JPS62143507A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS62143507A
JPS62143507A JP60284913A JP28491385A JPS62143507A JP S62143507 A JPS62143507 A JP S62143507A JP 60284913 A JP60284913 A JP 60284913A JP 28491385 A JP28491385 A JP 28491385A JP S62143507 A JPS62143507 A JP S62143507A
Authority
JP
Japan
Prior art keywords
resistance
phase
amplifier
phase compensation
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60284913A
Other languages
Japanese (ja)
Inventor
Shinichi Katsu
勝 新一
Masaru Kazumura
数村 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP60284913A priority Critical patent/JPS62143507A/en
Publication of JPS62143507A publication Critical patent/JPS62143507A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure the stability of a semiconductor integrated circuit at the time of negative feedback, by providing a serial circuit of a capacity and resistance in parallel with an earthing point at the signal point between the next- stage amplifier having a high-output resistance and an output buffer having a high-input impedance. CONSTITUTION:A serial circuit of a capacity 4 for phase compensation and resistance 5 for phase compensation is connected in parallel between the signal point 9 between the next stage amplifier 2 and output buffer 3 and earthing point 10. From the pole of a transfer function which is determined by the time constant between the capacity and resistance shunted from the high-output resistance of the amplifier 12, a gain damping characteristic of -6dB/Oct and phase delaying characteristic are obtained. In addition, a phase advancing characteristic is obtained at the zero point on the left-half plane of the transfer function determined by the time constant between the shunted capacity and resistance and the phase delaying quantity in the vicinity of a unit gain frequency is extremely improved. Therefore, high stability can be maintained even when the negative feedback quantity to be added to an operational amplifier is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高周波アナログ信号処理用の演算増幅器の半
導体集積回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor integrated circuit of an operational amplifier for high frequency analog signal processing.

従来の技術 近年、アナログ信号処理も従来の映像信号に加え、光フ
アイバ通信用システムの開発により、急速に取扱う周波
数帯域が広がっており、このような高い周波数寸で扱え
る演算増幅器の実現が望まれている。一般に演算増幅器
では、単位利得になるまで負帰還を施しても増幅器が発
振しないよう位相補償回路を内蔵している。高周波演算
増幅器2t\−/゛ では、この位相補償回路により、負帰還時の安定性が決
址ってし1うため、その設計は非常に重要である。
Conventional technology In recent years, in addition to conventional video signals, analog signal processing has rapidly expanded the frequency band that can be handled due to the development of optical fiber communication systems, and it is desirable to realize operational amplifiers that can handle such high frequencies. ing. Generally, operational amplifiers have a built-in phase compensation circuit to prevent the amplifier from oscillating even if negative feedback is applied until the gain reaches unity. In the high frequency operational amplifier 2t\-/', the stability during negative feedback is determined by this phase compensation circuit, so its design is very important.

上述した従来の半導体集積回路の位相補償回路の例につ
いて説明する。従来、シリコンバイポーラトランジスタ
による演算増幅器集積回路では、2段めの増幅段のエミ
ッタ接地回路において、ペース・コレクタ間に位相補償
用容量を入れ、ミラー効果を用いて高域の利得を下げ、
位相特性を改善している。!f、たシリコンMO8FE
Tによる演算増幅器では、2段め増幅段のソース接地回
路において、ゲート・ドレイン間に位相補償用容量とバ
ッファ増幅器との直列回路を挿入し、位相補償を行なう
。バッンア増幅器は、MOSFETのqmがバイポーラ
トランジスタに比し、はるかに小さいために生ずるンイ
ードフォワードの現象を抑えるために用いられている。
An example of the phase compensation circuit of the conventional semiconductor integrated circuit described above will be explained. Conventionally, in operational amplifier integrated circuits using silicon bipolar transistors, a phase compensation capacitor is inserted between the pace and collector in the common emitter circuit of the second amplification stage, and the Miller effect is used to lower the high-frequency gain.
Improved phase characteristics. ! f, silicon MO8FE
In the operational amplifier using T, a series circuit of a phase compensation capacitor and a buffer amplifier is inserted between the gate and drain in the common source circuit of the second amplification stage to perform phase compensation. The buffer amplifier is used to suppress the effect of yield forward, which occurs because the qm of a MOSFET is much smaller than that of a bipolar transistor.

