JPS6214203B2 - - Google Patents

Info

Publication number
JPS6214203B2
JPS6214203B2 JP57108484A JP10848482A JPS6214203B2 JP S6214203 B2 JPS6214203 B2 JP S6214203B2 JP 57108484 A JP57108484 A JP 57108484A JP 10848482 A JP10848482 A JP 10848482A JP S6214203 B2 JPS6214203 B2 JP S6214203B2
Authority
JP
Japan
Prior art keywords
boiler
converter
exhaust gas
boilers
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57108484A
Other languages
Japanese (ja)
Other versions
JPS591645A (en
Inventor
Koichi Takeda
Chikashi Suenaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP57108484A priority Critical patent/JPS591645A/en
Publication of JPS591645A publication Critical patent/JPS591645A/en
Publication of JPS6214203B2 publication Critical patent/JPS6214203B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は銅製錬転炉用排熱回収装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust heat recovery device for a copper smelting converter.

銅、鉄を主体とした硫化物であるマツトを空気
酸化することによつて金属銅を主体とした粗銅を
産出するのに使用される転炉からは操業中に高濃
度のSO2及びダストを含有した高温の排ガスが発
生する。通常斯る排ガスは転炉排ガス出口に設置
されたダストチヤンバーにて排ガス中の粗粒ダス
トを、又高温コツトレルとこれに引続く種々の浄
化装置によつて微細なダストを除去した後硫酸製
造工程へと送給される。この時ダストチヤンバー
から排出される排出ガスは700〜800℃程度の高温
ガスであり、高温コツトレルに導入する前にはガ
ス温度を300℃〜400℃程度にまで低下せしめる必
要がある。通常斯る排ガスの冷却手段としては空
気による稀釈或はガス中への水噴霧などの方法が
採用されているがガス量の増大及び熱損失の点で
好ましい方法ではなかつた。
The converter used to produce blister copper, which is mainly composed of metallic copper, by air oxidizing pine, which is a sulfide mainly composed of copper and iron, generates high concentrations of SO 2 and dust during operation. Containing high temperature exhaust gas is generated. Normally, such exhaust gas is used for sulfuric acid production after coarse dust in the exhaust gas is removed in a dust chamber installed at the converter exhaust gas outlet, and fine dust is removed using a high-temperature cottle and subsequent various purification devices. It is sent to the process. The exhaust gas discharged from the dust chamber at this time is a high-temperature gas of about 700 to 800°C, and the gas temperature must be lowered to about 300 to 400°C before being introduced into the high-temperature chamber. Usually, methods such as dilution with air or spraying water into the gas are used as means for cooling the exhaust gas, but these methods are not preferred in terms of an increase in the amount of gas and heat loss.

ガス量を増大させず且つ排熱回収もできるとい
う点から転炉と高温コツトレルとの間に排熱回収
用ボイラーを設置することが最も望ましい排ガス
冷却手段であると考えられる。従来、該方法を用
いた排熱回収装置が提案され実際に操業している
が、斯る従来の装置においては転炉一基につき一
基のボイラーを設置するものであつた。
It is considered that the most desirable exhaust gas cooling means is to install a boiler for exhaust heat recovery between the converter and the high-temperature kettle because it does not increase the amount of gas and can also recover exhaust heat. Conventionally, an exhaust heat recovery device using this method has been proposed and is actually in operation, but in such a conventional device, one boiler is installed for each converter.

基本的に転炉の操業はバツチ方式にして行なわ
れ操業時間は断続的であり1炉ごとの正味操業時
間は短かく、従つてボイラーの稼動率は極めて低
い。更に転炉からの排ガスは前述のようにSO2
ダストとを高濃度で含有するためにボイラーチユ
ーブにこれら腐食性ダストが付着しており、転炉
の休止によつてボイラーが冷却するとボイラーチ
ユーブを腐食させる恐れが生じた。この問題を解
決するべく、従来は例え転炉の操業が休止しても
ボイラーチユーブ外表面温度を露点以上に保つ保
温手段を必要とした。
Basically, converters are operated in a batch manner, and the operating time is intermittent, and the net operating time for each furnace is short, so the operating rate of the boiler is extremely low. Furthermore, as mentioned above, the exhaust gas from the converter contains a high concentration of SO 2 and dust, so these corrosive dusts adhere to the boiler tube, and when the boiler cools down due to the shutdown of the converter, the boiler tube There was a risk of corrosion. In order to solve this problem, conventionally, a heat-retaining means was required to keep the outer surface temperature of the boiler tube above the dew point even if the operation of the converter was stopped.

