JPS621442B2 - - Google Patents

Info

Publication number
JPS621442B2
JPS621442B2 JP10266082A JP10266082A JPS621442B2 JP S621442 B2 JPS621442 B2 JP S621442B2 JP 10266082 A JP10266082 A JP 10266082A JP 10266082 A JP10266082 A JP 10266082A JP S621442 B2 JPS621442 B2 JP S621442B2
Authority
JP
Japan
Prior art keywords
metal
converter
molten
electric furnace
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10266082A
Other languages
Japanese (ja)
Other versions
JPS58221211A (en
Inventor
Tsutomu Nozaki
Michiharu Ozawa
Hideji Takeuchi
Yoshiaki Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10266082A priority Critical patent/JPS58221211A/en
Publication of JPS58221211A publication Critical patent/JPS58221211A/en
Publication of JPS621442B2 publication Critical patent/JPS621442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、予備処理した溶銑と電気炉溶解溶湯
との合理的な合湯により安価安全に、かつ連鋳多
連を可能とする短時間に、ステンレス母溶湯を製
造する方法に関する。 一般に、ステンレス鋼を溶製するに際し、電気
炉にCrやNiの入つているスクラツプを装入して
溶解し、そのまま電気炉で精錬を行なうか、また
は電気炉溶解溶湯をAOD炉、VOD取鍋、底吹き
転炉(CLU)、あるいは最近では上底吹き転炉に
装入して昇温し、Crを酸化させずに脱炭を行な
う溶製方法が採用されている。 このような電気炉溶製と脱炭炉工程の時間が長
すぎると、次の連続鋳造の工程は1ヒートの単発
鋳造となる。連続鋳造は、連続〜連続と多連を行
なう方が製鋼コストが安価となるので、電気炉の
溶製から脱炭までの工程を短縮することが望まれ
ている。 本発明者らは、この工程短縮を種々試みた。 先ず、電気炉溶製を短時間にするために電気炉
を高出力にしたところホツトスポツトが出現し、
電気炉壁が溶損し、またこれに対するコールドス
ポツトにより未溶解部が残り易いことがわかり、
電気炉の操業時間の短縮は極めて困難であること
が判明した。 そこで、電気炉装入量を軽減し、相対的に電力
負荷を増大させることによつて溶解時間を短縮
し、電気炉の軽装入による不足原料を脱P、脱S
を行なつた予備処理溶銑で補なう、合湯につき検
討した。この場合、溶銑は十分に予備処理し、十
分脱Pしたものでないと、ステンレス精錬におい
ては脱炭工程での脱Pは全く期待できないので、
原料配合段階で規制する必要があることはもちろ
んである。 電気炉溶湯と予備処理溶銑との合湯方法につい
て、第1の方法として、転炉装入鍋に各々の溶湯
を別々に入れ、転炉内で混合した。この方法は、
転炉に2回装入となるので装入時間が延び、また
少い量の溶湯を扱うため取鍋耐火物への熱伝達お
よび熱放散により、溶湯温度の低下が著しく、続
く転炉内脱炭吹錬時におけるCrの酸化が激しく
Cr歩留が低下した。 合湯の第2の方法は、電気炉溶湯を保持してい
る転炉装入鍋に溶銑予備処理銑を注入し合湯する
方法である。この方法は、電気炉溶湯のC値が低
い場合酸素が高く、溶銑を注入したとき、C―O
反応のため溶湯の突出が起ることがあり、また電
気炉スラグ中に多量の酸化鉄が含有されていると
溶銑装入時に酸化鉄と溶銑Cの反応により溶湯の
突出があり、危険であつた。 合湯の第3の方法は、転炉装入鍋に溶銑を入
れ、これを予備処理した後、この転炉装入鍋に電
気炉の溶湯を装入する方法である。この方法で
は、溶湯の温度降下が少なく、突出等のおそれが
なく安全である。鍋を1個しか使わないので取鍋
耐火物への熱伝達や熱放散が少なくなり、温度降
下が抑制された結果、引続く転炉精錬工程におけ
るCr歩留が向上した。 さらに、Cr歩留と合湯後の溶湯温度との関係
を調べたところ、1350℃以上ではCrの歩留が向
上することを見出した。 本発明は以上の知見に基いて完成されたもの
で、ステンレス母溶湯の製造に当り、転炉装入鍋
に溶銑を受銑し、該溶銑の予備処理を施し、他方
電気炉でステンレス鋼用に成分調整した溶融鉄を
溶解しておき、該溶融鉄を前記転炉装入鍋に装入
して前記予備処理した溶銑と合湯し、該合湯後の
溶湯温度は1350℃以上望ましくは1400℃以上を確
保し、該合湯を底吹きまたは上底吹き転炉に装入
することを特徴としている。 本発明は、予備処理した溶銑と電気炉で溶製し
たステンレス鋼用溶融鉄とを1個の転炉装入鍋に
一定の順序で装入して合湯し、次いで、底吹きま
たは上底吹き転炉で精錬することを基本とするも
のである。本発明方法によつて、ステンレス母溶
湯を安全に、安価に、短時間に、適切な温度を保
持しつつ製造することができ、ステンレス鋼の連
続鋳造が可能となり、技術的、経済的効果が極め
て大きい。 ステンレス鋼の製鋼コストは、主原料コストと
酸化工程におけるCrの酸化量、酸素またはアル
ゴン等のガス原単位、操業時間、連鋳のコスト等
に支配され、本発明のステンレス母溶湯製造方法
により、これらの全過程が合理化される。転炉製
鋼は、高炉溶銑の使用と安価な高炭素Fe―Crの
使用とを可能とし、高脱炭速度による高生産性と
熱エネルギーの低減に寄与し、一方Crの酸化防
止のできる精錬方法である。 以上のように、本発明法により、安価なステン
レス鋼を得るための安定的な溶製法が確立された
ことはもちろん、多連続鋳造ができるようになつ
たため、製鋼コストの低減のみならず、品質安定
に極めて顕著な効果をもたらした。 実施例 トピード車で脱珪処理した溶銑50tを転炉装入
鍋に払い出した。このときの溶銑の成分は、第1
表Aの通りであつた。転炉装入鍋にCaO系フラツ
クス45Kg/tを浸漬ランスを用いて鍋中の溶銑内
にインジエクシヨンし、処理を行なつた。この処
理により、転炉装入鍋中の溶銑成分および温度は
第1表Bの通りとなつた。 次いで処理溶銑を入れたまま転炉装入鍋を85t
電気炉出鋼口にセツトし、電気炉の溶融鉄を転炉
装入鍋に装入し合湯した。電気炉溶融鉄の装入量
は、53.5tである。電気炉溶融鉄の成分および温
度は第1表Cに示す通りで、合湯後の成分および
温度は第1表Dの通りであつた。 合湯は極めて安定的に行なわれ、溶湯温度は、
1400℃以上を容易に確保することができた。
