JPS62143872A - Fused ceramics - Google Patents

Fused ceramics

Info

Publication number
JPS62143872A
JPS62143872A JP60283640A JP28364085A JPS62143872A JP S62143872 A JPS62143872 A JP S62143872A JP 60283640 A JP60283640 A JP 60283640A JP 28364085 A JP28364085 A JP 28364085A JP S62143872 A JPS62143872 A JP S62143872A
Authority
JP
Japan
Prior art keywords
melting
ceramics
hardness
ceramic
fused
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60283640A
Other languages
Japanese (ja)
Inventor
岸 和之
野沢 信弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP60283640A priority Critical patent/JPS62143872A/en
Publication of JPS62143872A publication Critical patent/JPS62143872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融セラミックス、とくに磁気へ71・のノ
ロ(板材料として使用される溶融セラミックスに関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to fused ceramics, particularly fused ceramics used as a magnetic plate material.

〔従来の技術〕[Conventional technology]

磁気ヘントは、オーディオ機器、ビデオテープレコーダ
ーおよびコンピューター等に使用され、情報の記録、+
IT生、消去機能を担う部品であり、N1〜Znフェラ
イト、Mn−Znフェライト、バーブロイ(Fe−Ni
)およびセンダスト(Fe−AI−9i)等の磁性材料
とそのノ、(板用としての非磁性材料を主要構成部材と
している。
Magnetic magnets are used in audio equipment, video tape recorders, computers, etc. to record information, +
It is a component that plays the role of erasing function, and is made of N1~Zn ferrite, Mn-Zn ferrite, Barbroy (Fe-Ni
), Sendust (Fe-AI-9i), and other magnetic materials;

吐年、情報の高密度記録に対する要望が高まり、磁気へ
・、トの小型化、磁性材料の薄膜化等の技術も進みつつ
あるが、これらの状況下において、一般に)、(板材料
にはつぎの諸特性が要望されている。
In recent years, the demand for high-density recording of information has increased, and technologies such as miniaturization of magnetic materials and thinning of magnetic materials are progressing. The following characteristics are desired.

すなわち、 (イ)磁気へンド使用時に磁気特性を変動
5せやすい発生熱を素早く逃すため、熱伝導−ゼか約2
.5 Kcal/a+、hr、’c以ヒの高い値を有す
ること、 (ロ)磁性材料との接着性を良好にするため
、磁性材木1の種類に応じ、約80〜+50 XIO’
/’017)、範囲の熱膨張係数を選び得ること、 (
ハ)磁気テープやディスクとの摩擦により片ヘリを生ず
ることのないよう1ij記磁性材料とはi同等の硬度、
すなわち、ピンカース硬度(Hv)で約400〜900
Kg/:=の範囲の値を有すること、 (ニ)微小気泡
かなく緻密であること、 (ホ)組織が均質微細である
こと、 (へ)品質が一定で生産性に優れていること等
が望まれている。
In other words, (a) In order to quickly dissipate the generated heat that tends to fluctuate the magnetic properties when using the magnetic hand, the thermal conductivity is approximately 2.
.. 5 Kcal/a+, hr, 'c or higher, (b) In order to improve the adhesion with the magnetic material, approximately 80 to +50 XIO' depending on the type of magnetic lumber 1.
/'017), being able to choose a range of thermal expansion coefficients, (
c) In order to prevent one edge from forming due to friction with magnetic tapes and disks, the magnetic material described in 1j must have a hardness equivalent to i,
That is, about 400 to 900 in Pinkers hardness (Hv)
It must have a value in the range of Kg/:=, (d) It must be dense with no microbubbles, (e) The structure must be homogeneous and fine, (f) It must have constant quality and excellent productivity, etc. is desired.

そこで、従来からこれらの要望を満たすため、溶融法や
焼結法による種々の材料が提案されている。このうち、
溶融法によるものとして、たとえば、結晶性カラスや溶
融アルミナ等が知られているが、前者は熱伝導度が過小
であって不適当であり、また、後者は、いずれも約18
00℃以上の高温を要し、vll、産が困難である。焼
結法によるものとして、たとえばTlO2−アルカリ土
類金属耐化物系のものか多数知られているが、溶融法で
は主要1稈か原$11+、、合、溶融および成形の3工
程に限られl′i純であるのに対し、いずれも原料粉末
の微細化、混合、仮焼結、粉砕、成形、本焼結の複雑な
6F程を要し、しかも工程操作の連続化が困難なため、
品−産性に乏しい。さらに、焼結法によるもの−は、団
塊ないし粒子状のものをマトリックス材料で加熱決着さ
せたものであるため、緻密性、組織の微細性および熱伝
導性の点で劣るきらいがあるうえ、品質の一定化には複
雑高度な技術が要求される欠点もある。
Therefore, in order to meet these demands, various materials have been proposed using melting methods and sintering methods. this house,
For example, crystalline glass and fused alumina are known to be produced using the melting method, but the former has an inappropriate thermal conductivity that is too low, and the latter has a thermal conductivity of about 18
It requires high temperatures of 00°C or higher and is difficult to produce. There are many known sintering methods, such as those based on TlO2-alkaline earth metal refractories, but the melting method is limited to three main steps: 1 culm or 1 culm, 1 culm, melting, and forming. However, each requires a complicated 6F process of pulverizing the raw material powder, mixing, pre-sintering, crushing, molding, and final sintering, and it is difficult to perform continuous process operations. ,
Goods - poor productivity. Furthermore, the sintering method involves heating and fixing nodules or particles in a matrix material, which tends to be inferior in terms of density, fineness of structure, and thermal conductivity, and also has poor quality. There is also the drawback that complex and advanced technology is required to stabilize the value.

「発明が解決しようとする問題点」 本発明の目的は、上記の従来技術にみられる諸欠点を総
合的に解消し、適切な熱膨張係数と硬度を維持しつつ、
熱伝導性、緻密性、組織の微細性および生産性を改善し
た磁気ヘッド用基板材料を提供することにある。
"Problems to be Solved by the Invention" The purpose of the present invention is to comprehensively eliminate the various drawbacks found in the above-mentioned prior art, while maintaining an appropriate coefficient of thermal expansion and hardness.
An object of the present invention is to provide a substrate material for a magnetic head that has improved thermal conductivity, density, fineness of structure, and productivity.

[問題点を解決するための手段」 本発明名は、」−足口的を達成するため、種々試験研究
を屯ねた結果、意外にもTiO□−ZnO組成系のセラ
ミックスにおいて、前記従来の溶融セラミックスよりも
はるかに有利な温度条件、すなわち、約1600°C以
下において溶融可能な組成域が存在することをみいだす
ことができ、またこの溶融セラミックスは、前記焼結法
によるものと異なり、溶融状態で均質化された後、緻密
組織のものとして得られるものであり、しかも磁気ヘッ
ド基板材木1に′県望される前記諸゛1¥項を満たし得
ることをもみいだすことができた。本発明は、−上記の
知見により完成したものである。
[Means for Solving the Problems] The name of the present invention is as follows.In order to achieve the above-mentioned goal, we have conducted various tests and researches, and have surprisingly found that the above-mentioned conventional ceramics of TiO□-ZnO composition system It has been found that there is a compositional range that can be melted under much more favorable temperature conditions than molten ceramics, that is, below about 1600°C, and unlike those produced by the sintering method, this molten ceramic It has been found that after being homogenized in a state, it can be obtained as a material with a dense structure, and moreover, it can satisfy the above-mentioned requirements for the magnetic head substrate material 1. The present invention has been completed based on the above findings.

本発明の溶融セラミ、クスの特徴は、モル%で、TlO
23−80%、ZnO 5〜70%、Mg0 0〜20
%、Ca0 0−60%、5rO0〜20%、8a0 
0〜20%、PbO 0−25%、Al2O30〜25
%、 Cr2O30〜10%、La2O30〜25%、
ZrO20〜25%、Mn020〜25%、Nb205
0〜25%、Ta2050〜20%、WO30〜20%
、MoO30〜20%、 L120+Na2O+に20+C3200〜15%、5
lO7+ 8203 + P2O5+ GeO2Q 〜
15%、の範囲の各成分を含有し、また)二足金11酸
化物の酸素(O)の−・部と置換した弗素(F)を酸素
(O)に対するイオン数1七(F−/O2−)で0〜0
.4のイ直の範囲内含有する組成物を溶融して成ること
にある。
The characteristics of the molten ceramic and clay of the present invention are that in mol%, TlO
23-80%, ZnO 5-70%, Mg0 0-20
%, Ca0 0-60%, 5rO0-20%, 8a0
0-20%, PbO 0-25%, Al2O30-25
%, Cr2O30-10%, La2O30-25%,
ZrO20-25%, Mn020-25%, Nb205
0~25%, Ta2050~20%, WO30~20%
, MoO30~20%, L120+Na2O+20+C3200~15%, 5
lO7+ 8203 + P2O5+ GeO2Q ~
15%, and also contains fluorine (F) substituted with - part of oxygen (O) of gold-11 oxide, with an ion number of 17 (F-/) for oxygen (O). 0 to 0 at O2-)
.. The present invention is made by melting a composition containing within the range specified in item 4 above.

1−記成分中、TlO2とZnOの二成分は、共存下に
おいて溶融状yEとすることができ、またこの溶融物を
微小な気泡や粗大な結晶物を生ずることなく冷却1.’
、l化することができ、これによって熱膨張係数および
硬度の適当なセラミックスを得ることができるので、本
発明において重要な基本成分である。しかし、これらの
効果を得るためには、TiO7およびZnO成分の州は
それぞれ3〜80%および5〜70%の範囲にある必要
がある。
Among the components described in 1-1, TlO2 and ZnO can be made into a molten yE when they coexist, and this melt can be cooled without producing minute bubbles or coarse crystals. '
, 1, which makes it possible to obtain ceramics with appropriate thermal expansion coefficients and hardness, and is therefore an important basic component in the present invention. However, to obtain these effects, the TiO7 and ZnO components need to be in the range of 3-80% and 5-70%, respectively.

また、つきの各成分は、−上記TiO2−ZnO系のノ
、(水組成にそれぞれつぎに述べる所定範囲内において
添加することができる。すなわち、 MgO成分は、セ
ラミックスの硬度を:A整するのに役ゲっので添加し?
1Lるが、溶融性が悪化するので20%以下どする。C
aO成分はセラミックスの溶融可能な組成域を拡大した
り、溶融を容易にしたりするのに役\″l:つが、60
%を超えるとかえって溶融性が悪化する。SrOとBa
Oの各成分は、セラミックスの?A IIv張率を増大
させるのに役立つが、いずれもその端が20%を超える
と溶融後の冷却の際4状の粗大結晶を生しやすくなる。
In addition, each of the following components can be added to the water composition within the predetermined ranges described below. Added it because it's a role game?
1L, but since the meltability deteriorates, it should be less than 20%. C
The aO component serves to expand the meltable composition range of ceramics and facilitate melting.
If it exceeds %, the melting property will deteriorate on the contrary. SrO and Ba
Each component of O is a ceramic? It is useful for increasing the A IIv elongation, but if the edge exceeds 20% in any case, 4-shaped coarse crystals are likely to form during cooling after melting.

PbOは、溶融11丁能な組成域を拡大し得るが、25
%を超えるとセラミ・ンクスの熱膨張率または硬度が低
下しやすくなる。
PbO can expand the compositional range in which melting is possible, but 25
%, the thermal expansion coefficient or hardness of the ceramic inx tends to decrease.

Al2O3トCr203(7)各成分は、セラミックス
の硬度の調整に役立つが、それぞれ25%および10%
を超えると熱膨張率が過小となりやすく、またそのうえ
前者は熱伝導率も過小になりやすくなる。MnO2、Z
rO2、Nb2O5、Ta205および11103も硬
度の調整に役立つが、前三者は各々25%をまた後二者
は20%をそれぞれ超えるといずれもセラミックスは、
冷却の際、粗大空孔を発生しやすくなるうえ、溶融性が
悪化したり、粗大な結晶を生じたすしやすくなる。、L
+20、Na2O、K2OおよびCs20の各成分およ
びS+02、B2O3、P2O5およびGeO2(7)
各成分は、いずれも溶融可能な組成域を拡大する(動き
を有するが、前四者の一種または二種以上の合計が15
%を超えると硬度が低下しやすくなり、また後四者の・
種または二種以1−の合計が15%を超えると熱伝導度
が過小になりやすくなる。
Each component of Al2O3 and Cr203 (7) is useful for adjusting the hardness of ceramics, and is 25% and 10%, respectively.
If it exceeds , the coefficient of thermal expansion tends to be too small, and in addition, in the former case, the thermal conductivity also tends to be too small. MnO2, Z
rO2, Nb2O5, Ta205 and 11103 are also useful for adjusting hardness, but if the first three exceed 25% each and the latter two exceed 20%, the ceramic will
During cooling, coarse pores are likely to be generated, the melting properties are deteriorated, and coarse crystals are formed, making it easier to sip. , L
+20, Na2O, K2O and Cs20 components and S+02, B2O3, P2O5 and GeO2 (7)
Each component expands the meltable composition range (it has movement, but the total of one or more of the former four is 15
%, the hardness tends to decrease, and the latter four
If the total amount of the species or two or more species exceeds 15%, the thermal conductivity tends to be too low.

La2O3、MoO3および」−記各金属の酸化物成分
の酸素(O)の一部と置換した弗素(F)成分は2.a
、外にも本発明のセラミックスの熱伝導度を箸しく増大
させる効果があるので、これらの成分の一種または二種
以−F−を添加することが好ましい。この際、 La2
O3の着は、溶融性の悪化を招かないよう25%以内と
し、またMoO3は硬度が過小とならないよう20%以
内とするが、上記の添加効果を発揮するため、これらの
成分の一種または二種合計を1%以」−とするのが好ま
しい。また、弗、1 (F)のji!は、L記効果を発
揮させるとともに、硬度を過小にしないため、F 10
  の値で0.O1〜0.4の範囲とするのが好ましい
La2O3, MoO3, and the fluorine (F) component that replaced a part of the oxygen (O) in the oxide component of each metal is 2. a
In addition, it is preferable to add one or more of these components -F-, since it has the effect of significantly increasing the thermal conductivity of the ceramic of the present invention. At this time, La2
The content of O3 should be within 25% to avoid deterioration of meltability, and the content of MoO3 should be within 20% to avoid excessive hardness. It is preferable that the total amount of species is 1% or more. Also, 弗, 1 (F) ji! In order to exhibit the L effect and not to reduce the hardness, F 10
The value of 0. It is preferable to set it as the range of O1-0.4.

本発明の溶融セラミックス組成物は、」−記の範囲の成
分を含有していることを要するが、このほかに他の成分
、たとえば貴金属酸化物、Y2O3、GeO3、Tb2
O3、Yb2O3、5n02、Y2O5、As2O3,
5b203. Bi2O3,Fe2O3、Coo 、N
iO、並びにl−足金1ぶ酸化物の金属および金属の窒
化物、炭化物、硫化物、セレン化物、塩化物、臭化物お
よび沃化物の一種または二種以上を合計で、必要に応じ
、15モル%程度まで添加することができる。
The molten ceramic composition of the present invention is required to contain components in the ranges listed below, but in addition to these, other components such as noble metal oxides, Y2O3, GeO3, Tb2
O3, Yb2O3, 5n02, Y2O5, As2O3,
5b203. Bi2O3, Fe2O3, Coo, N
iO, and one or more of metal nitrides, carbides, sulfides, selenides, chlorides, bromides, and iodides of metals and metal oxides, if necessary, 15 mol in total. It can be added up to about %.

〔実施例〕〔Example〕

つぎに、本発明にかかる溶融セラミックスの実施例につ
いて説明する。
Next, examples of fused ceramics according to the present invention will be described.

表−1に本発明にかかる溶融セラミックスの組成例を3
5例示した。まず、これらの組成物が得られるよう酸化
物、水酸化物、炭酸塩、硝酸塩および弗化物等の成分原
料を調合し、これを白金製溶融装置を用い、組成による
溶融性の難易度に応じて約1400〜1600℃、1〜
lO時間溶融する。この間、均質化のため適宜攪拌を行
なう。その後、溶融物を鋳型中に鋳込んで成形し、約8
00〜1400°Cに保温した炉中に入れ徐冷すること
により極めて容易に溶融セラミックスを得る。本実施例
による場合、従来の焼結法に比べ製造工程がはるかに簡
略化されているため、生+1r’AJ率は大幅に改善ざ
釣ス j[l L+h f−鋏1m J?→251.々
ス1士 い子鉛もヒ1質であって、気泡がなく、極めて
微細な組織をイ1している。これらの試料の熱伝導率、
熱l膨張係数およびヒラカース硬度の測定試験結果を表
−1に併記した。ここで、表−1の実施例間、1〜No
、IOについては、間、1をTiO2、ZnO、CaO
およびAl2O3からなる基本M1成とし、陽8.2〜
N。
Table 1 shows three composition examples of fused ceramics according to the present invention.
Five examples are shown. First, ingredients such as oxides, hydroxides, carbonates, nitrates, and fluorides are mixed to obtain these compositions, and then melted using a platinum melting device depending on the difficulty of melting depending on the composition. approx. 1400~1600℃, 1~
Melt for 10 hours. During this time, stirring is performed as appropriate for homogenization. Thereafter, the melt is poured into a mold and shaped, approximately 8
Molten ceramics can be obtained very easily by placing the ceramic in a furnace kept at a temperature of 00 to 1400°C and slowly cooling it. In the case of this example, the manufacturing process is much simpler than the conventional sintering method, so the raw+1r'AJ rate is greatly improved. →251. Lead is also a metal, has no bubbles, and has an extremely fine structure. The thermal conductivity of these samples,
The results of the measurement test of thermal expansion coefficient and Hirakas hardness are also listed in Table-1. Here, between the examples in Table 1, 1 to No.
, for IO, between 1 and TiO2, ZnO, CaO
The basic M1 composition consists of and Al2O3, positive 8.2 ~
N.

、10は、これにLa2O3、MoO3および弗素(F
)を添加した場合の諸物性の変化を示したものであるが
、これらの物性のうちとくに熱伝導率の向ヒ効果が著し
いことがわかる。
, 10 is added to this with La2O3, MoO3 and fluorine (F
) shows the changes in various physical properties when adding 20% of the material. Among these physical properties, it can be seen that the anti-thermal effect on thermal conductivity is particularly remarkable.

表−1にみられるように、本発明の実施例により得られ
る溶融セラミックスは、熱膨張係数と硬度が適ツ1であ
るうえ熱伝導率が改府されており、また均質微細な組織
を有しているので。
As shown in Table 1, the molten ceramics obtained according to the examples of the present invention have a thermal expansion coefficient and hardness of 1, as well as improved thermal conductivity, and a homogeneous fine structure. Because I do.

磁気ヘッド用穴板材ネ1として用いるのに好適である。It is suitable for use as a hole plate material 1 for a magnetic head.

なお、本発明の溶融セラミックスを製造する際は、j、
記の実施例に限られることなく、たとえば、弗、糺(F
)添加原料として他の公知の弗素導入原料を適宜使用し
得る。また、溶融装置は白金等のilt金属製でなく、
必要に応じ、黒鉛製のものを窒、に雰囲気中で使用する
ようにしてもよい。
In addition, when manufacturing the molten ceramics of the present invention, j,
Examples include, but are not limited to, the examples described above.
) Other known fluorine-introducing raw materials may be appropriately used as additive raw materials. In addition, the melting device is not made of ilt metal such as platinum,
If necessary, one made of graphite may be used in a nitrogen atmosphere.

(以下余白) 〔発明の効用〕 以1−に述へたとおり、本発明の溶融セラミックスは、
広範囲にわたり、溶融性をみいだされたTiO2−Zn
O系組成物を溶融して成るものであるから、従来の焼結
法によるものに比べ、適ちな熱膨張係数と硬度を維持し
つつ製品Ml織の均質性、緻密・微細性および熱伝導性
を改善するとともに製品の生産性を著しく向上させるこ
とができる。
(The following is a blank space) [Efficacy of the invention] As described in 1- below, the molten ceramic of the present invention has the following properties:
TiO2-Zn has been found to have meltability over a wide range
Since it is made by melting an O-based composition, it maintains an appropriate coefficient of thermal expansion and hardness, and improves the homogeneity, density, fineness, and thermal conductivity of the product M1 weave compared to those made using conventional sintering methods. In addition to improving product productivity, it is possible to significantly improve product productivity.

また、従来の溶融法によるものに比へ、溶融の際の温度
条件や製品の熱伝導性を改善し得る。
In addition, the temperature conditions during melting and the thermal conductivity of the product can be improved compared to conventional melting methods.

従って、本発明の溶融セラミックスは、磁気へりド用基
板材料としてとくに好適であるのみならず、その諸性性
が・桿求される他のエレクトロニクス分野等の種々の用
途にも用いることができる。
Therefore, the fused ceramic of the present invention is not only particularly suitable as a substrate material for a magnetic helix, but also can be used in various applications such as other electronic fields where various properties are desired.

Claims (3)

【特許請求の範囲】[Claims] (1)モル%で、TiO_23〜80%、ZnO5〜7
0%、MgO0〜20%、CaO0〜60%、SrO0
〜20%、BaO0〜20%、PbO0〜25%、Al
_2O_30〜25%、Cr_2O_30〜10%、L
a_2O_30〜25%、ZrO_20〜25%MnO
_20〜25%、Nb_2O_50〜25%、Ta_2
O_50〜20%、WO_30〜20%、MoO_30
〜20%、Li_2O+Na_2O+K_2O+Cs_
2O0〜15%、SiO_2+B_2O_3+P_2O
_5+GeO_20〜15%であり、また上記金属酸化
物の酸素(O)の一部と置換した弗素(F)の量が酸素
(O)に対するイオン数比(F^−/O^2^−)で0
〜0.4である組成物を溶融して成ることを特徴とする
溶融セラミックス。
(1) In mol%, TiO_23-80%, ZnO5-7
0%, MgO0-20%, CaO0-60%, SrO0
~20%, BaO0~20%, PbO0~25%, Al
_2O_30-25%, Cr_2O_30-10%, L
a_2O_30-25%, ZrO_20-25%MnO
_20-25%, Nb_2O_50-25%, Ta_2
O_50-20%, WO_30-20%, MoO_30
~20%, Li_2O+Na_2O+K_2O+Cs_
2O0~15%, SiO_2+B_2O_3+P_2O
_5+GeO_20 to 15%, and the amount of fluorine (F) substituted for part of the oxygen (O) in the metal oxide is the ion number ratio (F^-/O^2^-) to oxygen (O). 0
1. A fused ceramic characterized by being formed by melting a composition having a viscosity of 0.4 to 0.4.
(2)(La_2O_3+MoO_3≧1%)および/
または(F^−/O^2^−≧0.01)であることを
特徴とする特許請求の範囲(1)項に記載の溶融セラミ
ックス。
(2) (La_2O_3+MoO_3≧1%) and/
or (F^-/O^2^-≧0.01), The fused ceramic according to claim (1).
(3)溶融セラミックスが磁気ヘッド基板用であること
を特徴とする特許請求の範囲(1)項および(2)項に
記載の溶融セラミックス。
(3) The molten ceramic according to claims (1) and (2), wherein the molten ceramic is used for a magnetic head substrate.
JP60283640A 1985-12-16 1985-12-16 Fused ceramics Pending JPS62143872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283640A JPS62143872A (en) 1985-12-16 1985-12-16 Fused ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283640A JPS62143872A (en) 1985-12-16 1985-12-16 Fused ceramics

Publications (1)

Publication Number Publication Date
JPS62143872A true JPS62143872A (en) 1987-06-27

Family

ID=17668136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283640A Pending JPS62143872A (en) 1985-12-16 1985-12-16 Fused ceramics

Country Status (1)

Country Link
JP (1) JPS62143872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392675A2 (en) * 1989-04-14 1990-10-17 Matsushita Electric Industrial Co., Ltd. Substrate material for magnetic head and magnetic head using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392675A2 (en) * 1989-04-14 1990-10-17 Matsushita Electric Industrial Co., Ltd. Substrate material for magnetic head and magnetic head using same
US5217818A (en) * 1989-04-14 1993-06-08 Matsushita Electric Industrial Co., Ltd. Substrate material for magnetic head and magnetic head using same

Similar Documents

Publication Publication Date Title
EP2263979A1 (en) Crystallized glass substrate for information recording medium and method of producing the same
KR900003448B1 (en) Glass composition for binding and filling ceramic parts
KR100484059B1 (en) Glass composition, sealing glass for magnetic head and magnetic head
JP2009227474A (en) Lithium ion conductive solid electrolyte and method of manufacturing the same
JP4537092B2 (en) Glass composition and magnetic head
JPH0629152B2 (en) Method for producing crystallized glass for substrate
JPS62143872A (en) Fused ceramics
JP5545589B2 (en) Manufacturing method of sealing material
JPS6136135A (en) Filling glass for magnetic recording head
CN112939595B (en) Microwave dielectric ceramic material with near-zero temperature coefficient at high temperature and preparation method thereof
JPS6021940B2 (en) Non-magnetic ceramics for magnetic heads
JPH0667775B2 (en) Crystallized glass and manufacturing method thereof
JP4574792B2 (en) Magnetic crystallized glass
JP2005068008A (en) Electronic circuit board
JPH013032A (en) Crystallized glass and its manufacturing method
JPH0620858A (en) Manufacture of ferrite core by injection molding
JPH0469103B2 (en)
JPS63107818A (en) Fine hexagonal ferrite particle and production thereof
JP2022041894A (en) Inorganic composition of high thermal expansion coefficient
JPS6029669B2 (en) Non-magnetic ceramics for magnetic heads
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
JP4594021B2 (en) Dielectric ceramic composition, method for producing the same, and wiring board
JP2015160793A (en) glass or crystallized glass
JPH0228538B2 (en)
KR100390281B1 (en) Bonding glass for fixing magnetic head