JPS621445B2 - - Google Patents

Info

Publication number
JPS621445B2
JPS621445B2 JP9171882A JP9171882A JPS621445B2 JP S621445 B2 JPS621445 B2 JP S621445B2 JP 9171882 A JP9171882 A JP 9171882A JP 9171882 A JP9171882 A JP 9171882A JP S621445 B2 JPS621445 B2 JP S621445B2
Authority
JP
Japan
Prior art keywords
slag
blowing
powder
forming agent
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9171882A
Other languages
Japanese (ja)
Other versions
JPS58207315A (en
Inventor
Hideo Nakajima
Shozo Okamura
Takeyuki Hirata
Masaharu Anezaki
Seiichi Masuda
Tooru Matsuo
Yoshimichi Ookita
Tateo Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9171882A priority Critical patent/JPS58207315A/en
Publication of JPS58207315A publication Critical patent/JPS58207315A/en
Publication of JPS621445B2 publication Critical patent/JPS621445B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸素上吹き製鋼法を用いて鋼を溶製す
る方法に関する。 酸素上吹き製鋼法において溶鉄(溶銑又は溶
鋼)へ造滓剤を添加する場合、副原料である生石
灰、石灰石、蛍石、ドロマイト等を粉体にして単
に添加すると、炉内反応により発生する一酸化炭
素ガス等の圧力によつて飛散するので、これを防
止するために塊状のまま投入して添加するのが普
通である。 このような製鋼法においては、通常、脱珪期前
後にスロツピングが発生しやすい。この傾向は、
生産性を向上させるために行う高速吹錬において
特に顕著である。その理由は、生石灰、石灰石の
主成分が高融点(2570℃)の酸化カルシウム
(CaO)であるので、これらを脱珪期に完全溶解
させ、滓化を促進させることが困難であるからで
あり、またこれらを大量に投入しても脱珪期終了
時におけるスラグ塩基度が1.5〜1.6程度の極めて
起泡性が大きいスラグが生成するからである。更
に脱珪が終了した後、脱炭反応によりガス発生量
が急激に増大することも、スロツピングの発生を
助長する。 これに対処する方法として、不活性ガス、酸素
ガス、二酸化炭素ガス、窒素ガス、プロパンガス
等の攪拌用ガスを浴面下へ吹き込み、スラグーメ
タル反応を均一に進行させ、急激なガス発生を防
止することが行われるが、吹錬の高速化に伴うス
ロツピングの発生を十分に抑制することは困難で
ある。 また造滓剤を塊状のまま添加する場合には、吹
錬末期の滓化が不安定となり、吹錬終点における
溶鋼中の燐濃度〔P〕が一定せず、成分外れによ
る品質の低下、再吹錬の実施による生産性の低
下、合金鉄及び媒溶剤の消費量の増加等の問題点
が生じる。 これに対し、例えば本願出願人が特開昭56−
9311号において提案したように、造滓剤のうちの
1種の粉体又は2種以上を混合した粉体を上吹き
酸素気流へ混入して溶鉄へ添加し、且つ、酸素上
吹きによる吹錬操作の期間中又はそれに続く吹錬
終了後の排出期間まで、不活性ガス、窒素ガス、
酸素ガス等の攪拌用ガスを浴面下へ吹き込む精錬
法があるが、この方法は優れた精錬特性を有す
る。 然るにこの方法も、生石灰等の粉体の添加速度
によつては、脱珪期終了前後にスラグ塩基度が
1.5〜1.6となつてスロツピングが発生したり、粉
体の添加を吹錬中途で完了してしまうと吹錬後期
の鋼浴温度の上昇と共にスラグより鋼浴への復燐
が起こり、吹錬終点における溶鋼中の燐濃度
〔P〕が一定しない等の問題点が生じる。更に添
加する造滓剤の全量を粉体として添加する場合
は、造滓剤を粉体にするための粉砕コストが大き
いという問題点もある。 本発明は、このような問題点を解決するために
なされたものであり、脱珪期終了前後のスロツピ
ングの発生を防止し、吹錬後期の鋼浴温度の上昇
に伴う復燐を防止し、吹錬末期の滓化を安定させ
ることにより、吹錬の安定化、成品鋼の品質の向
上及び原料歩留りの向上を図ることを目的とし、
更に造滓剤の粉体を上吹きするために必要な粉体
造滓剤を得るための造滓剤の粉砕費用の低減を図
ることを目的とする。 本発明に係る製鋼法は、浴面下への攪拌用ガス
吹込みを伴う酸素上吹き製鋼法において、生石
灰、石灰石、ドロマイト等の1種又は2種以上を
含む造滓剤と、必要によりマンガン鉱石及び/又
は酸化鉄を、全添加量の70%以下は塊状にて溶鉄
へ投入し、残部は粉体状にて上吹き酸素気流へ混
入して溶鉄へ添加することとし、脱珪期終了迄に
粉体状での造滓剤添加によりスラグ塩基度を2以
上となし、吹錬終了の少なくと2分前から吹錬終
了迄の間には粉体状での造滓剤添加を行うことを
特徴とする。 以下本発明の実施例を示す図面に基づいて詳細
に説明する。第1図は本発明の実施状態を示す模
式的縦断面図、第2図は本発明の実施に使用する
上吹き酸素ランスのノズルヘツド部の構成を示す
縦断面図、第3図は同じく底面図である。 CVは転炉であつて、該転炉CV内へは、高炉か
ら出銑された溶銑が溶銑予備処理を施された後に
装入され、該溶銑に対して炉口CV1から挿入され
る上吹き酸素ランスLにより吹錬用酸素ガスが吹
き込まれ、転炉吹錬が行われる。更に該上吹き酸
素ランスLは、後に詳述するように、前記吹錬用
酸素ガスと共に粉体造滓剤を吹き込むためにも用
いられる。 転炉CVの上方には、吹錬中に炉内で発生する
排ガスを回収してこれを排ガス処理設備(図示せ
ず)へ案内するための排ガス回収フードHが、そ
の開口部を炉口CV1の上方に位置させるように設
置されている。この排ガス回収フードHの適宜位
置には、副原料投入シユートSが設けられてお
り、該シユートSからは造滓剤が塊状のまま転炉
CV内へ投入添加される。 前記上吹き酸素ランスLは、ノズルヘツド部A
というランス本体Bとから構成されており、この
ノズルヘツド部Aの内部は同心的に配設された円
筒壁1,2,3,4によつて粉体供給路11、酸
素供給路12、冷却水供給路13、冷却水排水路
14が同心的にノズルヘツド部の中心側から外周
側にこの順序で形成されている。ノズルヘツド部
Aの下面はその中央部に開口する中央部ノズル1
5及び該中央部ノズル15の同心円上に相互に等
角度隔てられて開口する3個の周辺部ノズル16
を除いて閉鎖されており、前記粉体供給路11の
下端は中央部ノズル15に、また酸素供給路12
の下端は各周辺部ノズル16に夫々連通され、ま
た冷却水供給路13と、冷却水排出路14との下
端はノズルヘツド部A内に形成した円筒壁3下方
における連通路17によつて相互に連通されてい
る。ノズルヘツド部Aの各円筒壁1〜4の上端部
はランス本体Bを構成する前記各円筒壁1〜4と
同径であつて、且つ同心的に配設された内管5、
中管6、仕切管7、外管8の各下端に連結されて
いる。そして図面には示していないが内管5の上
端は生石灰、石灰石、蛍石、ドロマイト等の造滓
剤のうちの1種の粉体又は2種以上を混合した粉
体(以下単に粉体という)と、必要によりマンガ
ン鉱石、酸化鉄の1種又は2種以上を貯留するタ
ンク及び酸素ガス、不活性ガス(アルゴンガス
等)、窒素ガス、水蒸気等のキヤリアガス用のタ
ンクに接続されており、前記粉体は酸素ガス、不
活性ガス等のキヤリアガスに伴われて内管5、円
筒壁1内に形成された粉体供給路11内を経て中
央部ノズル15に導かれる。また中管6の上端は
酸素タンク(図示せず)に連結されており、中管
6と内管5との間及び円筒壁1と2との間に形成
される酸素供給路12を経て各周辺部ノズル16
に導かれる。仕切管7の上端は給水タンク(図示
せず)に、また外管8の上端は排水溜(図示せ
ず)に夫々接続されており、中管6と仕切管7と
の間及び円筒壁2と3との間に形成される冷却水
供給路13を通じてその下端の連通路17に達
し、この連通路17を経て円筒壁3と4との間及
び外管8と仕切管7との間に形成される冷却水排
出路14を経て排水され、ノズルヘツド部A及び
ランス本体Bを冷却するようになつている。 中央部ノズル15は粉体供給路11下端に連な
る導入部15a及び該導入部15a下端に連なる
スロート部たる円筒部15bを粉体供給路11の
軸心線と同心的に形成して構成されている。導入
部15aは粉体供給路11下端から下方、すなわ
ち噴射口側に行くに従つて緩く縮径されて内周壁
が逆円錐台形をなすよう形成され、また円筒部1
5bは導入部15a下端と同径であつて、その下
端は噴射口としてノズルヘツド部Aの下底面に開
口しており、粉体供給路11内をキヤリアガスに
伴われて給送されてきた前記粉体は導入部15
a、円筒部15bを経て加圧され、加圧されて円
筒部15bの延長上に真直ぐ噴射される。 粉体供給路11の軸心線に対する導入部15
a、周壁の傾斜角α、導入部15aの軸長方向の
長さl1、並びに円筒部15bの直径d、円筒部1
5bの軸長方向の長さl2については特に限定する
ものではないが、導入部5a周壁の傾斜角αは余
り大きいと前記粉体に対する抵抗、換言すれば前