The present invention relates to a method for producing molten stainless steel at low cost, safely, and in a short time that enables continuous casting by rationally combining pretreated hot metal with molten metal in an electric furnace. Generally, when melting stainless steel, scrap containing Cr and Ni is charged into an electric furnace and melted, and then refined in the electric furnace as is, or the molten metal is transferred to an AOD furnace, a VOD ladle, etc. , a bottom blowing converter (CLU), or recently, a melting method has been adopted in which Cr is charged into a top and bottom blowing converter and heated to decarburize without oxidizing the Cr. If the time for such electric furnace melting and decarburization furnace steps is too long, the next continuous casting step will be a one-heat single-shot casting. Continuous casting is performed continuously to multiple times, which results in lower steel manufacturing costs, so it is desired to shorten the process from melting in an electric furnace to decarburization. The present inventors have made various attempts to shorten this process. First, when we increased the power of the electric furnace to shorten the time required for melting, hot spots appeared.
It was found that the electric furnace wall was damaged by melting, and that unmelted parts were likely to remain due to cold spots.
It has been found that shortening the operating time of electric furnaces is extremely difficult. Therefore, by reducing the charging amount of the electric furnace and relatively increasing the electric power load, the melting time can be shortened, and the insufficient raw material can be removed by removing P and S by light charging of the electric furnace.
We investigated the possibility of combining hot metal with pre-treated hot metal. In this case, unless the hot metal is sufficiently pretreated and dephosphorized, no dephosphorization can be expected during the decarburization process in stainless steel refining.
It goes without saying that regulations need to be regulated at the raw material blending stage. Regarding the method of combining electric furnace molten metal and pretreated hot metal, the first method is to separately charge each molten metal into a converter charging ladle and mix them within the converter. This method is
Since the converter is charged twice, the charging time is extended, and since a small amount of molten metal is handled, the temperature of the molten metal decreases significantly due to heat transfer to the ladle refractory and heat dissipation, and subsequent desorption inside the converter is required. Severe oxidation of Cr during charcoal blowing
Cr yield decreased. The second method of pouring is to pour pre-treated hot metal into a converter charging ladle that holds molten metal in an electric furnace. In this method, when the C value of the electric furnace molten metal is low, the oxygen content is high, and when the molten metal is injected, the C-
The reaction may cause the molten metal to protrude, and if the electric furnace slag contains a large amount of iron oxide, the molten metal may protrude due to the reaction between iron oxide and hot metal C when charging the hot metal, which is dangerous. Ta. The third method of combining hot metal is to charge molten metal into a converter charging ladle, pre-treating the hot metal, and then charging the molten metal from an electric furnace into the converter charging ladle. This method is safe because the temperature drop of the molten metal is small and there is no risk of protrusion. Since only one ladle is used, heat transfer to the ladle refractory and heat dissipation are reduced, and as a result of suppressing temperature drop, the Cr yield in the subsequent