更に又、転炉は稼動中もその操業が造〓期、造
銅期から成り、各期の前後には〓その他の原料装
入あるいは〓、粗銅など産出物の排出のための停
風があり、更にタイムサイクルによる停風がある
ため、前述のように正味操業時間が短いこと以外
に始動及び停止がひんぱんに繰り返される。転炉
排ガスは高濃度のSO2とダストを含有するため、
必ず炉の始動前にガス吸引を開始し、停止後にガ
ス吸引を停止することにより、転炉周辺からのガ
ス漏出を防止する必要がある。従つて、転炉始動
直前及び転炉停止後には大量の冷風がボイラーに
導入されることとなる。特に、転炉の始動時には
大量の冷風がボイラーに導入され、引続いて高温
ガスが導入されることとなるのでボイラー温度が
急変しボイラー汽胴の水位が大幅に変動すること
となり、ボイラーの管理条件としてはきわめて劣
悪であつた。又、一旦大量の冷風を導入すること
によりボイラー内が冷却された後は高温ガス導入
後も発生蒸気量及び圧力の回復に時間がかかり、
転炉ボイラーからの発生蒸気を発電用に用いるこ
とは到底不可能であつた。
Furthermore, even when a converter is in operation, its operation consists of a production period and a copper production period, and before and after each period there is a wind stop for charging other raw materials or discharging products such as blister copper. Moreover, since there is a wind stoppage due to the time cycle, in addition to the short net operating time as mentioned above, starting and stopping are frequently repeated. Since converter exhaust gas contains high concentration of SO 2 and dust,
It is necessary to prevent gas leakage from around the converter by always starting gas suction before starting the furnace and stopping gas suction after the furnace has stopped. Therefore, a large amount of cold air is introduced into the boiler immediately before the converter starts and after the converter stops. In particular, when a converter starts, a large amount of cold air is introduced into the boiler, followed by high-temperature gas, which causes the boiler temperature to change suddenly and the water level in the boiler shell to fluctuate significantly. The conditions were extremely poor. In addition, once the inside of the boiler has been cooled by introducing a large amount of cold air, it takes time to recover the amount of steam and pressure generated even after introducing high-temperature gas.
It was completely impossible to use the steam generated from the converter boiler for power generation.

従つて、本発明の主たる目的は、2炉同時吹転
炉を含む銅製錬転炉用の排熱回収装置に於て、最
少のボイラ設置基数の下で高率の排熱回収を実現
する事にある。
Therefore, the main object of the present invention is to realize a high rate of waste heat recovery with the minimum number of installed boilers in an exhaust heat recovery device for a copper smelting converter including a two-furnace simultaneous blowing converter. It is in.

本発明の他の目的は、2炉同時吹転炉を含む銅
製錬転炉用の排熱回収装置に設置されたボイラ効
率を上昇させる事に有る。
Another object of the present invention is to increase the efficiency of a boiler installed in an exhaust heat recovery device for a copper smelting converter including a two-furnace simultaneous blowing converter.

本発明の他の目的は、2炉同時吹転炉を含む銅
製錬転炉用の排熱回収装置に於て、ボイラチユー
ブ腐食防止を目的とした、転炉休止中の前記ボイ
ラチユーブの保温を不要とする事に有る。
Another object of the present invention is to maintain heat of the boiler tube while the converter is not in operation for the purpose of preventing corrosion of the boiler tube in an exhaust heat recovery device for a copper smelting converter including a two-furnace simultaneous blowing converter. There are things that make it unnecessary.

本発明の他の目的は、2炉同時吹転炉を含む銅
製錬転炉用の排熱回収装置に於て、転炉の始動及
び停止時の導入冷風に起因するボイラ冷却及びそ
れによる悪影響を排除してボイラ管理を容易と
し、それによつて安定した蒸気発生を可能とし、
転炉ボイラ発生蒸気を発電にも利用可能とする事
に有る。
Another object of the present invention is to provide an exhaust heat recovery system for a copper smelting converter including a two-furnace simultaneous blowing converter, to reduce boiler cooling caused by cold air introduced at the start and stop of the converter and the adverse effects thereof. This makes boiler management easier, thereby enabling stable steam generation.
The purpose is to enable the steam generated by the converter boiler to be used for power generation.

