JPH0667775B2 - Crystallized glass and manufacturing method thereof - Google Patents
Crystallized glass and manufacturing method thereofInfo
- Publication number
- JPH0667775B2 JPH0667775B2 JP29876287A JP29876287A JPH0667775B2 JP H0667775 B2 JPH0667775 B2 JP H0667775B2 JP 29876287 A JP29876287 A JP 29876287A JP 29876287 A JP29876287 A JP 29876287A JP H0667775 B2 JPH0667775 B2 JP H0667775B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- crystallized glass
- temperature
- thermal expansion
- zro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Glass Compositions (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種電気機器分野、例えば、磁気ヘッド分野
等に用いられる基板材等に適した熱膨張係数と改善され
た熱膨張曲線とを有する結晶化ガラスおよびその製造方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention provides a thermal expansion coefficient and an improved thermal expansion curve suitable for a substrate material used in various electric device fields, for example, a magnetic head field. The present invention relates to a crystallized glass having the same and a manufacturing method thereof.
[従来の技術] 磁気ヘッドは、オーディオ機器、VTRおよびコンピュ
ータ等において、情報の記録、再生、消去機能を担う重
要な部品であり、近年需要が増大している。特に、これ
らの機器の小型化、情報の高密度化の要望が高まる中
で、IC等の薄膜技術を応用した薄膜磁気ヘッドの開発
が、急速に進んできている。[Prior Art] A magnetic head is an important component for recording, reproducing, and erasing information in audio equipment, VTRs, computers, and the like, and demand has been increasing in recent years. In particular, with the increasing demand for miniaturization of these devices and high density of information, development of thin film magnetic heads applying thin film technology such as IC has been rapidly progressing.
この薄膜磁気ヘッドは、基板上に磁性材料を薄膜形成し
たもので、Ni−Znフェライト、Mn−Znフェライ
ト、パーマロイ(Fe−Ni)、センダスト(Fe−A
l−Si)およびそれらの非晶質物等の薄膜が、情報の
記録、再生、消去機能を担い、基板は磁性材料の支持と
共に摺動機能等を担うため、基板自体にも、種々の特性
が要望される。すなわち、(1)磁性材料との接着性を
良好にするため、磁性材の種類に応じ、約70〜180
×10-7/℃の範囲の熱膨張係数を選び得ること、
(2)磁性材料の薄膜形成作業等が高温で行なわれるた
め、600℃以上の耐熱性を有すること、(3)磁気テ
ープやディスクとの摺動により片ヘリを生じないように
前記磁性材料とほぼ同等の硬度、すなわち、ビッカース
硬度で約600〜1150kgf/mm2の範囲を有するこ
と、(4)組織が緻密で均質、微細であること、(5)
品質が一定で生産性に優れていること等が一般に必要と
されている。This thin film magnetic head is formed by forming a thin film of a magnetic material on a substrate, and is made of Ni-Zn ferrite, Mn-Zn ferrite, permalloy (Fe-Ni), sendust (Fe-A).
The thin film such as 1-Si) and their amorphous materials have a function of recording, reproducing and erasing information, and the substrate has a sliding function as well as a support of the magnetic material. Therefore, the substrate itself has various characteristics. Requested. That is, (1) about 70 to 180 depending on the type of magnetic material in order to improve the adhesiveness with the magnetic material.
Selecting a coefficient of thermal expansion in the range of 10 −7 / ° C.,
(2) It has a heat resistance of 600 ° C. or higher because a thin film forming work of a magnetic material is performed at a high temperature. Almost the same hardness, that is, having a Vickers hardness in the range of about 600 to 1150 kgf / mm 2 , (4) The structure is dense, homogeneous, and fine, (5)
It is generally required that the quality is constant and the productivity is excellent.
また、その他の各種電気機器の製造分野においても、基
板上に、結晶質または非結晶質の金属、合金および金属
酸化物などを接着あるいは薄膜形成した部品が、種々利
用されており、これらの基板には、上記の各種材料に応
じて、さらに40〜220×10-7/℃に及ぶ広い範囲
の熱膨張係数が要求されている。Also, in the field of manufacturing other various electric devices, various components in which a crystalline or amorphous metal, alloy, metal oxide, or the like is adhered or formed into a thin film on a substrate are variously used. Is required to have a wide range of thermal expansion coefficient ranging from 40 to 220 × 10 −7 / ° C. according to the above various materials.
これらの基板用材料としては、粉体焼結法によるセラミ
ックスや、溶融法による結晶化ガラスが候補とされてい
る。しかし、焼結セラミックスは、粉体の粒度調整等工
程操作が複雑であり高価となるうえ、気孔の全くない緻
密なものを得るのは困難である。As materials for these substrates, ceramics by a powder sintering method and crystallized glass by a melting method are candidates. However, sintered ceramics are complicated and expensive in process operations such as particle size adjustment of powders, and it is difficult to obtain dense ceramics having no pores.
