縦断面図である
。この気化装置100では、上下に延びる胴101の上
部に入OS水室102が第1管板103によって形成さ
れ、胴101の下部には出口側水室104が第2管板1
05によって形成される。第1管板103と第2管板1
05との間には、上下に間隔をあけて上がら下に順に第
3管板106、第4管板107および第5管板108が
それぞれ配置されて胴101に気密に固定される。FIG. 4 is a longitudinal sectional view of still another embodiment of the present invention. In this vaporizer 100, an inlet OS water chamber 102 is formed in the upper part of a vertically extending body 101 by a first tube plate 103, and an outlet side water chamber 104 is formed in the lower part of the body 101 in a second tube plate 103.
Formed by 05. First tube sheet 103 and second tube sheet 1
05, a third tube sheet 106, a fourth tube sheet 107, and a fifth tube sheet 108 are respectively arranged in order from top to bottom with an interval between the top and bottom, and are fixed to the shell 101 in an airtight manner.
内転熱管109は第1および第2管板1o3105管に
延び、入口側水室102と出口側水室104とを連通ず
る。The internal heat transfer tubes 109 extend to the first and second tube sheets 1o3105 tubes, and communicate the inlet side water chamber 102 and the outlet side water chamber 104.
第3および第4管板106.107間には第1外伝熱管
110が設けられる。この第1外伝熱管110は内転熱
管109を半径方向に間隔をあけて外囲する。第5管板
108には下方に延びる第2外伝熱管111が内転熱管
109を半径方向に間隔をあけて外囲して取付けられる
。この第2外伝熱管111−の下端部は第2管板105
との間に間隔dを有している。第3および第4管板10
6゜107間の空間112の上部と、第2および第5管
板105.108間の空間113の上部とは、連絡管1
14によって接続される。第3および第4管板106,
107間の空間112の下部には管路116から液体の
液化天然ガスが供給される入口が形成され、また第1お
よび第3管板103゜106間の空間117の上部には
気化した常温程度の液化天然ガスが管路118を経て排
出される出口が形成される。A first external heat exchanger tube 110 is provided between the third and fourth tube sheets 106 and 107. The first external heat transfer tubes 110 surround the internal heat transfer tubes 109 at intervals in the radial direction. A second outer heat transfer tube 111 extending downward is attached to the fifth tube plate 108 so as to surround the inner heat transfer tube 109 at intervals in the radial direction. The lower end of this second external heat transfer tube 111- is connected to the second tube plate 105.
There is a distance d between them. Third and fourth tube sheets 10
The upper part of the space 112 between 6° 107 and the upper part of the space 113 between the second and fifth tube sheets 105 and 108 are the connecting pipe 1
14. third and fourth tube sheets 106,
An inlet is formed in the lower part of the space 112 between the pipes 107 and liquefied natural gas is supplied from the pipe line 116, and in the upper part of the space 117 between the first and third tube sheets 103 and 106, vaporized gas at about room temperature is formed. An outlet is formed through which liquefied natural gas is discharged via line 118.
入口側水室102には管路119から熱源となる海水が
圧送され、出口側水室104からは管路120を介して
海水が排出される。Seawater serving as a heat source is pumped into the inlet water chamber 102 from a pipe 119, and seawater is discharged from the outlet water chamber 104 via a pipe 120.
管路116から供給される液化天然ガスは、空間112
において外伝熱管110に接触する。内転熱管109と
外伝熱管110との間の空間121には、気化した液化
天然ガスが流れており、ここで熱交換される。これによ
って管路114には、たとえば約−180℃の気化した
液化天然ガスが導かれる。管路114からの気化した液
化天然ガスは空間113において昇温され、気体の液化
天然ガスは間隔dを経て内転熱管109と外伝熱管11
1との間の空間122から上昇して、約−15℃のガス
となって、第4および第5管板107゜108間の空間
123に導かれる。この空間123では気化した液化天
然ガスが約−5℃まで昇温され、前述の空間121を通
り、ここで液体の液化天然ガスに熱を奪われて、空間1
21内のガスは、空間107に約−55℃で入る。空間
117では、気化した液化天然ガスが昇温され、管路1
18からは、0℃前後の常温程度で、昇温された気化し
た液化天然ガスが排出される。このような構成において
もまた、内転熱管109内における海水の着氷を防ぐこ
とができ、また上述のように常温程度の気化した液化天
然ガスを得ることができる。入口側水室102には紫外
線の光源124を設けて、海生生物の繁殖、付着、成長
などを防ぐ。The liquefied natural gas supplied from the pipe line 116 is
The external heat exchanger tube 110 is contacted at this point. Vaporized liquefied natural gas flows in the space 121 between the inner heat transfer tube 109 and the outer heat transfer tube 110, and heat is exchanged there. As a result, vaporized liquefied natural gas at about -180° C., for example, is introduced into the pipe line 114. The vaporized liquefied natural gas from the pipe line 114 is heated in the space 113, and the gaseous liquefied natural gas passes through the interval d to the inner heat transfer tube 109 and the outer heat transfer tube 11.