本発明によれば、銅製錬転炉用排熱回収装置は
入口及び出口に夫々制御弁を具備する2基以上の
複数のボイラを並列に連通する為の入口側及び出
口側の共通管を含んでおり、前記各共通管の、各
前記ボイラ入口の制御弁同志の間部分には2炉同
時吹操業し得る2炉以上の複数の転炉が接続さ
れ、前記各共通管の、各前記ボイラ出口の制御弁
同志の間部分には排ガス導管が接続され、前記各
共通管の、各前記ボイラ入口の制御弁同志の間部
分と、前記排ガス導管の接続位置と各前記ボイラ
出口の制御弁との間部分、とが中間部分に制御弁
が設けられて成るバイパス管路によつて接続され
る。
According to the present invention, an exhaust heat recovery device for a copper smelting converter includes a common pipe on the inlet side and outlet side for communicating in parallel two or more boilers each having a control valve at the inlet and outlet. A plurality of converters having two or more furnaces capable of simultaneous blowing operation of two furnaces are connected to a portion between the control valves at the inlet of each of the boilers of each of the common pipes, and each of the boilers of each of the common pipes An exhaust gas conduit is connected to a portion between the control valves at the outlet, and the connection position of the exhaust gas conduit and the control valve at each boiler outlet are connected to the portion of each common pipe between the control valves at the boiler inlet. The intermediate portion and the intermediate portion are connected by a bypass conduit having a control valve provided in the intermediate portion.

そして、本発明はこうした構成によつて、以下
に列挙する様な新規な効果を奏する。
With this configuration, the present invention provides novel effects as listed below.

各共通管が、転炉から排ガス導管へと向う排
ガスの為の環状流路を提供し、前記排ガスの管
内抵抗が減少する。それによつて排ガスを送流
する為の動力費が低減すると共に、管路に侵入
するフリーエアの削減が可能となる。
Each common tube provides an annular flow path for the exhaust gas from the converter to the exhaust gas conduit, reducing the resistance in the tube for said exhaust gas. This reduces the power cost for sending the exhaust gas and also makes it possible to reduce the amount of free air that enters the pipe.

排ガスの管内抵抗が小さい事から小径管の使
用が可能となり設備費用の削減が可能となる。
Since the internal resistance of exhaust gas is small, it is possible to use small diameter pipes and reduce equipment costs.

各ボイラの入口及び出口に設けた制御弁と各
バイパス管に設けた制御弁との開閉の組合わせ
によつて、2炉同時吹き操業に於て一方の炉の
停止時に前記ボイラへの冷風だけの流入が回避
可能となり、ボイラ冷却及びそれに伴う悪影響
が排除され、ボイラからの安定した蒸気発生が
可能となる。
By combining the opening and closing of the control valves installed at the inlet and outlet of each boiler and the control valves installed in each bypass pipe, only cold air is supplied to the boiler when one furnace is stopped in a two-furnace simultaneous blowing operation. This makes it possible to avoid the inflow of water, eliminate boiler cooling and its accompanying negative effects, and enable stable steam generation from the boiler.

次に、本発明に係る銅製錬転炉用排熱回収装置
について図面を参照して詳しく説明する。
Next, the exhaust heat recovery device for a copper smelting converter according to the present invention will be described in detail with reference to the drawings.

一般に銅製錬用転炉は複数基、本実施例では六
基2a,2b,2c,2d,2e及び2fが設置
され、その中の二基は炉修理又は予備炉として休
止し、他の四基が稼動するように構成される。六
基の転炉2a,2b,2c,2d,2e及び2f
は各々ダストチヤンバ4a,4b,4c,4d,
4e及び4fを有し、転炉排ガス中の粗粒ダスト
が該ダストチヤンバによつて除去される。
Generally, multiple converter furnaces for copper smelting are installed, in this example six converters 2a, 2b, 2c, 2d, 2e, and 2f are installed, two of which are idled for furnace repair or as a reserve furnace, and the other four converters are is configured to operate. Six converters 2a, 2b, 2c, 2d, 2e and 2f
are dust chambers 4a, 4b, 4c, 4d, respectively.
4e and 4f, and coarse dust in the converter exhaust gas is removed by the dust chamber.