これに比べて、結晶化ガラスは緻密なものを容易に得ら
れる利点があり、前記要望事項に適うとするものが種々
知られている。例えば、特開昭49−125419号公
報には、SiO2−Li2O−TiO2系ガラスから得
られる高硬度、高膨張の結晶化ガラスが開示されてい
る。また、特開昭60−180934号公報には、Si
O2−Li2O−Al2O3−Au−Ag−Cu系ガラ
スから得られる科学的加工可能な高膨張ガラスセラミッ
ク体が開示されている。さらに、特公昭33−7543
号公報においては、SiO2−Al2O3−ZnO−T
iO2系ガラスから得られる高膨張、高硬度の結晶化ガ
ラスが、特公昭46−16518号公報には、SiO2
−Al2O3−RO−ZrO2系のガラスから得られる
強度の大きい結晶化ガラスが、特開昭59−20373
6号公報には、SiO2−Al2O3−ZnO−ZrO
2−TiO2系のガラスから得られる高膨張結晶化ガラ
スがそれぞれ述べられている。ところが、これらの結晶
化ガラスは、膨張係数は所要の条件を満たしているもの
の、熱膨張曲線に大きな屈曲を生じてしまうため、磁性
材その他の材料との接着性が悪く、また熱処理条件を種
々工夫しても結晶粒の粗大化を防止し難いなどの欠点が
ある。In comparison with this, crystallized glass has an advantage that a dense glass can be easily obtained, and various kinds of glass that meet the above requirements are known. For example, Japanese Patent Application Laid-Open No. Sho 49-125419 discloses a crystallized glass having a high hardness and a high expansion obtained from a SiO 2 —Li 2 O—TiO 2 glass. Further, Japanese Patent Laid-Open No. 60-180934 discloses that Si
O 2 -Li 2 O-Al 2 O 3 -Au-Ag-Cu system obtained from glass scientific processable high expansion glass ceramic body is disclosed. Furthermore, Japanese Examined Japanese Patent Publication 33-7543
In JP, SiO 2 -Al 2 O 3 -ZnO -T
high expansion resulting from iO 2 based glass, crystallized glass having high hardness is, Japanese Patent Publication No. Sho 46-16518, SiO 2
A crystallized glass having high strength, which is obtained from a -Al 2 O 3 -RO-ZrO 2 type glass, is disclosed in JP-A-59-20373.
No. 6 discloses that SiO 2 —Al 2 O 3 —ZnO—ZrO.
High expansion glass-ceramics obtained from 2 -TiO 2 system glass are mentioned, respectively. However, although these crystallized glasses satisfy the required conditions for the expansion coefficient, they cause a large bend in the thermal expansion curve, and therefore have poor adhesion to magnetic materials and other materials, and various heat treatment conditions. Even if devised, there is a drawback that it is difficult to prevent the coarsening of crystal grains.
[発明が解決しようとする問題点] 本発明の目的は、前述の各要望事項を満たしつつ、上記
の熱膨張曲線の屈曲性を改善した、結晶化ガラスおよび
その製造方法を提供することにある。[Problems to be Solved by the Invention] An object of the present invention is to provide a crystallized glass and a method for producing the same, in which the flexibility of the thermal expansion curve is improved while satisfying the above-mentioned requirements. .
[問題点を解決するための手段] 本発明者らは、上記目的を達成するため種々の試験研究
を重ねた結果、比較的多量のZnOを含むSiO2−A
l2O3−ZnO−TiO2系において、MgO成分と
PbO成分の特定量を必須成分として含有させた原ガラ
スを熱処理すると、適切な硬度と広い範囲の熱膨張係数
を有し、しかも熱膨張曲線に屈曲を生じない結晶化ガラ
スが得られることを見出すことができた。[Means for Solving Problems] The inventors of the present invention have conducted various test studies in order to achieve the above-mentioned object, and as a result, SiO 2 -A containing a relatively large amount of ZnO.
In the 1 2 O 3 —ZnO—TiO 2 system, when heat treatment is applied to the raw glass containing a specific amount of the MgO component and the PbO component as essential components, the raw glass has an appropriate hardness and a wide range of thermal expansion coefficient, and further has a thermal expansion coefficient. It was possible to find that a crystallized glass was obtained in which the curve did not bend.
また、上記組成系の原ガラスを用いて、これを結晶化温
度としては比較的低い所定の温度で結晶化熱処理を行な
うと適切な硬度と広い範囲の熱膨張係数を有し、しかも
組織の緻密性、均質微細性に優れ、そのうえ、熱膨張曲
線の屈曲性を改善した結晶化ガラスが容易に得られるこ
とを見出すことができた。本発明は、これらの知見に基
づいてなされたものである。Further, when the raw glass of the above composition is used and subjected to a crystallization heat treatment at a predetermined temperature which is relatively low as a crystallization temperature, it has an appropriate hardness and a wide range of thermal expansion coefficient, and has a dense structure. It has been found that a crystallized glass having excellent properties and homogeneity and having improved flexibility of the thermal expansion curve can be easily obtained. The present invention has been made based on these findings.