The gas rises from the space 122 between the fourth and fifth tube sheets 107 and 108, becomes a gas at about -15° C., and is introduced into the space 123 between the fourth and fifth tube sheets 107 and 108. In this space 123, the vaporized liquefied natural gas is heated to about -5°C, passes through the above-mentioned space 121, where the liquid liquefied natural gas absorbs heat, and the space 1
Gas within 21 enters space 107 at approximately -55°C. In the space 117, the temperature of the vaporized liquefied natural gas is raised, and the pipe 1
From 18, vaporized liquefied natural gas that has been heated to a room temperature of around 0° C. is discharged. In such a configuration, it is also possible to prevent seawater from icing in the internal heat tube 109, and to obtain vaporized liquefied natural gas at about room temperature as described above. An ultraviolet light source 124 is provided in the water chamber 102 on the entrance side to prevent breeding, adhesion, and growth of marine organisms.
第5図は、本発明の他の実施例の簡略化した断面図であ
る。第1図〜第4図に示される低温液化ガスの気化装W
130には、供給源131から液体の低温の液化天然ガ
スが管路132を経て圧送されて供給される。この管路
132の一部は立上り管133となっており、開閉弁1
34を介して液体の液化天然ガスが導かれる。管路13
2とその立上り管133との間には、側路135が設け
られ、ここに開閉弁または流量制御弁などの弁136が
介在される。立上り管133には、液体の液化天然ガス
の液面138を検出する液面検出手段137が設けられ
ており、制御手段139は液面検出手段137の出力に
応答して弁136を開閉制御し、これによって液面13
8が予め定める液位に保たれる。気化装置130が運転
を停止して待機している状態において、立上り菅133
内に液体の液化天然ガスを貯留しておくことによって、
その気化した液化天然ガスは待機中の気化装置130に
導かれ、気化装置130が低温度に冷却される。したが
って弁134を開いて供給源131から液体の液化天然
ガスを気化装置130に供給して気化する際に、その液
体の液化天然ガスが気化装fL30内において激しく沸
騰することを防ぐことができ、円滑な運転を再開するこ
とができる。FIG. 5 is a simplified cross-sectional view of another embodiment of the invention. Low-temperature liquefied gas vaporization equipment W shown in Figures 1 to 4
130 is supplied with liquid low-temperature liquefied natural gas from a supply source 131 through a pipe 132 under pressure. A part of this pipe line 132 is a riser pipe 133, and the on-off valve 1
Liquid liquefied natural gas is conducted via 34. Conduit 13
2 and its riser pipe 133, a side passage 135 is provided, and a valve 136 such as an on-off valve or a flow rate control valve is interposed therein. The riser 133 is provided with a liquid level detection means 137 for detecting a liquid level 138 of the liquid liquefied natural gas, and a control means 139 controls the opening and closing of the valve 136 in response to the output of the liquid level detection means 137. , this causes the liquid level 13
8 is maintained at a predetermined liquid level. When the vaporizer 130 is in a standby state after stopping operation, the riser tube 133
By storing liquefied natural gas inside the
The vaporized liquefied natural gas is guided to the waiting vaporizer 130, and the vaporizer 130 is cooled to a low temperature. Therefore, when the valve 134 is opened to supply liquid liquefied natural gas from the supply source 131 to the vaporizer 130 for vaporization, it is possible to prevent the liquid liquefied natural gas from boiling violently in the vaporizer fL30. Smooth operation can be resumed.
発明の効果
以上のように本発明によれば、海水が通される内伝熱管
に着氷することを防止することができ、また構成が簡略
化されて保守が容易であり、また小形化され、さらに、
待機状態において低温液化ガスまたは熱源用液体を流す
必要がなく、しかも、常温または常温に近い温度の気化
した低温液化ガスを得ることができ、さらにまた胴およ
び内外の伝熱管に過度の大きな熱応力が作用することが
ないEffects of the Invention As described above, according to the present invention, it is possible to prevent ice from forming on the inner heat exchanger tube through which seawater is passed, and the structure is simplified and maintenance is easy, and the tube is downsized. ,moreover,
There is no need to flow low-temperature liquefied gas or heat source liquid in the standby state, and it is possible to obtain vaporized low-temperature liquefied gas at room temperature or close to room temperature, and it also avoids excessively large thermal stress on the shell and inner and outer heat exchanger tubes. never acts
第1図は本発明の一実施例の縦断面図、第2図は第1図
に示される実施例の温度分布を示す図、第3図は本発明
の他の実施例の縦断面図、第4図は本発明のさらに他の
実施例の縦断面図、第5図は本発明の他の実施例の断面
図、第6区は先行技術の断面図、第7図は他の先行技術
の断面図、第8図はさらに他の先行技術の断面図、第9
図はさらに他の先行技術の断面図、第■0図は第9図に
示された先行技術の切断面線X−Xから見た断面図、第
11図はさらに他の先行技術の断面図である。FIG. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, FIG. 2 is a diagram showing the temperature distribution of the embodiment shown in FIG. 1, and FIG. 3 is a longitudinal cross-sectional view of another embodiment of the present invention. FIG. 4 is a longitudinal sectional view of yet another embodiment of the present invention, FIG. 5 is a sectional view of another embodiment of the invention, Section 6 is a sectional view of the prior art, and FIG. 7 is another prior art. FIG. 8 is a sectional view of another prior art, FIG. 9 is a sectional view of another prior art.