converter refining process is improved. Furthermore, we investigated the relationship between the Cr yield and the temperature of the molten metal after joining, and found that the Cr yield improved at temperatures above 1350°C. The present invention has been completed based on the above knowledge, and when producing molten stainless steel, hot metal is received in a converter charging ladle, the hot metal is pretreated, and then the stainless steel is prepared in an electric furnace. The molten iron whose composition has been adjusted is melted, and the molten iron is charged into the converter charging pot and combined with the pretreated hot metal, and the temperature of the molten iron after the combining is preferably 1350°C or higher. It is characterized by ensuring a temperature of 1400°C or higher and charging the combined metal into a bottom blowing or top and bottom blowing converter. In the present invention, pre-treated hot metal and molten iron for stainless steel made in an electric furnace are charged into one converter charging pot in a certain order and combined, and then bottom-blown or top-bottomed Basically, it is refined in a blowing converter. By the method of the present invention, molten stainless steel can be produced safely, inexpensively, and in a short time while maintaining an appropriate temperature, making it possible to continuously cast stainless steel, which has technical and economical effects. Extremely large. The cost of manufacturing stainless steel is determined by the cost of the main raw materials, the amount of Cr oxidized in the oxidation process, the unit consumption of gas such as oxygen or argon, operating time, continuous casting cost, etc. These entire processes are streamlined. Converter steelmaking enables the use of blast furnace hot metal and inexpensive high-carbon Fe-Cr, contributing to high productivity and reduction of thermal energy due to high decarburization rate, and is a refining method that can prevent oxidation of Cr. It is. As described above, the method of the present invention has not only established a stable melting process to obtain inexpensive stainless steel, but also made it possible to perform multiple continuous castings, which not only reduces steel manufacturing costs but also improves quality. It had a very noticeable effect on stability. Example 50 tons of desiliconized hot metal was discharged into a converter charging pot using a torpedo car. The components of the hot metal at this time are
It was as shown in Table A. Treatment was carried out by injecting 45 kg/t of CaO-based flux into the hot metal in the converter charging ladle using an immersion lance. As a result of this treatment, the hot metal components and temperature in the converter charging ladle became as shown in Table 1B. Next, the converter charging pot was loaded with 85t of processed hot metal.
The steel was set at the tapping port of the electric furnace, and the molten iron from the electric furnace was charged into the converter charging pot and mixed. The amount of molten iron charged into the electric furnace was 53.5 tons. The components and temperature of the electric furnace molten iron were as shown in Table 1C, and the components and temperature after mixing were as shown in Table 1D. The melting process is extremely stable, and the molten metal temperature is
We were able to easily maintain a temperature of 1400℃ or higher.

【表】 合湯後の103tのステンレス母溶湯を上底吹き転
炉に装入し、能率よく通常の脱炭吹錬を行なつた
後、Siによる還元を行ない出鋼した。
[Table] After combining, 103 tons of stainless steel mother metal was charged into a top-bottom blowing converter, and after efficient normal decarburization blowing, reduction with Si was performed and steel was tapped.

Claims (1)

【特許請求の範囲】[Claims] 1 ステンレス母溶湯の製造に当り、転炉装入鍋
に受銑して溶銑予備処理を施した溶銑と、ステン
レス鋼用に調整、溶解した電気炉製の溶融鉄溶湯
とを、前記転炉装入鍋内で合湯し、該合湯した後
の溶湯温度は1350℃以上を確保し、次いで該合湯
を底吹きまたは上底吹き転炉に装入することを特
徴とするステンレス母溶湯の製造方法。
1. In producing molten stainless steel, hot metal that has been received into a converter charging ladle and subjected to hot metal pretreatment, and molten iron made in an electric furnace that has been adjusted and melted for stainless steel are placed in the converter equipment. A stainless steel mother molten metal characterized by combining the metal in a pot, ensuring the temperature of the molten metal after the combining is 1350°C or higher, and then charging the combined metal into a bottom-blown or top-bottom-blown converter. Production method.
JP10266082A 1982-06-15 1982-06-15 Manufacture of molten stainless steel Granted JPS58221211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10266082A JPS58221211A (en) 1982-06-15 1982-06-15 Manufacture of molten stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10266082A JPS58221211A (en) 1982-06-15 1982-06-15 Manufacture of molten stainless steel

Publications (2)

Publication Number Publication Date
JPS58221211A JPS58221211A (en) 1983-12-22
JPS621442B2 true JPS621442B2 (en) 1987-01-13

Family

ID=14333381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10266082A Granted JPS58221211A (en) 1982-06-15 1982-06-15 Manufacture of molten stainless steel

Country Status (1)

Country Link
JP (1) JPS58221211A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454313B2 (en) * 2010-04-02 2014-03-26 新日鐵住金株式会社 Blowing acid decarburization method for chromium-containing steel

Also Published As

Publication number Publication date
JPS58221211A (en) 1983-12-22

Similar Documents

Publication Publication Date Title
CN102978505A (en) Smelting method of high-strength IF steel
JP2006233264A (en) Method for smelting high-chromium molten steel
CN112795720A (en) Method for producing industrial pure iron by duplex converter method
JP2016151027A (en) Production method of molten steel
JPH0480093B2 (en)
EP1073773B1 (en) An improved process for making steel
JPS6250545B2 (en)
JPS621442B2 (en)
SU648118A3 (en) Method of producing alloy steel
US3240591A (en) Manufacture of ferromanganese alloy
JP4411934B2 (en) Method for producing low phosphorus hot metal
JPS6354045B2 (en)
JPH0355538B2 (en)
SU1250582A1 (en) Method of steel melting in multiple-bath electric furnace
US3556770A (en) Process for making alloys and metals
JPS6232247B2 (en)
JPS5967309A (en) Manufacture of high cr steel using dephosphorized molten iron
JPH01147011A (en) Steelmaking method
JPS6247417A (en) Melt refining method for scrap
JPH05171243A (en) Production of high alloy steel
JP2856103B2 (en) Hot metal dephosphorization method
JPH0892627A (en) Production of stainless steel
RU2186856C1 (en) Composite blend for smelting alloyed steels
SU1544813A1 (en) Method of melting low- and medium-carbon steel in double-bath steel-melting unit
CN117737340A (en) Smelting method of top-bottom combined blown converter and application thereof