記粉体より受ける研削作用の影響が大きくなるた
め必要な粉体速度が得られる範囲内で可及的に小
さくするのが望ましい。 また周辺部ノズル16は酸素供給路12の下端
に連なるスロート部たる円筒部16a及びこの円
筒部16aに連なる末広部16bによつて構成さ
れている。円筒部16aは酸素供給路12下端の
U字形遮閉壁の内底部から、下端側が中央部ノズ
ル15の軸心線に向けて接近又は離反するよう斜
め下向きに角度θで傾斜して形成されており、ま
た末広部16bは上端側から下端側に向うに従つ
て緩やかに拡径して形成され、その軸心線は円筒
部16aの軸心線と同一直線上にあつて、下端側
が中央部ノズル15の軸心線側に接近又は離反す
る向きに角度θで傾斜して形成されており、末広
部16bの粉体供給路11側の周壁は中央部ノズ
ル15の軸心線に対し、これに接近する向きに角
度θで傾斜し、また反対側の周壁は中央部ノズ
ル15の軸心線から離反する向きに角度θで傾
斜しており、酸素供給路12内を給送されてきた
酸素ガスは、円筒部16a、末広部16bを経て
加圧され、加速されて末広部16bの延長線上に
噴射される。 このように構成された上吹き酸素ランスLは、
第1図に示すように、その先端位置が転炉CV内
の溶鉄(予備処理後、転炉CV内へ装入された溶
銑又は精錬されつつある溶鋼)の湯面に対して所
要高さとなるように挿入される。そして前記ラン
スLの中央部ノズル15からキヤリアガスに伴わ
れて噴射される粉体と、その周辺部ノズル16か
ら噴射される酸素ガスとは、相互の流束が前記溶
鉄の湯面又は火点において交叉するように噴射さ
れ、その結果、前記粉体は散乱されることなく浴
中へ誘導される。このように前記粉体を上吹き酸
素気流へ混入して溶鉄へ添加する理由は上吹き酸
素気流中に混濁する前記粉体が直接火点へ供給さ
れ、急速に滓化され、任意の時点でスラグの塩基
度を制御することができ、また前記粉体が酸素と
共に溶鉄中に突入した後、浮上する過程において
直接脱燐が進行し、浮上後の急速滓化と相俟つて
脱燐脱硫が円滑に行われるからである。なお上吹
き酸素ランスとして通常のランスを用いて吹錬用
酸素気流中に前記粉体を混入させる方法も可能で
あるが、この方法によれば高圧酸素ガス用配管内
に前記粉体を供給する装置が必要となり、設備費
が増大して好ましくない上、粉体によるラバール
ノズルの損耗が激しくランス寿命が短いという難
点がある。 前記転炉CVには、その炉底又は側壁に単数又
は複数の(第1図においては炉底に2個の)羽口
Nが設けられており、該羽口Nからは不活性ガス
(アルゴンガス等)、窒素ガス、酸素ガス、一酸化
炭素ガス、二酸化炭素ガス等のうちの1種又は2
種以上が0〜0.5Nm3/分・Tの吹込み量にて吹
き込まれる。この吹込み量を0〜0.5Nm3/分・
Tとしたのは、それが0.5Nm3/分・Tを越える
と中高炭域におけるスラグ中の酸化鉄濃度
(FeO)が急激に減少し、前記粉体(例えば粉状
石灰)を上吹き酸素気流へ混合して添加しても中
高炭素鋼の脱燐が十分行われないからである。 さて上述したように転炉吹錬を実施する場合に
おいて、造滓剤を溶鉄へ添加する条件は、吹錬開
始から脱珪終了迄にスラグ塩基度が2以上となる
ように、且つ、吹錬終了の少なくとも2分前から
吹錬終了迄の間、粉体状での造滓剤添加を行うこ
ととする。 このように脱珪期終了迄にスラグ塩基度が2以
上となるようにすることを条件とするのは、脱珪
期終了前後に発生するスロツピングを防止し、鉄
分等の損失を防止すると共に操業の安定化を図る
ためである。即ち、脱珪期終了前後から脱炭反応
によるガス発生が著しくなるが、その時点までに
スラグ塩基度が2以上としておくと、スラグの起
泡性が小さく、スラグのガスによる膨張が抑えら
れてスロツピングの発生が防止されるからであ
る。なお、本発明にあつては、前記粉体を上吹き
酸素気流へ混入し、これを直接火点へ供給するこ
ととしているので、供給した時点における滓化率
は略100%となり、容易にスラグ塩基度を制御す
ることができ、脱珪期終了時までにスラグ塩基度
を効率的に2以上とすることができる。因みに、
第4図は、横軸に溶鋼中の炭素濃度〔C〕を、縦
軸に滓化率をとり、造滓剤の添加方法を変化させ
た場合の滓化率の比較結果を示すグラフである。
図中、イは浴面下への攪拌用ガス吹込み(底吹き
ガス:アルゴンガス、吹込み量:0.1Nm3/分・
T)を行いつつ造滓剤の粉体を上吹きする方法、
ロは同じく浴面下への攪拌用ガス吹込みを行いつ
つ造滓剤を塊状のまま添加する方法、またハは浴
面下への攪拌用ガス吹込みを行わずに造滓剤を塊
状のまま添加する方法を夫々示すが、本発明に係
るイの場合の滓化率は、前述した如く略100%と
なつており、極めて優れていることが分かる。 また吹錬終了の少なくとも2分前から再度前記
粉体を上吹き酸素気流へ混入して添加することを
条件とするのは、吹錬末期の滓化を安定させ、吹
錬終点における溶鋼中の燐濃度〔P〕を安定させ
ると共に、中高炭素鋼溶製時に吹錬末期の鋼浴温
度上昇に伴つて進行する、スラグからの鋼浴への
復燐を防止し、中高炭素領域での脱燐を安定させ
るためである。即ち、吹錬終了の2分以上前に前
記粉体の添加を停止すると、鋼浴温度の上昇に伴
つてスラグから鋼浴への復燐現象が起こり、また
粉体の再吹込みを、吹錬終了前2分以降の時点か
ら開始しても造滓剤添加による十分な脱燐効果が
得られないから、吹錬終了の少なくとも2分前か
ら再度前記粉体を上吹き酸素気流へ混入して添加
することとしたのである。 叙上の如き吹錬を行うことにより、脱珪期終了
前後のスロツピングの発生を防止し、吹錬後期の
鋼浴温度の上昇に伴う後燐を防止し、吹錬末期の
滓化を安定させることができる。 また前記粉体を上述した条件を満足するように
添加することができれば、造滓剤はその一部を塊
状のまま投入して添加してもよい。塊状のまま添
加し得る量は、目標とする溶鋼中の燐濃度〔P〕
のレベルによつても異なるが、本願発明者らの数
多くの実験によれば、通常の終点〔P〕レベル
(〔P〕0.020%)の鋼種については、造滓剤の
全添加量の70%までは塊状のまま添加することが
可能である。そしてこのように造滓剤を相当量ま
で塊状のまま添加することにより、造滓剤を粉状
にするための粉砕コストを低減することができ
る。 次に本発明方法の実施例について説明する。内
径が12.7mmφの底吹ノズルを有する羽口を2個備
えた15トン純酸素上吹き転炉にて、第2図及び第
3図において説明したのと同様の上吹き酸素ラン
ス(周辺部ノズルの内径はスロート部において14
mmφ、中央部ノズルの内径は16mmφ)を用いて転
炉吹錬を行つた。第1表は造滓剤添加条件を、第
2表は溶銑条件を夫々示す。条件は本発明に係
るもの、条件は吹錬末期の粉体造滓剤の添加時
期をずらしたもの、条件は造滓剤の70%以上を
塊状のまま添加したもの(従つて脱珪期終了迄に
スラグ塩基度を2以上に確保すること及び吹錬末
期の脱燐制御を行うことはできない。)、また条件
は造滓剤のコスト、特にその粉砕コストを考慮
せずに吹錬全期に亘つて粉体造滓剤のみ添加した
もの(脱珪期終了迄は粉体吹込み条件は、スラグ
塩基度が2以上となるように吹いた。)である。
なお、いずれの場合も、上吹き酸素流量は2200N
m3/時、粉体のキヤリアガス流量は200Nm3
時、底吹きガス(アルゴンガス)流量は200N
m3/時、またランス湯面間距離は1000mmの条件の
下に実施した。更に主原料はいずれの場合も溶
銑:15T及びスクラツプ:3Tである。その吹錬
結果を第3表に示すが、この表より、本発明よる
場合は、条件を除く他の条件の場合に比し、ス
ロツピングの発生及び終点における溶鋼中の燐濃
度〔P〕のいずれに関しても優れた結果を示して
いることが分かる。また本発明による場合は条件
の場合に比しても、これに匹敵する結果を示し
ており、造滓剤の粉砕コスト等を考慮すれば本発
明による場合の方が優れているといえる。 以上詳述したように本発明にあつては、酸素上
吹き製鋼法を用いて鋼を溶製する方法において、
粉体造滓剤を所定条件の下に上吹き酸素気流へ混
入して溶銑へ添加すると共に、造滓剤全添加量の
70%以下を塊状のまま添加することとしているの
で、脱珪終了前後のスロツピングの発生を防止
し、吹錬後期の鋼浴温度の上昇に伴う復燐を防止
し、吹錬末期の滓化を安定させることができ、吹
錬の安定化、成品鋼の品質向上及び原料歩留りの
向上を図ることができると共に、粉体造滓剤を得
るために必要な造滓剤の粉砕費用の低減も図るこ
とができる等、本発明は鋼を溶製する上で優れた
The present invention relates to a method for producing steel using an oxygen top-blown steelmaking method. When adding a slag-forming agent to molten iron (molten pig iron or molten steel) in the oxygen top-blown steelmaking process, simply adding the auxiliary raw materials such as quicklime, limestone, fluorite, and dolomite in powder form will cause the slag to be generated by reactions in the furnace. Since it scatters due to the pressure of carbon oxide gas, etc., to prevent this, it is usually added in the form of a lump. In such steel manufacturing methods, sloping usually tends to occur before and after the desiliconization stage. This trend is