発明が解決しようとする問題点 しかしながら上記のような位相補償回路の構成では、G
aAs (ガリウムヒ素)FET等の高速デ3 ベージ バイスを用いて高周波化を゛画った演算増幅器に対して
は、良好な位相補償が出来ない。これは、高周波化を画
るにつれ、利得の大きい初段増幅器における位相変化の
他に、ミラー効果を利用するところの次段増幅器自体の
位相変化も大きくなり、位相補償が正しく行なわれなく
なるためである。
Problems to be Solved by the Invention However, in the configuration of the phase compensation circuit as described above, the G
Good phase compensation cannot be achieved for operational amplifiers designed to operate at high frequencies using high-speed basic devices such as aAs (gallium arsenide) FETs. This is because as the frequency increases, in addition to the phase change in the first-stage amplifier, which has a large gain, the phase change in the next-stage amplifier itself, which uses the Miller effect, also increases, making it impossible to perform phase compensation correctly. .

1だ上述のバッファ付近位相補償回路では、高周波領域
でバッファの出力抵抗によ逆伝達関数に左半平面上の零
点が生ずる。この結果、高域で十分な利得の減衰特性が
得られず、確実な位相補償が出来々くなる。この結果、
高周波演算増幅器は負帰還量を多くすると発振するとい
う大きな問題点を有していた。
1. In the buffer near-phase compensation circuit described above, a zero point on the left half plane occurs in the inverse transfer function due to the output resistance of the buffer in the high frequency region. As a result, sufficient gain attenuation characteristics cannot be obtained in the high frequency range, and reliable phase compensation cannot be achieved. As a result,
High frequency operational amplifiers have had a major problem in that they oscillate when the amount of negative feedback is increased.

本発明は上記問題点に鑑み、高周波演算増幅器の負帰還
時の安定性を保証するだめの位相補償回路を提供するも
のである。
In view of the above problems, the present invention provides a phase compensation circuit that guarantees stability during negative feedback of a high frequency operational amplifier.

問題点を解決するための手段 上記問題点を解決するために本発明の半導体集積回路は
、演算増幅器内の高出力抵抗を有する2段め増幅段と、
高入力インピーダンスを有する出カバノファとの間の信
号点とアース間に容量と抵抗の直列回路を挿入し、初段
増幅器と次段増幅器の全体の利得に対し、位相補償をか
けるという構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the semiconductor integrated circuit of the present invention includes a second amplification stage having a high output resistance in an operational amplifier;
A series circuit consisting of a capacitor and a resistor is inserted between the signal point and the ground between the output cover which has high input impedance, and phase compensation is applied to the overall gain of the first-stage amplifier and the second-stage amplifier. It is.

作  用 本発明は」−記した構成によって、初段増幅器と次段増
幅器を通しての利得全体が、容量と抵抗の直列回路でシ
ャントされた形になり次段増幅器の高出力抵抗とシャン
トした容量と抵抗との時定数で決するところの伝達関数
のボールで一6dB10atの利得減衰特性および位相
おくれ特性が得られる。
Operation of the present invention: With the configuration described above, the entire gain through the first-stage amplifier and the next-stage amplifier is shunted by a series circuit of capacitors and resistors. Gain attenuation characteristics and phase lag characteristics of -6 dB10 at can be obtained with the ball of the transfer function, which is determined by the time constant of .