本願第一の発明にかかる結晶化ガラスの特徴は、重量%
で、SiO230〜65%、Al2O35〜25%、Z
nO 10.5〜40%、MgO 3.5〜20%、P
bO 0.5〜10%、CaO+SrO+BaO 0〜
15%、TiO22〜15%、B2O30〜10%、L
a2O3+Y2O3+Gd2O3+Ta2O5+Nb2
O5+WO30〜10%、ZrO2+P2O5+SnO
20〜5%、ただしZrO20〜2.5%、P2O50
〜5%、SnO20〜2%、As2O3+Sb2O30
〜2%および上記各金属酸化物の金属元素の1種または
2種以上の弗化物をFの合計量として 0〜5%を含有
する原ガラスを熱処理することにより得られ、かつ40
〜220×10-7/℃の範囲の熱膨張係数を有するとこ
ろにある。The feature of the crystallized glass according to the first invention of the present application is that the weight% is
, SiO 2 30-65%, Al 2 O 3 5-25%, Z
nO 10.5-40%, MgO 3.5-20%, P
bO 0.5-10%, CaO + SrO + BaO 0-
15%, TiO 2 2 to 15%, B 2 O 3 0 to 10%, L
a 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Ta 2 O 5 + Nb 2
O 5 + WO 3 0~10%, ZrO 2 + P 2 O 5 + SnO
2 0-5%, provided that ZrO 2 0~2.5%, P 2 O 5 0
~ 5%, SnO 2 0-2%, As 2 O 3 + Sb 2 O 3 0
˜2% and one or more fluorides of the metal elements of each of the above metal oxides in a total amount of 0 to 5% by heat treatment of a raw glass, and 40
It has a coefficient of thermal expansion in the range of ˜220 × 10 −7 / ° C.
本発明の結晶化ガラス組成は、原ガラスと同様酸化物基
準で表示し得るが、原ガラスの組成範囲を上記のように
限定した理由について以下にのべる。The crystallized glass composition of the present invention can be expressed on the basis of oxides like the original glass, but the reason why the composition range of the original glass is limited as described above will be described below.
すなわち、SiO2成分は、その量が30%未満の場合
には、得られる結晶化ガラス製品は組織が粗大化しやす
いうえ、化学的耐久性および硬度が悪くなり、また65
%を超えると原ガラスの溶融が困難になる。That is, when the amount of the SiO 2 component is less than 30%, the obtained crystallized glass product tends to have a coarse structure, and has poor chemical durability and hardness.
If it exceeds%, it becomes difficult to melt the raw glass.
Al2O3成分は、その量が5%未満では製品の化学的
耐久性および硬度が悪くなり、また25%を超えると高
膨張のα−石英、α−クリストバライトの結晶析出量が
低下し、所望の高膨張製品が得難くなる。If the amount of Al 2 O 3 component is less than 5%, the chemical durability and hardness of the product will be poor, and if it exceeds 25%, the amount of highly-expanded α-quartz and α-cristobalite crystal precipitation will decrease. It becomes difficult to obtain a desired high expansion product.
ZnO成分は、ガラスの加熱処理により、ZnOを構成
要素とするガーナイト等の結晶を生成し、製品の硬度を
向上させる効果を有するきわめて重要な成分であるが、
その量が10.5%未満では上記効果が得られず、また
40%を超えるとガラスが不安定になり、加熱処理によ
り結晶粒が粗大化しやすい。The ZnO component is a very important component that has the effect of producing crystals such as garnite containing ZnO as a constituent element by heat treatment of glass and improving the hardness of the product.
If the amount is less than 10.5%, the above effect cannot be obtained, and if it exceeds 40%, the glass becomes unstable and the crystal grains are likely to be coarsened by the heat treatment.
MgO成分は、その量が3.5%未満ではガラスが不安
定になると共に溶融性が悪化し、さらに製品の硬度が低
下する。また、20%を超えると製品中の結晶粒が粗大
になり亀裂等を生じやすい。If the amount of the MgO component is less than 3.5%, the glass becomes unstable and the meltability deteriorates, and the hardness of the product decreases. Further, if it exceeds 20%, the crystal grains in the product become coarse and cracks and the like are likely to occur.
PbO成分およびCaO、SrO、BaO成分は、膨張
曲線の200℃付近に比較的顕著な屈曲をもたらすα−
クリストバライト結晶の過大な析出を防止し、また55
0℃付近でのα−石英の相転移による屈曲を防止すると
ともに所望の熱膨張係数を得る効果が見出された重要な
成分であり、特にPbO成分はこの効果が著しい。これ
らの成分は、さらにガラスの溶融性の向上および成形時
のガラスの安定性にも寄与する。しかし、PbO成分の
量が0.5%未満では上記効果が十分でなく、また、P
bO成分が10%を、CaO、SrOおよびBaOの1
種または2種以上の成分の合計量が15%をそれぞれ超
えると、所望の結晶が析出し難くなり、結晶粒も粗大と
なる。さらに、上記効果を顕著にするためには、Mg
O:(PbO+CaO+SrO+BaO)の重量比を
(1〜3):1とすることが一層望ましい。末尾に掲げ
た第1図は、SiO249%、Al2O319%、Mg
O 7.0%、ZnO 19.7%、TiO25%、A
s2O30.3%の組成のガラスを昇温速度4.6℃/
分で加熱し、1100℃に120分間保持して得た結晶
化ガラスの熱膨張曲線(a)と、上記ガラスを基礎組成
とし、これにPbO 2.5%およびBaO 2%を添
加して、MgO:PbO+BaOの重量比を約1.5:
1としたガラスを同様に熱処理して得た結晶化ガラスの
熱膨張曲線(b)とを比較して示したものである。図か
ら明らかなように、PbO+BaOの添加によって、熱
膨張曲線の屈曲を顕著に防止することができる。The PbO component and the CaO, SrO, and BaO components cause α- which causes a relatively remarkable bend around 200 ° C. of the expansion curve.