各ダストチヤンバ4a,4b,4c,4d,4
e及び4fの出口は共通管路30で相互に連結さ
れる。共通管路30は転炉の基数より少ない、本
実施例では二基のボイラー26及び28の入口に
接続される。各ボイラー26及び28の煙道即ち
排ガス出口は管路32によつて相互に連結されそ
して高温コツトレル36に管路34で連通され
る。高温コツトレル36は本実施例では二基設け
られているがこれに限定されない。
Each dust chamber 4a, 4b, 4c, 4d, 4
The outlets e and 4f are interconnected by a common conduit 30. The common line 30 is connected to the inlets of boilers 26 and 28, which in this example are two, fewer than the number of converters. The flue or flue gas outlet of each boiler 26 and 28 is interconnected by a line 32 and communicated by a line 34 to a hot cottle 36. Although two high-temperature hotterrels 36 are provided in this embodiment, the present invention is not limited to this.

高温コツトレル36で微粒ダストを除去された
転炉排ガスは管路38を介して通常の硫酸製造工
程へと送給される。
The converter exhaust gas from which particulate dust has been removed in the high-temperature cottle 36 is sent to a normal sulfuric acid manufacturing process via a pipe 38.

本実施態様において共通管路30と32との間
にはボイラー26及び28を介せず転炉排ガスを
直接共通管路30から煙道出口管路32へと流通
せしめるためのバイパス管路42及び44が設け
られる。ボイラー26及び28の入口及び出口並
びにバイパス管路42及び44には弁46,4
8,50,52,54及び56が配設される。
In this embodiment, a bypass pipe 42 and a bypass pipe 42 are provided between the common pipes 30 and 32 to allow the converter exhaust gas to flow directly from the common pipe 30 to the flue outlet pipe 32 without going through the boilers 26 and 28. 44 are provided. Valves 46,4 are provided at the inlet and outlet of the boilers 26 and 28 and at the bypass lines 42 and 44.
8, 50, 52, 54 and 56 are arranged.

次に、以上の如くに構成される排熱回収装置の
作動について説明する。
Next, the operation of the exhaust heat recovery device configured as described above will be explained.

前述のように、一連の転炉の中四基が稼動して
いるとすると、その中の二基が送風作業中にあ
る。更に詳しく言えば一基が造銅期、他の一基は
造〓期にあり、他の二基は原料の装入又は産出物
の排出あるいはタイムサイクル上の操業待ちのた
めに停風されている。
As mentioned above, if four of the converters in the series are in operation, two of them are in the process of blowing air. To be more specific, one unit is in the copper production stage, the other is in the production stage, and the other two are shut down due to loading raw materials, discharging output, or waiting for operation in the time cycle. There is.

斯る状態においては、つまり二基の転炉共吹き
込み作業中にある場合には、弁54及び56は閉
とされ、他の弁は全て開とされる。従つて、転炉
2からの高温の排ガスはダストチヤンバー4から
共通管路30へと流入し次でボイラー26及び2
8を通つて管路32,34へと流通する。
In such a situation, ie, when two converters are co-blowing, valves 54 and 56 are closed and all other valves are open. Therefore, the hot exhaust gas from the converter 2 flows from the dust chamber 4 into the common line 30 and then into the boilers 26 and 2.
8 to the conduits 32, 34.

ダストチヤンバー4からの高温排ガスはボイラ
ー26及び28にて熱交換され、従つて管路32
及び34を経て高温コツトレル36へと送給され
る排ガスは300℃〜400℃程度にまでその温度が減
少される。一方、ボイラー26及び28で発生し
た高温、高圧蒸気は例えば発電用タービン60へ
と給送される。
The hot exhaust gas from the dust chamber 4 is heat exchanged in the boilers 26 and 28 and is therefore transferred to the pipe 32.
The temperature of the exhaust gas fed to the high-temperature cottle 36 via 34 and 34 is reduced to about 300°C to 400°C. On the other hand, high-temperature, high-pressure steam generated in the boilers 26 and 28 is fed, for example, to a power generation turbine 60.

一方、送風作業中の一基の転炉が造銅又は造〓
期の終了に伴ない停止する場合には弁46及び4
8、あるいは50及び52が閉鎖され、弁54あ
るいは56が開とされる。従つて、転炉作業休止
により温度に下がつたダストチヤンバからの排ガ
スはボイラー26あるいは28には導入されず、
バイパス管路42あるいは44及び管路32,3
4を介して高温コツトレル36へと導入される。
On the other hand, one of the converters in the process of blowing air was producing copper or copper.
When stopping due to the end of the period, valves 46 and 4
8 or 50 and 52 are closed and valves 54 or 56 are open. Therefore, the exhaust gas from the dust chamber whose temperature has dropped due to the shutdown of the converter operation is not introduced into the boiler 26 or 28.
Bypass line 42 or 44 and lines 32, 3
4 into the hot cottle 36.

又、転炉2の始動直前においても、弁46及び
48、あるいは50及び52は閉鎖され、弁54
あるいは56が開とされ、転炉2及びダストチヤ
ンバ4からの冷風はボイラー26あるいは28へ
は導入されず、バイパス管路42、あるいは44
及び管路32,34を介して直接高温コツトレル
36へと導入される。
Also, immediately before the converter 2 is started, the valves 46 and 48 or 50 and 52 are closed, and the valve 54 is closed.
Alternatively, 56 is open, and the cold air from the converter 2 and dust chamber 4 is not introduced into the boiler 26 or 28, and the bypass line 42 or 44 is opened.
and is introduced directly into the high-temperature barrel 36 via lines 32 and 34.

上記説明において、バイパス管路を使用するた
めにボイラー26及び28の出入口に弁46,4
8及び50,52を配置する態様を説明したが、
実際には斯る弁は設けなくともボイラー自体が有
する抵抗により、バイパス管路42,44を開放
した場合には転炉排ガスは該バイパス管路を自動
的に流通する。従つて、弁46,48,50及び
52は本発明の排熱回収装置にあつては必須の要
素ではない。
In the above description, valves 46, 4 are provided at the inlets and outlets of boilers 26 and 28 to use bypass lines.
Although the mode of arranging 8, 50, and 52 was explained,
Actually, even if such a valve is not provided, the converter exhaust gas automatically flows through the bypass pipes when the bypass pipes 42 and 44 are opened due to the resistance of the boiler itself. Therefore, the valves 46, 48, 50 and 52 are not essential elements in the exhaust heat recovery device of the present invention.

更に又、本装置のバイパス管路42あるいは4
4の開閉は管路30内の、つまり転炉排ガスの温
度が所定値以下となつたことを温度検知器70で
計測し、制御弁54,56を開閉作動せしめるこ
とによつて自動的に行なうこともできる。
Furthermore, the bypass line 42 or 4 of the device
4 is automatically opened and closed by measuring with a temperature detector 70 that the temperature in the pipe line 30, that is, in the converter exhaust gas, has fallen below a predetermined value, and by opening and closing the control valves 54 and 56. You can also do that.

以上の説明にて理解されるように本発明の排熱
回収装置においては、ボイラー26及び28は転
炉の作動状態によつて発生する転炉及びダストチ
ヤンバーからの冷風によつて冷却されることはな
く、従つてボイラーに高温排ガスが再び送給され
るまでの間ボイラーを加熱するための補助燃焼設
備を特別に設置するなどの複雑かつ不経済な手段
をとらなくても、ボイラー操業を良好な管理状態
に維持することができる。
As understood from the above explanation, in the waste heat recovery apparatus of the present invention, the boilers 26 and 28 are cooled by cold air from the converter and dust chamber generated depending on the operating state of the converter. Therefore, boiler operation can be continued without taking complicated and uneconomical measures such as installing special auxiliary combustion equipment to heat the boiler until hot exhaust gas is fed to the boiler again. Can be maintained in good management condition.