This is particularly noticeable in high-speed blowing, which is performed to improve productivity. The reason for this is that the main component of quicklime and limestone is calcium oxide (CaO), which has a high melting point (2570°C), so it is difficult to completely dissolve them during the desiliconization stage and promote slag formation. Moreover, even if a large amount of these is added, a highly foamable slag with a slag basicity of about 1.5 to 1.6 at the end of the desiliconization period is produced. Furthermore, after the desiliconization is completed, the amount of gas generated rapidly increases due to the decarburization reaction, which also promotes the occurrence of slopping. To deal with this, a stirring gas such as inert gas, oxygen gas, carbon dioxide gas, nitrogen gas, propane gas, etc. is blown below the bath surface to allow the slag metal reaction to proceed uniformly and prevent rapid gas generation. However, it is difficult to sufficiently suppress the occurrence of slopping caused by high-speed blowing. Furthermore, if the slag-forming agent is added in the form of lumps, the slag formation at the end of blowing will become unstable, and the phosphorus concentration [P] in the molten steel at the end of blowing will not be constant. Problems such as a decrease in productivity and an increase in consumption of ferroalloy and solvent arise due to the implementation of blowing. On the other hand, for example, the applicant of the present application
As proposed in No. 9311, a powder of one type of slag-forming agent or a powder of a mixture of two or more types of slag-forming agents is mixed into a top-blown oxygen stream and added to molten iron, and the blowing is performed by top-blowing with oxygen. During the period of operation or until the subsequent discharge period after completion of blowing, inert gas, nitrogen gas,
There is a refining method in which a stirring gas such as oxygen gas is blown below the bath surface, and this method has excellent refining properties. However, with this method, depending on the addition rate of powder such as quicklime, the slag basicity may change before or after the end of the desiliconization period.
1.5 to 1.6 and slopping occurs, or if the addition of powder is completed in the middle of blowing, as the steel bath temperature rises in the later stages of blowing, rephosphorization from the slag to the steel bath will occur, causing the end point of blowing to occur. Problems arise such as the phosphorus concentration [P] in the molten steel being inconsistent. Furthermore, if the entire amount of the slag forming agent is added as a powder, there is also the problem that the cost of pulverizing the slag forming agent into powder is high. The present invention was made to solve these problems, and it prevents the occurrence of sloping before and after the end of the desiliconization period, prevents rephosphorization due to the rise in steel bath temperature in the late blowing period, and By stabilizing slag formation at the final stage of blowing, the aim is to stabilize blowing, improve the quality of finished steel, and improve raw material yield.
Furthermore, it is an object of the present invention to reduce the cost of crushing a slag-forming agent to obtain a powdered slag-forming agent necessary for top-blowing the powder of the slag-forming agent. The steel manufacturing method according to the present invention is an oxygen top-blown steel manufacturing method that involves blowing stirring gas below the bath surface, and a slag-forming agent containing one or more of quicklime, limestone, dolomite, etc. and, if necessary, manganese. Less than 70% of the total addition amount of ore and/or iron oxide is added to the molten iron in the form of lumps, and the rest is mixed into the top-blown oxygen stream in the form of powder and added to the molten iron, and the desiliconization period is completed. By this time, the basicity of the slag is set to 2 or more by adding a slag-forming agent in powder form, and the slag-forming agent is added in powder form at least 2 minutes before the end of blowing until the end of blowing. It is