Prevents excessive precipitation of cristobalite crystals,
It is an important component that has been found to have an effect of preventing bending due to the phase transition of α-quartz at around 0 ° C. and obtaining a desired coefficient of thermal expansion, and this effect is particularly remarkable for the PbO component. These components also contribute to the improvement of the meltability of the glass and the stability of the glass during molding. However, if the amount of PbO component is less than 0.5%, the above effect is not sufficient, and P
10% of bO component is 1% of CaO, SrO and BaO
If the total amount of one kind or two or more kinds of components exceeds 15%, it becomes difficult to deposit desired crystals and the crystal grains become coarse. Further, in order to make the above effect remarkable, Mg
It is more desirable that the weight ratio of O: (PbO + CaO + SrO + BaO) be (1 to 3): 1. Figure 1 at the end shows SiO 2 49%, Al 2 O 3 19%, Mg
O 7.0%, ZnO 19.7%, TiO 2 5%, A
A glass having a composition of s 2 O 3 0.3% was heated at a rate of 4.6 ° C. /
And the thermal expansion curve (a) of the crystallized glass obtained by heating at 1100 ° C. for 120 minutes, and using the above glass as a basic composition, adding PbO 2.5% and BaO 2%, The weight ratio of MgO: PbO + BaO is about 1.5:
It is shown by comparing with the thermal expansion curve (b) of the crystallized glass obtained by similarly heat-treating the glass designated as No. 1. As is clear from the figure, the addition of PbO + BaO can significantly prevent the bending of the thermal expansion curve.
TiO2成分は、核形成剤として不可欠であるが、その
合計量が2%未満では所望の結晶を生成させることがで
きず、また15%を超えると、ガラスが不安定になって
しまう。The TiO 2 component is indispensable as a nucleating agent, but if the total amount is less than 2%, desired crystals cannot be formed, and if it exceeds 15%, the glass becomes unstable.
B2O3成分は、ガラスの溶融性を改善するのに有効で
あるが、その量が10%を超えると、所望の結晶を生成
させ難くなる。The B 2 O 3 component is effective in improving the meltability of glass, but if its amount exceeds 10%, it becomes difficult to form desired crystals.
La2O3、Y2O3、Gd2O3、Ta2O5、Nb
2O5およびWO3成分は、製品の硬度と化学的耐久性
を改善するのに有効であるので、これらの成分の1種ま
たは2種以上の合計量を10%まで含有させることがで
きる。 La 2 O 3, Y 2 O 3, Gd 2 O 3, Ta 2 O 5, Nb
Since the 2 O 5 and WO 3 components are effective in improving the hardness and chemical durability of the product, the total amount of one or more of these components can be contained up to 10%.
ZrO2、P2O5およびSnO2成分は、核形成剤と
して補助的に使用し得るが、これらの成分の1種または
2種以上の合計量が5%を、また各成分がそれぞれ2.
5%、5%および2%を超えると、ガラスの安定性が悪
化したり、製品組織が不均質になったりする。The ZrO 2 , P 2 O 5 and SnO 2 components can be used auxiliary as nucleating agents, but the total amount of one or more of these components is 5% and each component is 2.
If it exceeds 5%, 5% or 2%, the stability of the glass may be deteriorated or the product structure may be inhomogeneous.
As2O3および/またはSb2O3成分は、ガラス溶
融の際の清澄剤として添加し得るが、これらの1種また
は2種の合計量は2%以下で十分である。The As 2 O 3 and / or Sb 2 O 3 component may be added as a fining agent during glass melting, but the total amount of one or two of these is preferably 2% or less.
また、上記金属酸化物の1種または2種以上の金属元素
の弗化物を含有させると、結晶化の調整等に有効である
が、その量がFの合計量として5%を超えるとガラスが
不安定になるうえ、所望の製品が得られない。Further, when one or more of the above metal oxides, fluorides of metal elements are contained, it is effective for adjusting crystallization and the like, but if the amount exceeds 5% as a total amount of F, the glass is In addition to being unstable, the desired product cannot be obtained.
なお、本発明における原ガラスの上記各成分は合計で9
0%以上とすることが好ましく、上記の成分の他に、所
望の特性を損なわない範囲内で、合計で10%程度まで
のMnO2、Ni2O3、Co2O3、Fe2O3およ
びCu2O等の着色剤並びにGeO2およびBi2O3
をまた合計で1%程度までのLi2O、Na2O、K2
OおよびSO3等の成分をそれぞれ含有させることがで
きる。The above components of the raw glass in the present invention are 9 in total.