The figure is a cross-sectional view of still another prior art, Figure 0 is a cross-sectional view of the prior art as seen from the section line X-X shown in Figure 9, and Figure 11 is a cross-sectional view of still another prior art. It is.
Claims (5)
に出口側水室を形成する第2管板と、第1管板と第2管
板との間で上下に間隔をあけてそれぞれ配置される第3
および第4管板と、第1および第2管板間に延び、入口
側水室と出口側水室とを連通する内伝熱管と、 第3および第4管板間に延び、内伝熱管を半径方向に間
隔をあけて外囲する外伝熱管とを含み、第3および第4
管板間の空間の上部と、第2および第3管板間の空間と
を連通する流路を形成し、第3および第4管板間の空間
の下部に、液体の低温液化ガスの入口を設け、 第1および第4管板間の空間の下部にガス出口を設ける
ことを特徴とする低温液化ガスの気化装置。(1) A body extending vertically, a first tube plate forming an inlet side water chamber in the lower part of the body, a second tube plate forming an outlet side water chamber in the upper part of the body, and a first tube plate and a second tube plate forming an outlet side water chamber in the upper part of the body. The third tube plate is arranged vertically and spaced apart from the tube sheet.
and a fourth tube sheet, an inner heat exchanger tube extending between the first and second tube sheets and communicating the inlet side water chamber and the outlet side water chamber, and an inner heat exchanger tube extending between the third and fourth tube sheets. and a third and fourth outer heat exchanger tube surrounding the outer heat exchanger tube at a radial interval.
A flow path is formed that communicates the upper part of the space between the tube sheets with the space between the second and third tube sheets, and the lower part of the space between the third and fourth tube sheets is provided with an inlet for liquid low-temperature liquefied gas. A low-temperature liquefied gas vaporization device, characterized in that the gas outlet is provided at a lower part of the space between the first and fourth tube sheets.
5および第6管板を設け、これらの第5および第6管板
に、前記外伝熱管の上下に分断した端部を設けることを
特徴とする特許請求の範囲第1項記載の低温液化ガスの
気化装置。(2) Fifth and sixth tube sheets are provided vertically spaced apart between the third and fourth tube sheets, and the ends of the external heat exchanger tubes are divided vertically into the fifth and sixth tube sheets. 2. A low-temperature liquefied gas vaporization device according to claim 1, further comprising:
とする特許請求の範囲第1項記載の低温液化ガスの気化
装置。(3) The low-temperature liquefied gas vaporization device according to claim 1, characterized in that an ultraviolet light source is provided in the water chamber on the outlet side.
に出口側水室を形成する第2管板と、第1管板と第2管
板との間に上下に間隔をあけて上から下に順にそれぞれ
配置される第3、第4および第5管板と、 第1および第2管板間に延び、入口側水室と出口側水室
とを連通する内伝熱管と、 第3および第5管板間に延び、内伝熱管を半径方向に間
隔をあけて外囲する第1外伝熱管と、第5管板から下方
に延び、第2管板との間に上下の間隔を有し、内伝熱管
を半径方向に間隔をあけて外囲する第2外伝熱管とを含
み、 第3および第4管板間の空間の上部と、第2および第5
管板間の空間の上部とを連通する通路を形成し、 第3および第4管板間の空間の下部に、液体の低温液化
ガスの入口を設け、 第1および第3管板間の空間の上部に、ガス出口を設け
ることを特徴とする低温液化ガスの気化装置。(4) A body extending vertically, a first tube plate forming an inlet side water chamber in the upper part of the body, a second tube plate forming an outlet side water chamber in the lower part of the body, the first tube plate and the second tube plate forming an outlet side water chamber in the lower part of the body. third, fourth, and fifth tube sheets arranged in order from top to bottom with vertical intervals between the tube sheets; and an inlet water chamber and an outlet extending between the first and second tube sheets. an inner heat exchanger tube that communicates with the side water chamber; a first outer heat exchanger tube that extends between the third and fifth tube sheets and surrounds the inner heat exchanger tube at intervals in the radial direction; and a first outer heat exchanger tube that extends downward from the fifth tube sheet. a second outer heat transfer tube extending from the second tube sheet and having a vertical interval therebetween and surrounding the inner heat transfer tube with a radial interval therebetween; the upper part and the second and fifth
forming a passage communicating with the upper part of the space between the tube sheets, and providing an inlet for liquid low-temperature liquefied gas at the lower part of the space between the third and fourth tube sheets, the space between the first and third tube sheets; A vaporizer for low-temperature liquefied gas, characterized in that a gas outlet is provided at the top of the liquefied gas.
の低温液化ガスを圧送する低温液化ガス供給源との間に
、立上り管を介在し、 この立上り管内に液面が保たれるように、前記供給源か
らの低温液化ガスを立上り管に供給する手段を設け、こ
れによつて待機中の気化装置に、気化した低温液化ガス
を供給して気化装置を冷却することを特徴とする低温液
化ガスの気化装置のための冷却装置。(5) A riser is interposed between the low-temperature liquefied gas vaporizer and the low-temperature liquefied gas supply source that pumps the liquid low-temperature liquefied gas to the vaporizer, so that the liquid level is maintained within the riser. The method is characterized in that means is provided for supplying the low-temperature liquefied gas from the supply source to the riser pipe, thereby supplying the vaporized low-temperature liquefied gas to the standby vaporizer to cool the vaporizer. Cooling device for low temperature liquefied gas vaporization equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3273690A JPH07117196B2 (en) | 1990-02-13 | 1990-02-13 | Low temperature liquefied gas vaporizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3273690A JPH07117196B2 (en) | 1990-02-13 | 1990-02-13 | Low temperature liquefied gas vaporizer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03239897A true JPH03239897A (en) | 1991-10-25 |
JPH07117196B2 JPH07117196B2 (en) | 1995-12-18 |
Family
ID=12367123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3273690A Expired - Lifetime JPH07117196B2 (en) | 1990-02-13 | 1990-02-13 | Low temperature liquefied gas vaporizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07117196B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010000687A (en) * | 2000-10-13 | 2001-01-05 | 최동준 | Liquefied-gas vaporizer using cooling water by waste heating |
JP2016035221A (en) * | 2014-08-01 | 2016-03-17 | 大阪瓦斯株式会社 | Liquefied natural gas cold heat utilization equipment |
-
1990
- 1990-02-13 JP JP3273690A patent/JPH07117196B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010000687A (en) * | 2000-10-13 | 2001-01-05 | 최동준 | Liquefied-gas vaporizer using cooling water by waste heating |
JP2016035221A (en) * | 2014-08-01 | 2016-03-17 | 大阪瓦斯株式会社 | Liquefied natural gas cold heat utilization equipment |
Also Published As
Publication number | Publication date |
---|---|
JPH07117196B2 (en) | 1995-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2521182C2 (en) | Cooling tower arrangement and indirect dry cooling method | |
CN103261827B (en) | Heat exchanger | |
US20090065181A1 (en) | System and method for heat exchanger fluid handling with atmospheric tower | |
JPS60259877A (en) | Refrigerant suction accumulator | |
TW202242334A (en) | Evaporator | |
JPH03239897A (en) | Vaporizer device of low-temperature liquefied gas | |
JPH0648146B2 (en) | Double pipe type open rack type vaporizer | |
JP2741935B2 (en) | Low temperature liquefied gas vaporizer | |
JP2668484B2 (en) | Liquefied natural gas vaporizer | |
JPH07159063A (en) | Double-pipe open-rack vaporizer | |
CN213119737U (en) | Flux-adjustable liquefied natural gas precooling device | |
JPH07332879A (en) | Double ktube open rack type vaporizer | |
US2399916A (en) | Refrigeration | |
US2016587A (en) | Condenser unit | |
CN113790615B (en) | Volumetric heat exchanger applied to steam-water heat exchange secondary pressure equalizing | |
CN212778751U (en) | Energy recovery device | |
JPS62145659A (en) | Cooler for fuel cell | |
KR20110072609A (en) | Water purifier | |
US20120037347A1 (en) | Method of controlling tube temperatures to prevent freezing of fluids in cross counterflow shell and tube heat exchanger | |
SU1168773A1 (en) | Steam-liquid heat exchanger | |
US3678994A (en) | Novel condenser | |
JPS5827206Y2 (en) | Steam boiler with thermal efficiency improvement device | |
CN117663833A (en) | Heat exchange device and heat exchange system | |
JPH09196528A (en) | Heat exchanger for high-efficiency cooling | |
JPH0237558B2 (en) |