characterized by DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 is a schematic vertical cross-sectional view showing the implementation state of the present invention, FIG. 2 is a vertical cross-sectional view showing the configuration of the nozzle head of a top-blowing oxygen lance used in the implementation of the present invention, and FIG. 3 is a bottom view of the same. It is. CV is a converter, and hot metal tapped from the blast furnace is charged into the converter CV after being subjected to hot metal preliminary treatment. Oxygen gas for blowing is blown by the blowing oxygen lance L, and converter blowing is performed. Further, the top-blowing oxygen lance L is also used to blow a powder slag forming agent together with the blowing oxygen gas, as will be described in detail later. Above the converter CV, there is an exhaust gas recovery hood H that collects exhaust gas generated in the furnace during blowing and guides it to exhaust gas treatment equipment (not shown). It is placed above 1 . An auxiliary raw material inputting chute S is provided at an appropriate position of this exhaust gas recovery hood H, and the slag-forming agent is fed into the converter furnace in the form of lumps from the chute S.
Added to CV. The top-blown oxygen lance L is located at the nozzle head portion A.
The interior of the nozzle head part A includes a powder supply passage 11, an oxygen supply passage 12, and a cooling water supply passage through cylindrical walls 1, 2, 3, and 4 arranged concentrically. A supply passage 13 and a cooling water drainage passage 14 are formed concentrically in this order from the center side to the outer circumferential side of the nozzle head portion. The lower surface of the nozzle head part A has a central nozzle 1 that opens at its center.
5 and three peripheral nozzles 16 that are opened on a concentric circle of the central nozzle 15 and spaced apart from each other at equal angles.
The lower end of the powder supply path 11 is connected to the central nozzle 15, and the oxygen supply path 12 is closed.
The lower ends of the cooling water supply passage 13 and the cooling water discharge passage 14 are connected to each other by a communication passage 17 below the cylindrical wall 3 formed in the nozzle head portion A. It is communicated. The upper end of each of the cylindrical walls 1 to 4 of the nozzle head part A has the same diameter as each of the cylindrical walls 1 to 4 constituting the lance body B, and an inner tube 5 disposed concentrically;
It is connected to the lower ends of the inner tube 6, the partition tube 7, and the outer tube 8. Although not shown in the drawing, the upper end of the inner tube 5 is made of powder of one type of sludge-forming agent such as quicklime, limestone, fluorite, and dolomite, or a powder of a mixture of two or more of them (hereinafter simply referred to as powder). ), and if necessary, connected to a tank for storing one or more types of manganese ore and iron oxide, and a tank for carrier gas such as oxygen gas, inert gas (argon gas, etc.), nitrogen gas, water vapor, etc. The powder is guided to the central nozzle 15 through the inner tube 5 and the powder supply passage 11 formed in the cylindrical wall 1, accompanied by a carrier gas such as oxygen gas or inert gas. The upper end of the middle pipe 6 is connected to an oxygen tank (not shown), and each Peripheral nozzle 16
guided by. The upper end of the partition pipe 7 is connected to a water supply tank (not shown), and the upper end of the outer pipe 8 is connected to a drainage basin (not shown). The cooling water supply path 13 formed between the cooling water supply path 13 and 3 reaches a communication path 17 at the lower end of the cooling water supply path 13, and through this communication path 17, water flows between the cylindrical walls 3 and 4 and between the outer tube 8 and the partition tube 7. The water is drained through the formed cooling water discharge passage 14 to cool the nozzle head A and the lance body B. The central nozzle 15 is constructed by forming an introduction part 15a connected to the lower end of the powder supply passage 11 and a cylindrical part 15b serving as a throat part connected to the lower end of the introduction part 15a, concentrically with the axis of the powder supply passage 11. There is. The introduction part 15a is formed so that its diameter gradually decreases as it goes downward from the lower end of the powder supply path 11, that is, toward the injection port, so that the inner circumferential wall forms an inverted truncated cone shape, and the cylindrical part 1
5b has the same diameter as the lower end of the introduction part 15a, and its lower end is opened at the lower bottom surface of the nozzle head part A as an injection port, and the powder is fed through the powder supply path 11 with the carrier gas. The body is introduction part 15
a, it is pressurized through the cylindrical portion 15b, and is injected straight onto the extension of the cylindrical portion 15b. Introductory part 15 to the axis of the powder supply path 11
a, the inclination angle α of the peripheral wall, the length l 1 in the axial direction of the introduction part 15a, the diameter d of the cylindrical part 15b, and the cylindrical part 1
There is no particular limitation on the axial length l2 of 5b, but if the inclination angle α of the peripheral wall of introduction part 5a is too large, the resistance to the powder, in other words, the influence of the grinding action from the powder. Since this increases, it is desirable to make it as small as possible within the range that allows the necessary powder velocity to be obtained. Further, the peripheral nozzle 16 is constituted by a cylindrical portion 16a that is a throat portion continuous to the lower end of the oxygen supply path 12, and a diverging portion 16b continuous to the cylindrical portion 16a. The cylindrical portion 16a is formed obliquely downward at an angle θ from the inner bottom of the U-shaped blocking wall at the lower end of the oxygen supply path 12 so that the lower end approaches or moves away from the axis of the central nozzle 15. Further, the divergent part 16b is formed with a diameter gradually increasing from the upper end side to the lower end side, and its axial center line is on the same straight line as the axial center line of the cylindrical part 16a, and the lower end side is the central part. It is formed to be inclined at an angle θ toward or away from the axis of the nozzle 15, and the peripheral wall of the diverging portion 16b on the powder supply path 11 side is inclined with respect to the axis of the central nozzle 15. The peripheral wall on the opposite side is inclined at an angle θ 2 in a direction away from the axis of the central nozzle 15 , so that the oxygen supplied in the oxygen supply path 12 is The oxygen gas is pressurized through the cylindrical portion 16a and the diverging portion 16b, is accelerated, and is injected onto an extension line of the diverging portion 16b. The top-blown oxygen lance L configured in this way is
As shown in Figure 1, the tip position is at the required height relative to the molten iron level in the converter CV (hot metal charged into the converter CV after preliminary treatment or molten steel being refined). It is inserted like this. The powder that is injected from the central nozzle 15 of the lance L together with the carrier gas and the oxygen gas that is injected from the peripheral nozzle 16 have a mutual flux at the surface or the fire point of the molten iron. The jets are cross-injected, so that the powder is guided into the bath without being scattered. The reason why the powder is mixed into the top-blown oxygen stream and added to the molten iron is that the powder, which becomes turbid in the top-blown oxygen stream, is directly supplied to the ignition point, rapidly turned into slag, and can be added to the molten iron at any time. The basicity of the slag can be controlled, and after the powder rushes into the molten iron with oxygen, dephosphorization proceeds directly during the floating process, and together with rapid slag formation after floating, dephosphorization and desulfurization occur. This is because it is carried out smoothly. Note that it is also possible to mix the powder into the blowing oxygen stream using a normal lance as a top-blowing oxygen lance, but according to this method, the powder is supplied into the high-pressure oxygen gas pipe. This method requires a device, which is undesirable because it increases equipment costs, and it also has the disadvantage that the Laval nozzle is subject to severe wear and tear due to powder, resulting in a short lance life. The converter CV is provided with one or more (in FIG. 1, two at the bottom) tuyere N on the bottom or side wall of the converter. gas, etc.), nitrogen gas, oxygen gas, carbon monoxide gas, carbon dioxide gas, etc.