さらにシャント容量と抵抗の時定数で決まる伝達関数の
左半平面上の零点で、位相すすみ特性が得られ、単位利
得周波数付近での位相遅れ量が著しく改善される。この
結果、演算増幅器に加える負帰還量を多くしても、高い
安定性を保つことが出来る。
Furthermore, a phase progression characteristic is obtained at the zero point on the left half plane of the transfer function determined by the time constant of the shunt capacitance and resistance, and the amount of phase delay near the unit gain frequency is significantly improved. As a result, high stability can be maintained even if the amount of negative feedback applied to the operational amplifier is increased.

実施例 以下本発明の一実施例の半導体集積回路について図面を
参照しながら説明する。第1図は本発明6ページ の実施例における位相補償を施した演算増幅器の回路図
を示すものである。第1図において1は初段増幅器、2
は高出力抵抗を有する次段増@器、3は高入力インピー
ダンスを有する出カバソファ、4は位相補償用容量、5
は位相補償用抵抗である。
Embodiment Hereinafter, a semiconductor integrated circuit according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a circuit diagram of an operational amplifier with phase compensation in an embodiment of the present invention on page 6. In Figure 1, 1 is the first stage amplifier, 2
is a next-stage booster with high output resistance, 3 is an output sofa with high input impedance, 4 is a phase compensation capacitor, and 5 is a capacitor for phase compensation.
is a phase compensation resistor.

6.7はそれぞれ正相、逆相入力端子、8は出力端子で
ある。位相補償用容量4と位相補償用抵抗5の直列回#
5は、次段増幅器2と出力バッフ73との間の信号点9
と接地点1oの間に並列接続されている。位上のように
構成された半導体集積回路について、以下第1図および
第2図を用いてそ特性を示すもので、破線は位相補償用
のシャント回Nがない時の特性を示している。破線では
初段増幅器1と次段増幅器2が生ずる3個の伝達関数の
ボールにより、単位利得周波数での位相遅れは一180
°を越え、負帰還をかけると発振する状態にある。
6 and 7 are positive phase and negative phase input terminals, respectively, and 8 is an output terminal. Series circuit of phase compensation capacitor 4 and phase compensation resistor 5 #
5 is a signal point 9 between the next stage amplifier 2 and the output buffer 73
and the ground point 1o. The characteristics of the semiconductor integrated circuit configured as above are shown below using FIGS. 1 and 2, and the broken line shows the characteristics when there is no shunt circuit N for phase compensation. In the broken line, due to the balls of the three transfer functions generated by the first stage amplifier 1 and the second stage amplifier 2, the phase delay at the unit gain frequency is -180
If the temperature exceeds 100° and negative feedback is applied, it will oscillate.

位相補償のために加えたシャント回路の容量46ページ の値をC,抵抗6の値をR1次段増幅器2の出力抵抗を
R8とすると、演算増幅器の伝達関数は、となる。ここ
でA1(S) 、 A2(S) 、 A3(S)はそれ
ぞれ初段増幅器、次段増幅器、出力バノフ7の伝達関数
である。出力バッハアは高域までほとんど利得1で、位
相変化も非常に小さい。この結果、(1)式で表わされ
る伝達関数について、利得、位相の周波数特性を図示す
ると第2図の実線のようになる。
Assuming that the value of the capacitance 46 of the shunt circuit added for phase compensation is C, the value of the resistor 6 is R1, and the output resistance of the next stage amplifier 2 is R8, the transfer function of the operational amplifier is as follows. Here, A1(S), A2(S), and A3(S) are transfer functions of the first stage amplifier, the next stage amplifier, and the output Banoff 7, respectively. The output bacher has a gain of almost 1 up to the high frequency range, and the phase change is also very small. As a result, the frequency characteristics of gain and phase for the transfer function expressed by equation (1) are illustrated as shown by the solid line in FIG. 2.

第2図で最初のボール周波数fP1 は、(1)式のボ
ールで であシ、第2のボール周波数fP2は初段増@器1の伝
達関数A1(S)から生じたものである。さらに零点の
周波数f。は(1)弐より となり、このf。以」二では位相進みとなり、第37ベ
ー/′ のポールによる位相遅れと打し消し合う。従ってfo付
近より高域では第2図の実線のように位相の変化は小さ
くなる。単位利得時の位相遅れも一180’を越えない
ので、負帰還を大きくしても演算増幅器は発振すること
はない。次段増幅器2の出力抵抗を6に〜50にΩと高
くすれば、位相補償回路の容量4の値は1〜10pF程
度、抵抗6の値は20〜200Ω程度となり、位相補償
回路のモノリシンク化は容易である。次段増幅器2の出
力抵抗が大きいほど、容量4の大きさを小さく出来るの
で、モノリシック化に有利となる。また、位相補償回路
の後の出力バノファ3には、入力インピーダンスが高く
、利得の周波数特性が広帯域のものを選べば、演算増幅
器の伝達関数は初段および次段の増幅器の伝達関数A1
(S) 、 A2(S)と位相補償回路の容量と抵抗の
値だけで決まる。従って位相補償の設計は非常に容易と
なる。
In FIG. 2, the first ball frequency fP1 is the ball of equation (1), and the second ball frequency fP2 is generated from the transfer function A1(S) of the first stage multiplier 1. Furthermore, the frequency f of the zero point. becomes (1) from 2, and this f. In the second case, there is a phase advance, which cancels out the phase delay caused by the 37th Be/' pole. Therefore, in the higher range than near fo, the change in phase becomes small as shown by the solid line in FIG. Since the phase delay at unity gain does not exceed -180', the operational amplifier will not oscillate even if the negative feedback is increased. If the output resistance of the next-stage amplifier 2 is increased to 6 to 50 Ω, the value of the capacitance 4 of the phase compensation circuit will be about 1 to 10 pF, and the value of the resistor 6 will be about 20 to 200 Ω, making the phase compensation circuit monolithic. is easy. The larger the output resistance of the next-stage amplifier 2, the smaller the size of the capacitor 4, which is advantageous for monolithic implementation. In addition, if the output vanofer 3 after the phase compensation circuit is selected to have high input impedance and a wide band gain frequency characteristic, the transfer function of the operational amplifier will be the transfer function A1 of the first and next stage amplifiers.
(S), A2(S), and the values of the capacitance and resistance of the phase compensation circuit. Therefore, designing phase compensation becomes very easy.

以上のように本実施例によれば、高出力抵抗を有する次
段増幅器と高入力インピーダンスを有する出力バノファ
との間の信号点に、容量と抵抗の直列回路を接地点に対
し並列に入れることにより、十分な利得減衰特性と、位
相遅れの改善が得られ、負帰還を加えても発振しない演
算増幅器を実現することが出来る。
As described above, according to this embodiment, a series circuit of a capacitor and a resistor is inserted in parallel to the ground point at the signal point between the next-stage amplifier having a high output resistance and the output vanifer having a high input impedance. As a result, sufficient gain attenuation characteristics and phase delay improvement can be obtained, and an operational amplifier that does not oscillate even when negative feedback is applied can be realized.

なお、高出力抵抗を有する次段増幅器2には、例えばデ
ュアルゲート型FETを2個用いた差動増幅器が使え、
また高入力インピーダンスを有する出力バノファ3には
ソース・フォロワ回路が使用出来る。
In addition, for the next stage amplifier 2 having a high output resistance, for example, a differential amplifier using two dual gate type FETs can be used.
Further, a source follower circuit can be used for the output vanofer 3 having a high input impedance.

発明の効果 以上のように本発明は演算増幅器内の高出力抵抗を有す
る次段増幅器と高入力インピーダンスを有する出カバ、
7アとの間の信号点に、容量と抵抗の直列回路を接地点
と並列に入れることにより、高域における利得の十分な
減衰と位相遅れ量の減少を可能にする。従って、本発明
によればG a A 5FET等の高速デバイスを用い
た高周波演算増幅器の負帰還時の安定性を確保すること
が出来る。
Effects of the Invention As described above, the present invention provides a next-stage amplifier having a high output resistance in an operational amplifier, an output cover having a high input impedance,
By inserting a series circuit of a capacitor and a resistor in parallel with the ground point at the signal point between 7A and 7A, it is possible to sufficiently attenuate the gain and reduce the amount of phase delay in the high frequency range. Therefore, according to the present invention, it is possible to ensure stability during negative feedback of a high frequency operational amplifier using a high speed device such as a G a A 5FET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における半導体集積口9ページ 路の回路図、第2図は本発明の実施例における半導体集
積回路の利得と位相の周波数特性を示す特性図である。 1・・・・・初段増幅器、2−・・・次段増幅器、3・
・・・出力バノファ、4・・・・・・位相補償用容量、
5・・・・位相補償用抵抗。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−糖I幅巻 7−逆相入ガ篩手 8−−−とカゴ駐ト 9−・−信号点 Iθ−接地点
FIG. 1 is a circuit diagram of a 9-page path of a semiconductor integrated circuit according to an embodiment of the present invention, and FIG. 2 is a characteristic diagram showing frequency characteristics of gain and phase of the semiconductor integrated circuit according to an embodiment of the present invention. 1...First stage amplifier, 2-...Next stage amplifier, 3...
... Output vanofer, 4 ... Phase compensation capacitor,
5...Resistance for phase compensation. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--Sugar I width winding 7--Reverse phase input sieve hand 8-- and basket parking 9--Signal point Iθ-Grounding point

Claims (1)

【特許請求の範囲】[Claims] 高出力抵抗を有する増幅器と高入力インピーダンスを有
するバッファ増幅器との間の信号点と接地点との間に、
容量と抵抗の直列回路を挿入したことを特徴とする半導
体集積回路。
between the signal point between the amplifier with high output resistance and the buffer amplifier with high input impedance and the ground point.
A semiconductor integrated circuit characterized by inserting a series circuit of capacitance and resistance.
JP60284913A 1985-12-18 1985-12-18 Semiconductor integrated circuit Pending JPS62143507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60284913A JPS62143507A (en) 1985-12-18 1985-12-18 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60284913A JPS62143507A (en) 1985-12-18 1985-12-18 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS62143507A true JPS62143507A (en) 1987-06-26

Family

ID=17684672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60284913A Pending JPS62143507A (en) 1985-12-18 1985-12-18 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS62143507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461929B2 (en) 2010-12-20 2013-06-11 Mitsubishi Electric Corporation Power amplifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461929B2 (en) 2010-12-20 2013-06-11 Mitsubishi Electric Corporation Power amplifier

Similar Documents

Publication Publication Date Title
JPH08505753A (en) Device and method for frequency compensating operational amplifiers
JPH0616569B2 (en) Operational amplifier circuit
JPS62143507A (en) Semiconductor integrated circuit
JPS612407A (en) Adaptive band width amplifier
JPH0237723B2 (en)
JP2501311B2 (en) Active low-pass filter
JPS5821210Y2 (en) High frequency integrated circuit device
JPS60140907A (en) Semiconductor integrated circuit
JPH04323907A (en) Low-offset, high-speed cmos amplifier which separates noise in supplied electric power
EP1014573A1 (en) Analog equalization low pass filter structure
US5610551A (en) Filter circuit
JP2998107B2 (en) Intermediate frequency amplifier
JPH01194707A (en) Active low-pass filter device
JPS60140744A (en) Semiconductor integrated circuit device
JP2605871B2 (en) Field effect transistor and integrated circuit using the same
JP3081426B2 (en) Filter circuit
Chen et al. A 11GHz hybrid paraphase amplifier
JPS5894210A (en) Internal matching type high-frequency transistor
JPS62294305A (en) Frequency conversion circuit
JPH0380706A (en) Operational amplifier
JPH0220165B2 (en)
JPH046256Y2 (en)
JPH0543531Y2 (en)
JPS5846568Y2 (en) Bias circuit for high frequency transistor class C amplifier
JPH02145003A (en) Detection circuit