It is preferably set to 0% or more, in addition to the above components, MnO 2 in a range that does not impair the desired properties, up to about 10% in total, Ni 2 O 3, Co 2 O 3, Fe 2 O 3 And colorants such as Cu 2 O and GeO 2 and Bi 2 O 3
Up to about 1% in total of Li 2 O, Na 2 O, K 2
Components such as O and SO 3 may be contained.
つぎに、本願第二の発明にかかる結晶化ガラスの製造方
法の特徴は、上記の組成を有する原ガラスを溶融し、成
形した後、加熱昇温し、ついで1150℃以下の温度で
結晶化熱処理を行なうところにある。Next, the feature of the method for producing crystallized glass according to the second invention of the present application is that the raw glass having the above composition is melted, shaped, heated and heated, and then heat-treated for crystallization at a temperature of 1150 ° C. or lower. Is to do.
本発明の結晶化ガラスの製造方法の実施に当って、ガラ
スの各形成温度の低温域を、2.5℃/分以上の速度で
加熱昇温すると、組織の緻密性、均質微細性に一段と優
れた製品が得られ易いので好ましい。In carrying out the method for producing a crystallized glass of the present invention, heating and raising the low temperature region of each glass forming temperature at a rate of 2.5 ° C./min or more will further improve the denseness and homogeneity of the structure. It is preferable because an excellent product can be easily obtained.
また、上記本発明の製造方法においては、原ガラスを鏡
面研磨等の精密研磨加工を行なった後結晶化させても研
磨面が実質的に変化を受けないことがみいだされている
ので、精密研磨加工を施した結晶化ガラス製品が必要な
場合は、硬度が小さく精密研磨作業に有利な原ガラスの
段階でこれを行なうことが好ましい。Further, in the production method of the present invention, since it has been found that the polished surface is not substantially changed even if the raw glass is crystallized after precision polishing such as mirror polishing, When a polished crystallized glass product is required, it is preferably carried out at the stage of the raw glass, which has a small hardness and is advantageous for precision polishing work.
[実施例] つぎに、本発明にかかる好適な実施例につき説明する。[Examples] Next, preferred examples of the present invention will be described.
表−1は、本発明の結晶化ガラスの実施組成例(No.1
〜19)と従来のSiO2−Li2O系、SiO2−A
l2O3−ZnO系およびSiO2−Al2O3−Zn
O−TiO2系の比較組成例(No.A〜D)を、それぞ
れの熱処理条件および得られた製品の線熱膨張係数;α
×10-7/℃(測定温度範囲;50〜600℃)、ビッ
カース硬度(Hv)、および結晶粒径についての測定結
果とともに示したものである。また、表−2は、本発明
の結晶化ガラスの製造方法の実施例(No.1〜3)並び
に、これらと同一ガラス組成を用い、熱処理条件のみを
変え、低温域において小さな昇温速度を与えた場合の参
考例(No.1′〜3′)につき、表−1同様使用したガ
ラス組成、各熱処理条件および得られた製品の諸性質
を、対比して示したものである。Table 1 shows an example of the composition of the crystallized glass of the present invention (No. 1).
-19) and conventional SiO 2 -Li 2 O system, SiO 2 -A
l 2 O 3 -ZnO system and SiO 2 -Al 2 O 3 -Zn
Comparative composition examples (Nos. A to D) of O—TiO 2 system were subjected to respective heat treatment conditions and the linear thermal expansion coefficient of the obtained product; α
It is shown together with the measurement results of x10 -7 / ° C (measurement temperature range; 50 to 600 ° C), Vickers hardness (Hv), and crystal grain size. Further, Table 2 shows the examples (No. 1 to 3) of the method for producing crystallized glass of the present invention and the same glass composition as those, and only the heat treatment conditions were changed, and the small heating rate was obtained in the low temperature range. For the reference examples (No. 1'to 3 ') when given, the glass compositions used, the respective heat treatment conditions, and the various properties of the obtained products are shown in comparison with each other in Table 1.
また、表−3は、本発明の結晶化ガラスの製造方法の別
の実施例(No.1〜3)について、同一ガラス組成を用
い、熱処理温度のみを変えた場合の、諸性質の変化を示
したものである。 本発明の上記実施例の原ガラスは、
いずれも酸化物、炭酸塩、硝酸塩および弗化物等の原料
を混合し、これを通常の溶融装置を用いて約1350〜
1500℃の温度で溶融し、攪拌均質化した後、所望形
状に成形し冷却して得た。その後、2.6〜10℃/分
の速度で昇温し、表記の各結晶化温度で60〜180分
間保持し、結晶核を形成して微結晶を生成させ、所望の
結晶化ガラスを得た。Table 3 shows changes in various properties of another example (No. 1 to 3) of the method for producing a crystallized glass of the present invention, using the same glass composition and changing only the heat treatment temperature. It is shown. The raw glass of the above embodiment of the present invention is
In each case, raw materials such as oxides, carbonates, nitrates and fluorides are mixed, and this is mixed with a conventional melting device to about 1350 to
It was obtained by melting at a temperature of 1500 ° C., homogenizing by stirring, shaping into a desired shape and cooling. Thereafter, the temperature is raised at a rate of 2.6 to 10 ° C./min, and the temperature is maintained at each of the indicated crystallization temperatures for 60 to 180 minutes to form crystal nuclei to generate fine crystals, thereby obtaining a desired crystallized glass. It was
表−1にみられるとおり、比較例A、BおよびCの結晶
化ガラスは、主結晶がα−クリストバライトであるため
に、熱膨張曲線に屈曲を示し、また平均結晶粒径が約1
0μ以上と非常に大きい。特に比較例Aについては、表
面状態が悪く、亀裂を生じやすかった。また比較例Dの
ガラスは、溶融性が非常に悪く、熔解に1600℃の高
温を要し、かつガラスが不安定で、成形時に乳白化し、
また結晶化後は亀裂が発生し、諸物性の測定は不能であ
った。これに対し、本発明の実施例の結晶化ガラスは、
いずれも膨張曲線に屈曲がなく、約40〜220×10
-7/℃の範囲の熱膨張係数を有し、ビッカース硬度につ
いても約720〜1110kgf/mm2の数値範囲にあり、
結晶粒径についても0.02〜0.4μと非常に小さ
く、微細性に優れている。 As can be seen from Table-1, the crystallized glasses of Comparative Examples A, B and C show a bend in the thermal expansion curve because the main crystal is α-cristobalite, and the average crystal grain size is about 1 or less.
It is very large, 0 μ or more. Especially in Comparative Example A, the surface condition was poor and cracking was likely to occur. In addition, the glass of Comparative Example D has a very poor meltability, requires a high temperature of 1600 ° C. for melting, and the glass is unstable, and whitening occurs during molding.
Moreover, cracks were generated after crystallization, and various physical properties could not be measured. On the other hand, the crystallized glass of the example of the present invention,
In both cases, there is no bending in the expansion curve, and approximately 40 to 220 x 10
It has a coefficient of thermal expansion in the range of -7 / ° C and has a Vickers hardness in the numerical range of about 720 to 1110 kgf / mm 2 .
The crystal grain size is also as small as 0.02 to 0.4 μ, and the fineness is excellent.
また、表−2にみられるとおり、2℃/分の小さな昇温
速度で加熱した参考例は、1′については結晶粒径0.
02〜0.03μと微細性には優れているが、ビッカー
ス硬度が所望の数値より小さく、2′、3′については
亀裂を生じて諸物性の測定はできなかった。これに対し
2.5℃/分以上の昇温速度で急速加熱した本発明の方
法の実施例による結晶化ガラスは、熱膨張係数、ビッカ
ース硬度とも所望の範囲にはいっており、結晶粒径につ
いても0.02〜0.3μと微細性にすぐれている。In addition, as seen in Table 2, in the reference example heated at a small temperature rising rate of 2 ° C./min, the crystal grain size of 1 ′ was 0.
Although the fineness was as high as 02 to 0.03 μ, the Vickers hardness was smaller than the desired value and cracks occurred in 2 ′ and 3 ′, and various physical properties could not be measured. On the other hand, the crystallized glass according to the example of the method of the present invention which was rapidly heated at a temperature rising rate of 2.5 ° C./min or more, both the thermal expansion coefficient and the Vickers hardness were within the desired ranges, and the crystal grain size was Also has excellent fineness of 0.02-0.3μ.
また、表−3にみられるとおり、本発明の方法において
は、同一組成の原ガラスを用い、所定の範囲で結晶化温
度を変えることにより、所望の諸性質を維持しながら、
熱膨張係数を大きく変化させることができる。Further, as seen in Table 3, in the method of the present invention, using the raw glass of the same composition, by changing the crystallization temperature in a predetermined range, while maintaining the desired various properties,
The thermal expansion coefficient can be greatly changed.
さらに、表−1の実施例No.12およびNo.14につい
て、原ガラスを10.0×10.0×1.0mmの薄板状
にスライスし、精密研磨して、その表面粗度(Rma
x)が、185Å(No.12)と70Å(No.14)の試
料を得た後、表記の熱処理を行なったところ、得られた
結晶化ガラスは、形状に変化がなく、その表面粗度は、
それぞれ200Åと90Åであって、熱処理の前後で鏡
面状態に実質的な変化を生じないことが確かめられた。
従って結晶化後、表面精度向上のためさらに鏡面研磨作
業を付加する必要がある場合もその労力は大幅に低減さ
れたものとなる。Further, with respect to Examples No. 12 and No. 14 in Table-1, the raw glass was sliced into a thin plate of 10.0 × 10.0 × 1.0 mm, precision-polished, and its surface roughness (Rma
x) is 185Å (No. 12) and 70Å (No. 14), and then subjected to the heat treatment described, the crystallized glass obtained has no change in shape and its surface roughness Is
It was confirmed that it was 200 Å and 90 Å, respectively, and there was no substantial change in the mirror surface state before and after the heat treatment.
Therefore, even if it is necessary to add mirror polishing work to improve the surface accuracy after crystallization, the labor is greatly reduced.
本発明の実施例による結晶化ガラスは、いずれも原ガラ
スの際の溶融性が1500℃以下と良好で生産性に優
れ、また、実質的に無アルカリで、化学的耐久性にも優
れており、かつ約2〜4kcal/m.h.℃と結晶化ガラスと
しては大きな熱伝導率を有している。Each of the crystallized glasses according to the examples of the present invention has a good meltability of 1,500 ° C. or less when it is a raw glass and is excellent in productivity, and is substantially alkali-free and excellent in chemical durability. Moreover, it has a large thermal conductivity of about 2 to 4 kcal / mh ° C as a crystallized glass.
[発明の効果] 以上述べたとおり、本発明の結晶化ガラスは、特定組成
のSiO2−Al2O3−ZnO−MgO−PbO−T
iO2系ガラスを熱処理して得られるものであるから、
所望の硬度と広い範囲の熱膨張係数とを有し、しかも組
織の緻密性、均質微細性に優れているうえ、屈曲を改善
した優れた熱膨張曲線を示す。従って、薄膜型等の各種
磁気ヘッド用基板材、各種IC用基板材、磁気ディスク
用基板材および薄膜等の超電導材料用基板材等上記の諸
特性を要求される電気部品等の各種基板材として、特に
好適である。また、ベアリング球や紡糸用ガイド等の機
械部品およびタイル等の建築材料としても使用し得る。As described [Effect of the Invention] above, the crystallized glass of the present invention, SiO 2 having a specific composition -Al 2 O 3 -ZnO-MgO- PbO-T
Since it is obtained by heat-treating an iO 2 glass,
It has a desired hardness and a wide range of coefficient of thermal expansion, and is excellent in the denseness and homogeneity of the structure, and exhibits an excellent thermal expansion curve with improved bending. Therefore, as a substrate material for various magnetic heads such as a thin film type, a substrate material for various ICs, a substrate material for a magnetic disk, a substrate material for a superconducting material such as a thin film, etc. Is particularly suitable. It can also be used as a mechanical material such as bearing balls and spinning guides, and as a building material such as tiles.
また、本発明の結晶化ガラスの製造方法は、上記系のガ
ラスを用いて、これを所定の比較的低温で結晶化させる
ので、上記の諸特性に一段と優れた製品を一層歩留り良
く得ることができる。Further, the method for producing a crystallized glass of the present invention uses the glass of the above system and crystallizes the glass at a predetermined relatively low temperature, so that a product further excellent in the above various characteristics can be obtained with a higher yield. it can.
第1図は、従来の結晶化ガラスの熱膨張曲線(a)と、
本発明の実施例の結晶化ガラスの熱膨張曲線(b)との
比較図である。FIG. 1 shows a thermal expansion curve (a) of a conventional crystallized glass,
It is a comparison figure with the thermal expansion curve (b) of the crystallized glass of the Example of this invention.
Claims (4)
O35〜25%、ZnO 10.5〜40%、MgO
3.5〜20%、PbO 0.5〜10%、CaO+S
rO+BaO 0〜15%、TiO22〜15%、B2
O30〜10%、La2O3+Y2O3+Gd2O3+
Ta2O5+Nb2O5+WO30〜10%、ZrO2
+P2O5+SnO20〜5%、ただしZrO20〜
2.5%、P2O50〜5%、SnO20〜2%、As
2O3+Sb2O30〜2%および上記各金属酸化物の
1種または2種以上の金属元素の弗化物をFの合計量と
して 0〜5%を含有するガラスを熱処理することによ
り得られ、かつ40〜220×10-7/℃の範囲の熱膨
張係数を有することを特徴とする結晶化ガラス。1. By weight percent, SiO 2 30-65%, Al 2
O 3 5-25%, ZnO 10.5-40%, MgO
3.5-20%, PbO 0.5-10%, CaO + S
rO + BaO 0-15%, TiO 2 2-15%, B 2
O 3 0~10%, La 2 O 3 + Y 2 O 3 + Gd 2 O 3 +
Ta 2 O 5 + Nb 2 O 5 + WO 3 0~10%, ZrO 2
+ P 2 O 5 + SnO 2 0~5%, provided that ZrO 2 0 to
2.5%, P 2 O 5 0~5 %, SnO 2 0~2%, As
2 O 3 + Sb 2 O 3 0 to 2% and one or more kinds of the metal oxides of each of the above metal elements, obtained by heat treating a glass containing 0 to 5% as a total amount of F. And a glass having a coefficient of thermal expansion in the range of 40 to 220 × 10 −7 / ° C.
O35〜25%、ZnO 10.5〜40%、MgO
3.5〜20%、PbO 0.5〜10%、CaO+S
rO+BaO 0〜15%、TiO22〜15%、B2
O30〜10%、La2O3+Y2O3+Gd2O3+
Ta2O5+Nb2O5+WO30〜10%、ZrO2
+P2O5+SnO20〜5%、ただしZrO20〜
2.5%、P2O50〜5%、SnO20〜2%、As
2O3+Sb2O30〜2%および上記各金属酸化物の
1種または2種以上の金属元素の弗化物をFの合計量と
して 0〜5%を含有するガラスを溶融し、成形した
後、加熱昇温し、ついで1150℃以下の温度で結晶化
熱処理を行なうことを特徴とする結晶化ガラスの製造方
法。2. SiO 2 30-65% by weight, Al 2
O 3 5-25%, ZnO 10.5-40%, MgO
3.5-20%, PbO 0.5-10%, CaO + S
rO + BaO 0-15%, TiO 2 2-15%, B 2
O 3 0~10%, La 2 O 3 + Y 2 O 3 + Gd 2 O 3 +
Ta 2 O 5 + Nb 2 O 5 + WO 3 0~10%, ZrO 2
+ P 2 O 5 + SnO 2 0~5%, provided that ZrO 2 0 to
2.5%, P 2 O 5 0~5 %, SnO 2 0~2%, As
A glass containing 0 to 2% of 2 O 3 + Sb 2 O 3 and 0 to 5% of the total amount of F, which is a fluoride of one or more metal elements of the above metal oxides, is melted and molded. After that, the method for producing crystallized glass is characterized in that the temperature is raised by heating and then heat treatment for crystallization is performed at a temperature of 1150 ° C. or lower.
分以上の速度で加熱昇温することを特徴とする特許請求
の範囲第2項記載の結晶化ガラスの製造方法。3. The low temperature range of glass nucleation temperature is 2.5 ° C. /
The method for producing crystallized glass according to claim 2, wherein the temperature is increased by heating at a rate of not less than minutes.
とを特徴とする特許請求の範囲第2項または第3項記載
の結晶化ガラスの製造方法。4. The method for producing crystallized glass according to claim 2 or 3, wherein the forming step includes a precision polishing process step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29876287A JPH0667775B2 (en) | 1987-02-05 | 1987-11-26 | Crystallized glass and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62-25991 | 1987-02-05 | ||
JP2599187 | 1987-02-05 | ||
JP29876287A JPH0667775B2 (en) | 1987-02-05 | 1987-11-26 | Crystallized glass and manufacturing method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
JPS643032A JPS643032A (en) | 1989-01-06 |
JPH013032A JPH013032A (en) | 1989-01-06 |
JPH0667775B2 true JPH0667775B2 (en) | 1994-08-31 |
Family
ID=26363708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29876287A Expired - Fee Related JPH0667775B2 (en) | 1987-02-05 | 1987-11-26 | Crystallized glass and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0667775B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0667774B2 (en) * | 1988-02-15 | 1994-08-31 | 株式会社オハラ | Transparent crystallized glass |
JP2691263B2 (en) * | 1989-08-11 | 1997-12-17 | 株式会社オハラ | Transparent crystallized glass |
CN113929307B (en) * | 2021-11-23 | 2023-02-24 | 海南大学 | Directional crystallization LAS microcrystalline glass and preparation method thereof |
-
1987
- 1987-11-26 JP JP29876287A patent/JPH0667775B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS643032A (en) | 1989-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3140702B2 (en) | Crystallized glass for magnetic disk substrate, magnetic disk substrate and magnetic disk | |
US8283060B2 (en) | Crystallized glass substrate for information recording medium and method of producing the same | |
KR100188901B1 (en) | A glass-ceramic substrate for a magnetic disk | |
US9236075B2 (en) | Crystallized glass and crystallized glass substrate for information recording medium | |
JP2516553B2 (en) | Crystallized glass for magnetic disk and manufacturing method thereof | |
JP2799544B2 (en) | Crystallized glass for information recording disks | |
JP4680347B2 (en) | High rigidity glass ceramic substrate | |
JP3131138B2 (en) | Crystallized glass substrate for magnetic disk | |
US20110136651A1 (en) | Glass-ceramics and method for manufacturing the same | |
US5028567A (en) | Glass-ceramics | |
EP2011770A2 (en) | Crystallized glass for information recording medium, cystallized glass substrate, and information recording medium using the crystallized glass | |
US6593257B1 (en) | Glass-ceramic composition for recording disk substrate | |
JP3420192B2 (en) | Glass ceramics | |
US6372319B1 (en) | Nucleating agents for crystallized glasses, crystallized glasses, magnetic discs substrate and magnetic discs | |
US6524982B1 (en) | Glass-ceramic composition for recording disk substrate | |
JPH0629152B2 (en) | Method for producing crystallized glass for substrate | |
US6514890B1 (en) | Glass-ceramic composition for recording disk substrate | |
JPH0667775B2 (en) | Crystallized glass and manufacturing method thereof | |
JPH013032A (en) | Crystallized glass and its manufacturing method | |
JP2001126236A (en) | Board for magnetic disk and magnetic disk | |
JP3144820B2 (en) | Crystallized glass | |
JP3152905B2 (en) | Crystallized glass substrate for magnetic disk | |
US6583077B1 (en) | Glass-ceramic composition for recording disk substrate | |
JP2002203309A (en) | Crystallized glass substrate for information recording medium | |
US6458729B1 (en) | Glass-ceramic composition for recording disk substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |