JPS62142362A - Manufacture of nonvolatile semiconductor memory element - Google Patents

Manufacture of nonvolatile semiconductor memory element

Info

Publication number
JPS62142362A
JPS62142362A JP28362585A JP28362585A JPS62142362A JP S62142362 A JPS62142362 A JP S62142362A JP 28362585 A JP28362585 A JP 28362585A JP 28362585 A JP28362585 A JP 28362585A JP S62142362 A JPS62142362 A JP S62142362A
Authority
JP
Japan
Prior art keywords
insulating film
tunnel insulating
floating gate
film
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28362585A
Other languages
Japanese (ja)
Inventor
Shigeaki Nakamura
中村 茂昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP28362585A priority Critical patent/JPS62142362A/en
Publication of JPS62142362A publication Critical patent/JPS62142362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To obtain a tunnel insulating film characterized by excellent film- thickness controllability and excellent tunnel insulating film, by making it possible to provide the tunnel insulating film directly on a semiconductor substrate having less impurities. CONSTITUTION:A tunnel insulating film 2 is provided on a P-type silicon semiconductor substrate 6. Then a floating gate 1 is formed. When an impurity diffused layer 3 is formed, the impurities are simultaneously diffused to a part beneath the tunnel insulating film immediately beneath the floating gate from the side end of the floating gate 1 by the lateral diffusion. Thus the diffused layers beneath the tunnel insulating film is formed. Thus, an EEPROM element structure can be formed without impairing the film quality of the tunnel insulating film. This method contribute to the improvement in yield rate in the manufacture of the EEPROMs and the improvement in reliability in time change an the like owing to the stabilization of the film quality.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は不揮発性半導体記憶素子の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a nonvolatile semiconductor memory element.

従来の技術 従来、不揮発性半導体記憶素子のうち、電気的に書込み
、消去可能な浮遊ゲ1ト型記憶素子(以下EEFROM
と称す)は通常2層ゲート構造を有する。第2層(上層
)を制御ゲートとし、第1層(下層)ゲートを浮遊ゲー
トとする。さらに浮遊ゲートと半導体基板の間に一部分
、非常に薄い絶縁膜を有する領域をもうけ、かかる絶縁
膜を通して基板側より浮遊ゲートへ電子の注入および取
出しを行うことにより記憶素子動作を実現している0 第2図に通常用いられているEEFROM素子の平面図
を模式的に示す。第3図は第2図のAA’に沿って切断
した場合の断面構造を模式的に示したもので、従来方法
により作成されたE E FROM素子の構造である。
2. Description of the Related Art Conventionally, among non-volatile semiconductor memory devices, electrically programmable and erasable floating gate memory devices (hereinafter referred to as EEFROMs)
) usually has a two-layer gate structure. The second layer (upper layer) is used as a control gate, and the first layer (lower layer) gate is used as a floating gate. Furthermore, a region with a very thin insulating film is provided between the floating gate and the semiconductor substrate, and the memory element operation is realized by injecting and extracting electrons from the substrate side to the floating gate through the insulating film. FIG. 2 schematically shows a plan view of a commonly used EEFROM element. FIG. 3 schematically shows a cross-sectional structure when cut along AA' in FIG. 2, and is the structure of an E E FROM element produced by a conventional method.

第2図、第3図において、1は第1層目のゲート、すな
わち浮遊ゲート領域でその一部がトンネル絶縁膜領域2
の上にあるっ3はn型ないしはp型の高濃度拡散層、6
はフィールド部を形成する厚い絶縁膜、6はp型半導体
基板、7は第2層目のゲート、すなわち制御ゲート領域
であり、浮遊ゲート1と絶縁膜を介して設けである。8
は浮遊ゲートと制御ゲートとの間の絶縁膜である。かか
る構造を有するEEFROMにおいては、電子の注入及
び取出しを容易にするために、通常、トン坏ル絶縁膜の
下部の半導体装置表面に濃いn型ないしはp型の拡散層
3を形成する必要がある。一方、拡散層表面に熱酸化方
法あるいは熱窒化方法等の熱処理力法を用いてトンネル
絶縁膜のような非常に薄い絶縁膜を形成する場合、拡散
層の不純物濃度が濃い程、膜厚制御が困難で、さらに膜
質も薄膜の形成過程で不純物が絶縁膜中に取り込まれる
ために悪化することは良く知られている。−力、拡散層
3の形成には、予め、半導体基板」二にトンネル薄膜を
形成し、その後に薄膜を通してイオン注入等の方法で不
純物を打ち込み、拡散層を形成する方法もあるが、かか
る方法ではイオン注入時にトンネル絶縁膜に損傷が生じ
、その後の熱処理でも完全回復は困難である。
In FIGS. 2 and 3, 1 is the first layer gate, that is, the floating gate region, a part of which is the tunnel insulating film region 2.
3 on top is an n-type or p-type high concentration diffusion layer, 6
6 is a thick insulating film forming a field portion, 6 is a p-type semiconductor substrate, and 7 is a second layer gate, that is, a control gate region, which is provided through the floating gate 1 and the insulating film. 8
is an insulating film between the floating gate and the control gate. In an EEFROM having such a structure, in order to facilitate injection and extraction of electrons, it is usually necessary to form a dense n-type or p-type diffusion layer 3 on the surface of the semiconductor device under the bulge insulating film. . On the other hand, when forming a very thin insulating film such as a tunnel insulating film on the surface of a diffusion layer using a heat treatment method such as a thermal oxidation method or a thermal nitridation method, the higher the impurity concentration of the diffusion layer, the more difficult it is to control the film thickness. It is well known that this is difficult and the film quality deteriorates due to impurities being incorporated into the insulating film during the thin film formation process. - To form the diffusion layer 3, there is a method in which a tunnel thin film is formed in advance on the semiconductor substrate 2, and then impurities are implanted through the thin film by a method such as ion implantation to form the diffusion layer. In this case, damage occurs to the tunnel insulating film during ion implantation, and complete recovery is difficult even with subsequent heat treatment.

発明が解決しようとする問題点 トンネル絶縁膜をもうける方法としては、不純物が多く
拡散されていない半導体基板上に形成し、その後、何ら
損傷を与えない方法が膜質上理想的であるが、そのよう
な方法は未だ実現していない。
Problems to be Solved by the Invention The ideal method for forming a tunnel insulating film is to form it on a semiconductor substrate that has not been diffused with many impurities, and then do not cause any damage to the film. A method has not yet been realized.

また、EEPROM素子動作を容易にするには何らかの
拡散層をトンネル絶縁膜下にもうけるのも、実用上必要
がある。
Further, in order to facilitate the operation of the EEPROM element, it is practically necessary to provide some kind of diffusion layer under the tunnel insulating film.

本発明の目的はトンネル絶縁膜の膜質をそこなウコトな
く、トンネル絶縁膜下に不純物拡散層をもうける新規な
製造方法を提案するものである0問題点を解決するだめ
の手段 本発明の製造方法は拡散層をもうけていない半導体基板
上にまず、トンネル絶縁膜を形成し、その後、直ちに浮
遊ゲート属音もうける。、浮遊ゲートを所定の寸法に加
工した後、同浮遊ゲーhi拡散マスクとして不純物を拡
散し、かかる浮遊ゲートの側端より不純物をトンネル絶
縁膜下で、浮遊ゲートの下部に当る領域に横方向拡散で
導入する不揮発性半導体記憶素子の製造方法である0作
用 かかる方法を用いれば、トンネル絶縁膜を不純物の少な
い半導体基板上に直接もうけることが可能なので、膜厚
制御性も良好で、膜質の良いトンネル絶縁膜が得られる
。その後の不純物拡散層形成時においても、直接トンネ
ル絶縁膜には損傷を与えることなく拡散層が形成可能で
あるため、最初に形成した時点での良好な膜質が保たれ
る。したがって、本発明により浮遊ゲートの下部に不純
物イオンの横方向拡散で形成された拡散層上のトンネル
絶縁膜領域を有するEEPROMを形成することができ
る。
The purpose of the present invention is to propose a new manufacturing method for forming an impurity diffusion layer under the tunnel insulating film without affecting the film quality of the tunnel insulating film. In this method, a tunnel insulating film is first formed on a semiconductor substrate without a diffusion layer, and then a floating gate layer is immediately formed. After processing the floating gate to a predetermined size, impurities are diffused using the same floating gate as a diffusion mask, and the impurities are laterally diffused from the side edges of the floating gate under the tunnel insulating film to the region corresponding to the bottom of the floating gate. By using this zero-effect method, which is the manufacturing method for non-volatile semiconductor memory elements introduced in A tunnel insulating film is obtained. Even when the impurity diffusion layer is subsequently formed, the diffusion layer can be directly formed without damaging the tunnel insulating film, so that the good film quality at the time of initial formation is maintained. Therefore, according to the present invention, it is possible to form an EEPROM having a tunnel insulating film region on a diffusion layer formed by lateral diffusion of impurity ions under a floating gate.

実施例 次に本発明の方法につき図面を用いて詳細に説明する。Example Next, the method of the present invention will be explained in detail using the drawings.

第1図は本発明の製造方法によるEzpROM素子の断
面構造を示す。トンネル絶縁膜2を半導体基板6上にも
うけ、次に浮遊ゲート1を形成し、しかる後に不純物拡
散層3を形成する際に、同時に浮遊ゲート1の側端より
横方向拡散で不純物を浮遊ゲート直下のトンイ、層絶縁
膜下に拡散せ(〜め、トンネル絶縁膜下の拡散層を形成
する。
FIG. 1 shows a cross-sectional structure of an EzpROM element manufactured by the manufacturing method of the present invention. When forming the tunnel insulating film 2 on the semiconductor substrate 6, then forming the floating gate 1, and then forming the impurity diffusion layer 3, impurities are simultaneously diffused in the lateral direction from the side edges of the floating gate 1 directly below the floating gate. To do this, diffuse the layer under the insulating film (to form a diffusion layer under the tunnel insulating film).

かかる方法によりトンイ・ル絶縁膜の膜質をそこなうこ
となくEEPROM末子構造を形成することが可能であ
る。この後の製造工程は第3図に示した従来方法と同様
である。次に、本発明の具体りjについて述べる。
By this method, it is possible to form the EEPROM terminal structure without damaging the film quality of the tunnel insulating film. The subsequent manufacturing steps are similar to the conventional method shown in FIG. Next, details of the present invention will be described.

P型シリコン基板6上に通常の撰択酸化力法でフィール
ド酸化膜5をもうけ、同フィールド酸化膜6の内側にs
onmないしはsonmのゲート酸化膜を形成する。次
に、トンネル絶縁膜2を形成するため、フォトリソグラ
フィー技術を用いてシリコン基板θ上の一部のゲート酸
化膜を除去し、しかる後に熱酸化方法で約10 nm厚
のトンネル絶縁膜2を形成する。続いて、直ちに約40
onm厚の多結晶シリコンを成長させ、不純物を導入し
た後に、通常の加工技術を用いて多結晶シリコン層から
成る浮遊ゲート1を形成する。しかる後((イオン注入
技術を用いて100ないし160KeVで加速したりん
(P)、あるいは砒素(AS)’t、浮遊ゲート1をマ
スクとして、シリコン基板6に注入する。この時点では
浮遊ゲート1の直下には不純物が未だ導入さ71:、て
いない。次に浮遊ゲート1と制御ゲート7の間の酸化膜
を形成するだめに酸化雰囲気中で1000’(:’ない
し1100’Cの温度で数1o分間熱酸化を行うと酸化
膜8が形成されると同時に、シリコン基板中で浮遊ゲー
ト1の側端近くに注入されてあった不純物のりんあるい
は砒素が横力向に拡散して第1図に示しだような浮遊ゲ
ート直下の拡散層4が形成される。この時、横方向の拡
散量は不純物の種類、熱処理温度0時間により制御可能
で、必ずしも浮遊ゲート1の直下全面に拡散が行き渡る
必要はなく、常に一定量の拡散層4が浮遊ゲート1と重
なり合っていれば充分である。この場合、重なり量は加
工技術ではなく、拡散技術により制御可能である為、非
常に正確に定められ、安定する。これ以降の製造方法は
通常の方法と同様で多結晶シリコン層から成る制御ゲー
ト7金もうけ、次にアルミニウム金属等による配線を形
成し素子を完成させることができる。
A field oxide film 5 is formed on a P-type silicon substrate 6 by the usual selective oxidation method, and s is formed on the inside of the field oxide film 6.
A gate oxide film of onm or sonm is formed. Next, in order to form the tunnel insulating film 2, a part of the gate oxide film on the silicon substrate θ is removed using photolithography technology, and then a tunnel insulating film 2 with a thickness of about 10 nm is formed using a thermal oxidation method. do. Then, immediately about 40
After growing polycrystalline silicon to a thickness of onm and introducing impurities, a floating gate 1 made of a polycrystalline silicon layer is formed using normal processing techniques. After that, phosphorus (P) or arsenic (AS) accelerated at 100 to 160 KeV using ion implantation technology is implanted into the silicon substrate 6 using the floating gate 1 as a mask. Impurities have not yet been introduced directly below the floating gate 1 and the control gate 7. Next, to form an oxide film between the floating gate 1 and the control gate 7, it is heated in an oxidizing atmosphere at a temperature of 1000'C to 1100'C. When thermal oxidation is performed for 10 minutes, an oxide film 8 is formed, and at the same time, the impurity phosphorus or arsenic implanted near the side edges of the floating gate 1 in the silicon substrate is diffused in the lateral force direction, as shown in FIG. A diffusion layer 4 directly under the floating gate is formed as shown in .At this time, the amount of diffusion in the lateral direction can be controlled by the type of impurity and the heat treatment temperature for 0 hours, so that the diffusion layer 4 is not necessarily spread over the entire surface directly under the floating gate 1. It is not necessary, and it is sufficient that a certain amount of the diffusion layer 4 always overlaps with the floating gate 1. In this case, the amount of overlap can be controlled not by processing technology but by diffusion technology, so it can be determined very accurately. The subsequent manufacturing method is the same as the usual method, and the control gate 7 made of a polycrystalline silicon layer is formed, and then wiring made of aluminum metal or the like is formed to complete the device.

発明の効果 本発明の方法により製造されたEll!PROM素子で
は、トンネル絶縁膜は拡散層をもうける前に直接シリコ
ン基板上に形成されるが、トンネル酸化膜形成後にも、
同絶縁膜は伺らの損傷をうけることなく、浮遊ゲート下
に拡散層が形成可能なので、膜厚ばらつきおよび膜質の
低下を招くことのない良質外トンネル絶縁膜を有する。
Effects of the Invention Ell! manufactured by the method of the present invention! In PROM devices, the tunnel insulating film is formed directly on the silicon substrate before forming the diffusion layer, but even after the tunnel oxide film is formed, the tunnel insulating film is formed directly on the silicon substrate.
This insulating film allows a diffusion layer to be formed under the floating gate without being damaged, so it has a high-quality outer tunnel insulating film that does not cause variations in film thickness or deterioration in film quality.

従って本発明は、EIEPROM製造における歩留向上
、膜質安定化による経時変化等の信頼性の向上に寄与す
る。
Therefore, the present invention contributes to improving the yield in manufacturing EIEPROMs and improving reliability against changes over time by stabilizing film quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による不揮発性半導体記憶素子の製造方
法を示す素子断面構造図、第2図は従来例の不揮発性半
導体記憶素子の要部平面図、第3図は第2図従来例のム
−A′ 断面構造図である。 1・・・・・・浮遊ゲート、2・・・・・・トンイ・ル
絶縁膜、3・・・・・・不純物披散層、4・・・・・・
横方向拡散層、5・・・・・・フィールド絶縁膜厚、6
・・・・・半導体基板、7・・・・・・制御ゲート、8
・・・・・・浮遊ゲートと制御ゲートの間の層間絶縁膜
FIG. 1 is a cross-sectional structure diagram of a non-volatile semiconductor memory element showing a method of manufacturing a non-volatile semiconductor memory element according to the present invention, FIG. 2 is a plan view of essential parts of a conventional non-volatile semiconductor memory element, and FIG. FIG. 1... Floating gate, 2... Tony insulating film, 3... Impurity diffusion layer, 4...
Lateral diffusion layer, 5...Field insulating film thickness, 6
... Semiconductor substrate, 7 ... Control gate, 8
・・・・・・Interlayer insulating film between floating gate and control gate.

Claims (1)

【特許請求の範囲】[Claims] 浮遊ゲートを有する電気的に書込み、消去可能な不揮発
性記憶素子の製造過程に、前記浮遊ゲートの側端より横
方向拡散によって同浮遊ゲート直下部のトンネル絶縁薄
膜下に不純物拡散層を形成せしめる工程をそなえたこと
を特徴とする不揮発性半導体記憶素子の製造方法。
In the manufacturing process of an electrically programmable and erasable nonvolatile memory element having a floating gate, a step of forming an impurity diffusion layer under the tunnel insulating thin film directly under the floating gate by lateral diffusion from the side edge of the floating gate. A method for manufacturing a nonvolatile semiconductor memory element, characterized by comprising:
JP28362585A 1985-12-17 1985-12-17 Manufacture of nonvolatile semiconductor memory element Pending JPS62142362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28362585A JPS62142362A (en) 1985-12-17 1985-12-17 Manufacture of nonvolatile semiconductor memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28362585A JPS62142362A (en) 1985-12-17 1985-12-17 Manufacture of nonvolatile semiconductor memory element

Publications (1)

Publication Number Publication Date
JPS62142362A true JPS62142362A (en) 1987-06-25

Family

ID=17667934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28362585A Pending JPS62142362A (en) 1985-12-17 1985-12-17 Manufacture of nonvolatile semiconductor memory element

Country Status (1)

Country Link
JP (1) JPS62142362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961165A (en) * 1987-11-17 1990-10-02 Fujitsu Limited Semiconductor memory device having a charge barrier layer for preventing soft error

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961165A (en) * 1987-11-17 1990-10-02 Fujitsu Limited Semiconductor memory device having a charge barrier layer for preventing soft error

Similar Documents

Publication Publication Date Title
US4420871A (en) Method of producing a monolithically integrated two-transistor memory cell in accordance with MOS technology
JPS6384168A (en) Nonvolatile semiconductor memory device
JPH08264668A (en) Nonvolatile semiconductor memory device and manufacture thereof
TWI267942B (en) MONOS device having buried metal silicide bit line
JPH03270174A (en) Manufacture of nonvolatile semiconductor memory device
JPS62142362A (en) Manufacture of nonvolatile semiconductor memory element
JPH0231468A (en) Manufacture of floating gate type semiconductor memory device
JPH06163923A (en) Fabrication of nonvolatile memory
KR20010003787A (en) Method of forming a flash memory device
JPH02277269A (en) Manufacture of nonvolatile memory
JPH10189922A (en) Manufacture of flash memory element
JP2605310B2 (en) Method for manufacturing nonvolatile memory cell
JPH03205870A (en) Semiconductor device
JPH098154A (en) Semiconductor memory device and its manufacture
JP2672530B2 (en) Method for manufacturing semiconductor memory device
JPH07123137B2 (en) Method for manufacturing semiconductor device
JPS63261879A (en) Manufacture of semiconductor device
JPH0231467A (en) Manufacture of non-volatile semiconductor memory device
JPS6329969A (en) Manufacture of floating gate type non-volatile semiconductor storage device
JPH07183405A (en) Semiconductor device and formation method
JP2000058682A (en) Improvement of anisotropical chemical etching method of silicon oxide in manufacturing mos transistor flash eprom device
JP3030569B2 (en) Manufacturing method of nonvolatile semiconductor memory
JPH03218075A (en) Manufacture of semiconductor storage device
JPH03177074A (en) Manufacture of semiconductor non-volatile memory device
JPH07106443A (en) Nonvolatile semiconductor memory and fabrication thereof