The seeds or more are blown in at a blowing rate of 0 to 0.5 Nm 3 /min·T. This blowing amount is 0 to 0.5Nm 3 /min.
The reason for this is that when it exceeds 0.5Nm 3 /min・T, the concentration of iron oxide (FeO) in the slag in the medium and high coal region decreases rapidly, and the powder (for example, powdered lime) is exposed to top-blown oxygen. This is because even if it is mixed and added to the air stream, the dephosphorization of medium and high carbon steel will not be achieved sufficiently. Now, when performing converter blowing as described above, the conditions for adding a slag forming agent to molten iron are such that the slag basicity is 2 or more from the start of blowing to the end of desiliconization, and The slag forming agent in powder form shall be added from at least 2 minutes before the end of blowing until the end of blowing. The reason why the slag basicity should be 2 or more by the end of the desiliconization period is to prevent sloping that occurs before and after the desiliconization period, to prevent loss of iron, etc., and to improve operational efficiency. This is to stabilize the situation. That is, gas generation due to the decarburization reaction becomes significant around the end of the desiliconization period, but if the slag basicity is 2 or more by that point, the foaming property of the slag will be small and the expansion of the slag due to gas will be suppressed. This is because the occurrence of sloping is prevented. In addition, in the present invention, since the powder is mixed into the top-blown oxygen stream and supplied directly to the ignition point, the slag conversion rate at the time of supply is approximately 100%, and the slag is easily removed. The basicity can be controlled, and the slag basicity can be effectively made 2 or more by the end of the desiliconization period. By the way,
FIG. 4 is a graph showing the comparison results of the slag formation rate when the method of adding the slag forming agent is changed, with the horizontal axis representing the carbon concentration [C] in molten steel and the vertical axis representing the slag formation rate. .
In the figure, A indicates the injection of stirring gas below the bath surface (bottom blowing gas: argon gas, injection amount: 0.1Nm 3 /min.
A method of top-blowing slag-forming agent powder while carrying out T);
B is a method in which the slag-forming agent is added in chunks while blowing stirring gas under the bath surface, and c is a method in which the slag-forming agent is added in chunks without blowing stirring gas under the bath surface. The method of adding as is is shown below, and it can be seen that the slag formation rate in case A according to the present invention is approximately 100% as described above, which is extremely excellent. In addition, the condition of adding the powder by mixing it into the top-blowing oxygen stream at least 2 minutes before the end of blowing is to stabilize the slag formation at the end of blowing, and to add the powder to the top blowing oxygen stream at least 2 minutes before the end of blowing. In addition to stabilizing the phosphorus concentration [P], it also prevents phosphorus from returning to the steel bath from slag, which occurs as the bath temperature rises at the end of blowing during the melting of medium-high carbon steel. This is to stabilize the That is, if the addition of the powder is stopped more than 2 minutes before the end of blowing, a rephosphorization phenomenon will occur from the slag to the steel bath as the steel bath temperature rises, and the re-injection of powder will be inhibited. Since a sufficient dephosphorization effect cannot be obtained by adding the slag-forming agent even if the process starts 2 minutes before the end of blowing, the powder is mixed into the top-blown oxygen stream again at least 2 minutes before the end of blowing. Therefore, we decided to add it. By performing the blowing process as described above, it is possible to prevent the occurrence of slopping before and after the end of the desiliconization period, to prevent post-phosphorus formation due to the rise in steel bath temperature in the late blowing period, and to stabilize slag formation at the end of the blowing period. be able to. Further, as long as the powder can be added so as to satisfy the above-mentioned conditions, a part of the slag-forming agent may be added in the form of a lump. The amount that can be added in lump form depends on the target phosphorus concentration in molten steel [P]
Although it varies depending on the level of slag forming agent, according to numerous experiments by the present inventors, for steel types with a normal end point [P] level ([P] 0.020%), 70% of the total amount of slag-forming agent added It is possible to add it in the form of lumps up to By adding a considerable amount of the slag-forming agent in the form of a lump in this way, it is possible to reduce the grinding cost for turning the slag-forming agent into powder. Next, examples of the method of the present invention will be described. In a 15-ton pure oxygen top-blown converter equipped with two tuyeres each having a bottom-blowing nozzle with an inner diameter of 12.7 mmφ, a top-blowing oxygen lance (peripheral nozzle) similar to that explained in Figs. 2 and 3 was used. The inner diameter of the throat is 14
Converter blowing was performed using a diameter of 16 mmφ and the inner diameter of the central nozzle was 16 mmφ. Table 1 shows the slag-forming agent addition conditions, and Table 2 shows the hot metal conditions. The conditions are those according to the present invention, the conditions are that the timing of addition of the powder slag forming agent at the end of the blowing stage is shifted, and the conditions are that 70% or more of the slag forming agent is added in the form of lumps (therefore, the desiliconization period has ended). (It is not possible to ensure the slag basicity to 2 or more and to control dephosphorization at the end of blowing), and the conditions are that the entire blowing period cannot be controlled without considering the cost of the slag-forming agent, especially its crushing cost. (Until the end of the desiliconization period, the powder was blown so that the basicity of the slag was 2 or more.)
In both cases, the top blowing oxygen flow rate is 2200N.
m 3 /hour, powder carrier gas flow rate is 200Nm 3 /
At this time, the flow rate of bottom blowing gas (argon gas) is 200N.
m 3 /hour, and the distance between the lance surfaces was 1000 mm. Furthermore, the main raw materials in each case are hot metal: 15T and scrap: 3T. The blowing results are shown in Table 3. From this table, it can be seen that in the case of the present invention, the occurrence of sloping and the phosphorus concentration [P] in the molten steel at the end point were lower than in the case of other conditions except for the following conditions. It can be seen that the results are also excellent. In addition, the case according to the present invention shows comparable results even when compared with the case under these conditions, and it can be said that the case according to the present invention is superior when considering the crushing cost of the slag forming agent, etc. As detailed above, in the present invention, in the method of melting steel using the oxygen top-blown steelmaking method,
Powdered slag-forming agent is mixed into the top-blown oxygen stream under specified conditions and added to hot metal, and the total amount of slag-forming agent added is
Since 70% or less is added as a lump, it prevents slopping before and after the completion of desiliconization, prevents rephosphorization due to rise in steel bath temperature in the late stage of blowing, and prevents slag formation in the final stage of blowing. It is possible to stabilize the blowing process, improve the quality of finished steel, and improve the raw material yield, as well as reduce the cost of crushing the slag forming agent required to obtain the powder slag forming agent. The present invention has excellent advantages in melting steel.