送風中の二基の転炉を同時に停止させるという
ことは、硫酸工場の良好な操業のために避けるべ
きことなので、以上の説明においては、一基の転
炉が停止する場合には、54,56のうち一方の
バイパス煙道弁を開くことによつてボイラー26
あるいは28にガスを導入しないようにすると記
載したが、操業の都合によりやむを得ず二基の転
炉が双方とも停止する場合には、バイパス管路の
弁54及び56をともに開き、ボイラー26及び
28へのガス導入をすべて停止することもあり得
ることを付記する。
Stopping two converters that are blowing air at the same time should be avoided for the good operation of a sulfuric acid plant, so in the above explanation, if one converter is stopped, 54, boiler 26 by opening one of the bypass flue valves of 56.
Alternatively, although it has been stated that gas should not be introduced into boilers 28, if both converters are forced to stop due to operational reasons, both valves 54 and 56 of the bypass pipes should be opened, and gas should be introduced into boilers 26 and 28. It should be noted that it is possible that all gas introductions may be stopped.

以上の如くに構成される本発明に係る排熱回収
装置を使用すると、無駄なボイラーの設置を回避
することができ、ボイラーの稼動率を著しく増大
せしめることができる。更に、従来の装置が必要
とした転炉休止中のボイラーチユーブの腐食防止
のための保温を不要とし、ボイラーの管理が容易
であるという利益を有する。又本発明の排熱回収
装置に使用されるボイラーは安定した蒸気の発生
を可能とし、従来不可能とされていた転炉ボイラ
ー発生蒸気の発電への利用が可能となつた。
By using the exhaust heat recovery device according to the present invention configured as described above, it is possible to avoid unnecessary installation of a boiler, and the operating rate of the boiler can be significantly increased. Furthermore, there is no need to insulate the boiler tube to prevent corrosion while the converter is not in use, which was required in conventional equipment, and there is an advantage that the boiler can be easily managed. Furthermore, the boiler used in the exhaust heat recovery device of the present invention enables stable generation of steam, making it possible to utilize steam generated by a converter boiler for power generation, which was previously considered impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る銅製錬用転炉からの排熱回
収装置の一実施態様を表わす概略説明図である。 2:転炉、4:ダストチヤンバ、26,28:
ボイラー、42,44:バイパス管路、36:高
温コツトレル。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawing is a schematic explanatory view showing one embodiment of an apparatus for recovering exhaust heat from a converter for copper smelting according to the present invention. 2: Converter, 4: Dust chamber, 26, 28:
Boiler, 42, 44: Bypass pipeline, 36: High temperature kettle.

Claims (1)

【特許請求の範囲】 1 2炉同時吹操業される複数の銅製錬転炉用の
排熱回収装置にして、 2基以上の複数のボイラーと、該ボイラーの入
口を並列に繋ぎそして該ボイラーの各々の入口側
に制御弁を具備する入口側共通管と、該ボイラー
の出口を並列に繋ぎそして該ボイラーの各々の出
口側に制御弁を具備する出口側共通管とを備え、 前記入口側共通管の、各前記ボイラ入口の制御
弁同志の間部分に前記複数の転炉を接続し、 前記出口側共通管の、各前記ボイラ出口の制御
弁同志の間部分に排ガス導管を接続し、 前記入口共通管の、各前記ボイラ入口の制御弁
同志の間部分と、前記出口側共通管の前記排ガス
導管の接続位置と各前記ボイラ出口の制御弁との
間部分、とを中間部分に制御弁を設けたバイパス
管路によつて接続した事を特徴とする銅製錬転炉
用の排熱回収装置。 2 ボイラは2基設置されて成る特許請求の範囲
第1項記載の装置。 3 転炉は6基設置されて成る特許請求の範囲第
1項記載の装置。 4 ボイラ及びバイパス管路の制御弁が温度検知
器によつて開閉される特許請求の範囲第1項記載
の装置。 5 排ガス導管は高温コツトレルに接続される特
許請求の範囲第1項記載の装置。
[Scope of Claims] 1. An exhaust heat recovery device for a plurality of copper smelting converters operated at the same time with two furnaces, which connects two or more boilers and the inlets of the boilers in parallel, and an inlet side common pipe having a control valve on each inlet side; and an outlet side common pipe connecting the outlet of the boiler in parallel and having a control valve on each outlet side of the boiler, Connecting the plurality of converters to a portion of the pipe between the control valves at each boiler inlet, Connecting an exhaust gas conduit to a portion of the outlet side common pipe between the control valves at each boiler outlet, A control valve is connected to an intermediate portion of the inlet common pipe between the control valves at each of the boiler inlets, and a portion of the outlet side common pipe between the connection position of the exhaust gas conduit and each of the control valves at the boiler outlet. An exhaust heat recovery device for a copper smelting converter, characterized in that it is connected by a bypass pipe provided with. 2. The device according to claim 1, wherein two boilers are installed. 3. The device according to claim 1, wherein six converters are installed. 4. The device according to claim 1, wherein the control valves of the boiler and the bypass line are opened and closed by a temperature sensor. 5. The device according to claim 1, wherein the exhaust gas conduit is connected to a high temperature cottle.
JP57108484A 1982-06-25 1982-06-25 Recovering device for waste heat for copper smelting converter Granted JPS591645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57108484A JPS591645A (en) 1982-06-25 1982-06-25 Recovering device for waste heat for copper smelting converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57108484A JPS591645A (en) 1982-06-25 1982-06-25 Recovering device for waste heat for copper smelting converter

Publications (2)

Publication Number Publication Date
JPS591645A JPS591645A (en) 1984-01-07
JPS6214203B2 true JPS6214203B2 (en) 1987-04-01

Family

ID=14485923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57108484A Granted JPS591645A (en) 1982-06-25 1982-06-25 Recovering device for waste heat for copper smelting converter

Country Status (1)

Country Link
JP (1) JPS591645A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2936218B2 (en) * 1994-03-29 1999-08-23 新和プラント機工株式会社 Gemstone polishing equipment
JP2008232546A (en) * 2007-03-22 2008-10-02 Sumitomo Metal Mining Co Ltd Acid dew-point corrosion preventing method and device for converter boiler and independent economizer
JP2010071616A (en) * 2008-09-22 2010-04-02 Toho Titanium Co Ltd Waste heat recovering method of reduction furnace for manufacturing metal
JP5335845B2 (en) * 2010-03-30 2013-11-06 パンパシフィック・カッパー株式会社 Apparatus for recovering copper contained in exhaust gas dust and method for recovering copper contained in exhaust gas dust
JP5722122B2 (en) * 2011-05-30 2015-05-20 パンパシフィック・カッパー株式会社 Metal recovery method

Also Published As

Publication number Publication date
JPS591645A (en) 1984-01-07

Similar Documents

Publication Publication Date Title
US4012191A (en) System for recovering heat from the exhaust gases of a heat generator
JPH06229209A (en) Gas-steam turbine composite equipment and operating method thereof
CN104101225B (en) For improving the system and method for calcium carbide stove exhaust comprehensive utilization ratio
JPS6214203B2 (en)
US4498285A (en) Gas turbine plant with a fluidized bed combustion chamber
CN113251434A (en) Subcritical boiler multi-target collaborative optimization air preheater anti-blocking system
CN110986067A (en) Blow pipe system for combined cycle power plant boiler and operation method thereof
CN108149001B (en) Jet heating system and control method thereof
CN214250591U (en) Cement kiln bypass air-bleeding energy-saving emission-reducing comprehensive utilization device
CN212157107U (en) Take heat supply function's once-through boiler to start hydrophobic waste heat utilization equipment
CN211650294U (en) Blow pipe system for combined cycle power plant boiler
CN203203011U (en) Corrosion-resistant boiler for burning yellow phosphorus tail gas
CN112179156A (en) Bypass air-bleeding energy-saving emission-reduction utilization system and process for cooperatively treating waste in cement kiln
CN112179155A (en) Energy-saving emission-reducing utilization system and process for cement kiln bypass air-bleeding exhaust waste gas
CN207214083U (en) A kind of soot blower of the universal blow head of band
JPS61108814A (en) Gas-steam turbine composite facility
CN219036684U (en) Waste acid schizolysis bypass boiler cold shock wind system
CN214115605U (en) Steam conditioning system for converter waste heat recovery
CN220771100U (en) Boiler economizer bypass system
CN216694622U (en) Calcining flue gas cooling system
CN220418131U (en) Cement kiln smoke chamber exhaust waste heat recovery system
CN213841798U (en) Bypass air-bleeding energy-saving emission-reducing utilization device for cooperatively treating waste in cement kiln
JPS62294724A (en) Turbine casing cooler for turbocharger
CN218937057U (en) Circulating system in vaporization cooling flue of converter waste heat boiler
CN214250592U (en) Cement kiln bypass is let out wind and is discharged waste gas energy saving and emission reduction and utilize device