【表】【table】

【表】【table】

【表】 効果を奏する。【table】 be effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状態を示す模式的縦断面
図、第2図は本発明の実施に使用する上吹き酸素
ランスのノズルヘツド部を示す縦断面図、第3図
は同じく底面図、第4図は造滓剤の添加方法の相
違による滓化率の変化を示したグラフである。 CV…転炉、L…上吹き酸素ランス、A…ノズ
ルヘツド部、B…ランス本体、15…中央部ノズ
ル、16…周辺部ノズル、S…副原料投入シユー
ト、N…羽口。
FIG. 1 is a schematic vertical cross-sectional view showing the implementation state of the present invention, FIG. FIG. 4 is a graph showing changes in the sludge forming rate due to differences in the method of adding the sludge forming agent. CV...Converter, L...Top-blowing oxygen lance, A...Nozzle head, B...Lance body, 15...Central nozzle, 16...Peripheral nozzle, S...Sub-material input chute, N...Tuyere.

Claims (1)

【特許請求の範囲】 1 浴面下への攪拌用ガス吹込みを伴う酸素上吹
き製鋼法において、 生石灰、石灰石、蛍石、ドロマイト等の1種又
は2種以上を含む造滓剤と、必要によりマンガン
鉱石、酸化鉄の1種又は2種以上を、 全添加量の70%以下は塊状にて溶鉄へ投入し、 残部は粉体状にて上吹き酸素気流へ混入して溶
鉄へ添加することとし、 脱珪期終了迄にスラグ塩基度を2以上となし、 吹錬終了の少なくとも2分前から吹錬終了迄の
間には粉体状での造滓剤添加を行うことを特徴と
する製鋼法。
[Scope of Claims] 1. In an oxygen top-blown steelmaking process involving the injection of stirring gas below the bath surface, a slag-forming agent containing one or more of quicklime, limestone, fluorite, dolomite, etc.; One or more types of manganese ore and iron oxide are added to the molten iron in the form of lumps, up to 70% of the total addition amount, and the rest is mixed into the top-blown oxygen stream in the form of powder and added to the molten iron. The slag basicity is set to 2 or more by the end of the desiliconization period, and the slag forming agent is added in powder form from at least 2 minutes before the end of the blowing to the end of the blowing. Steel manufacturing method.
JP9171882A 1982-05-28 1982-05-28 Manufacture of steel Granted JPS58207315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9171882A JPS58207315A (en) 1982-05-28 1982-05-28 Manufacture of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9171882A JPS58207315A (en) 1982-05-28 1982-05-28 Manufacture of steel

Publications (2)

Publication Number Publication Date
JPS58207315A JPS58207315A (en) 1983-12-02
JPS621445B2 true JPS621445B2 (en) 1987-01-13

Family

ID=14034285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9171882A Granted JPS58207315A (en) 1982-05-28 1982-05-28 Manufacture of steel

Country Status (1)

Country Link
JP (1) JPS58207315A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999157B2 (en) * 2013-10-02 2016-09-28 Jfeスチール株式会社 Method of refining hot metal in the converter

Also Published As

Publication number Publication date
JPS58207315A (en) 1983-12-02

Similar Documents

Publication Publication Date Title
EP0017963B1 (en) Converter steelmaking process
JPH0770626A (en) Converter steel making method
JPS58207314A (en) Refining method of steel
JP6828678B2 (en) Converter refining method
JPS6023163B2 (en) steel smelting method
JP2008231477A (en) Method for dephosphorizing molten iron
JPH0437132B2 (en)
JP6658678B2 (en) Top blowing lance for refining and method for refining hot metal
JPS621445B2 (en)
JP7001148B2 (en) How to remove phosphorus from hot metal
JP2005089839A (en) Method for refining molten steel
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
JPS6056009A (en) Steel making method
US4891064A (en) Method of melting cold material including iron
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP2020125541A (en) Converter refining method
JPS58207313A (en) Refining method of steel
JPH0437135B2 (en)
JP7380444B2 (en) Top blowing lance for converter dephosphorization treatment and converter blowing method
JP5949627B2 (en) Method of refining hot metal in converter
JP4513340B2 (en) Hot metal dephosphorization method
RU2180006C2 (en) Method of conversion of cast iron in converter
JP3736229B2 (en) Hot metal processing method
JPH0557327B2 (en)
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel