JP2010071616A - Waste heat recovering method of reduction furnace for manufacturing metal - Google Patents

Waste heat recovering method of reduction furnace for manufacturing metal Download PDF

Info

Publication number
JP2010071616A
JP2010071616A JP2008242691A JP2008242691A JP2010071616A JP 2010071616 A JP2010071616 A JP 2010071616A JP 2008242691 A JP2008242691 A JP 2008242691A JP 2008242691 A JP2008242691 A JP 2008242691A JP 2010071616 A JP2010071616 A JP 2010071616A
Authority
JP
Japan
Prior art keywords
waste heat
furnace
reduction
reduction furnace
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008242691A
Other languages
Japanese (ja)
Inventor
Takuo Kataoka
拓雄 片岡
Hidekazu Fukazawa
英一 深澤
Kazuhiko Oi
一彦 大井
Masanobu Taguchi
正信 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Toho Titanium Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Toho Titanium Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2008242691A priority Critical patent/JP2010071616A/en
Publication of JP2010071616A publication Critical patent/JP2010071616A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of efficiently recovering waste heat of high temperature from the waste heat generated in cooling a plurality of reduction furnaces for manufacturing metal. <P>SOLUTION: In this method of recovering waste heat generated in the plurality of reduction furnaces for manufacturing metal by reducing metallic chloride, the waste heat generated from the plurality of reduction furnaces is integrated and recycled. The reduction furnace is operated by a batch method in which an operation process includes a temperature rising process, a steady operation process and a cooling process, and only the waste heat of a temperature higher than a waste heat recovery lower limit temperature of the reduction furnaces in the steady operation process or the cooling process, is integrated and recycled. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、金属製造用の還元炉で発生する廃熱を効率よく回収する方法および装置に関する。   The present invention relates to a method and apparatus for efficiently recovering waste heat generated in a reduction furnace for metal production.

スポンジチタンは、ステンレス製の反応容器内を還元炉として用い、四塩化チタンと溶融マグネシウムを高温で反応させることにより生成される。前記四塩化チタンと溶融マグネシウムとの反応は、発熱反応であるために反応容器の反応部に該当する面に空気を吹き付けて強制的に冷却している。   Sponge titanium is produced by reacting titanium tetrachloride and molten magnesium at a high temperature using a stainless steel reaction vessel as a reduction furnace. Since the reaction between titanium tetrachloride and molten magnesium is an exothermic reaction, air is blown onto the surface corresponding to the reaction portion of the reaction vessel to forcibly cool it.

金属チタンの融点は1670℃近傍にあるが、1050℃近傍において鉄と共晶を形成して溶融することが知られている。よって、前記反応容器の温度は、共晶点以下に制御することは、反応容器を溶損することなく安定して製造するために重要である。   Although the melting point of metallic titanium is in the vicinity of 1670 ° C., it is known that it melts by forming a eutectic with iron in the vicinity of 1050 ° C. Therefore, it is important to control the temperature of the reaction vessel below the eutectic point in order to stably produce the reaction vessel without melting.

前記した反応容器の冷却に供された空気は反応容器に加熱されたまま大気に放出されている場合が多い。前記冷却に使用された空気は、300〜400℃程度に加熱されているので、地球温暖化には好ましくない影響を及ぼしていると思われる。   In many cases, the air used for cooling the reaction vessel is discharged into the atmosphere while being heated in the reaction vessel. Since the air used for the cooling is heated to about 300 to 400 ° C., it seems to have an undesirable effect on global warming.

また、反応容器におけるスポンジチタン生成反応は、一連の工程を繰り返し行うバッチ操業であり、具体的には加熱昇温工程、定常運転、および冷却工程から構成されており、反応容器の冷却に使用され排気される空気の温度が一定ではなく、反応容器が置かれている上記工程によって経時的に変化する。   In addition, the titanium sponge production reaction in the reaction vessel is a batch operation in which a series of steps are repeated, and specifically comprises a heating temperature raising step, a steady operation, and a cooling step, and is used for cooling the reaction vessel. The temperature of the exhausted air is not constant and changes with time depending on the above-described process in which the reaction vessel is placed.

よって、前記反応容器の冷却に使用されて高温に加熱された空気(以降、「廃熱」と呼ぶ場合がある。)を安定的に利用することが難しく、また、複数の反応容器で並列させて反応を行う場合、それぞれがバッチ操業であるため各炉の運転は独立しており、それぞれの炉から個別に回収される廃熱は少量であるため回収メリットを享受することが困難であった。   Therefore, it is difficult to stably use air that has been used to cool the reaction vessel and heated to a high temperature (hereinafter sometimes referred to as “waste heat”), and it is also possible to arrange the reaction vessels in parallel. When the reaction is carried out, the operation of each furnace is independent because each is a batch operation, and the waste heat recovered individually from each furnace is small, making it difficult to enjoy the benefits of recovery. .

このようにスポンジチタン製造用還元炉で利用された廃熱を効率よく利用する技術が望まれている。   Thus, a technique for efficiently utilizing the waste heat used in the reduction furnace for producing sponge titanium is desired.

この点については、反応炉で生成した廃ガスや廃熱を利用する技術が多数知られている。例えば、複式の転炉から放出される廃ガスを、前記転炉の廃ガス道に装着されたバルブを切り替えることで、高温の廃ガスを見掛け上連続的に回収される技術が開示されている(例えば、特許文献1参照)。しかしながら、2基以上の独立した複数の転炉から排出される廃熱を効率よく、また最適な方法により回収する技術に関する記載はない。   In this regard, many techniques are known that utilize waste gas and waste heat generated in a reactor. For example, a technology is disclosed in which waste gas released from a dual converter is apparently continuously recovered by switching a valve attached to a waste gas passage of the converter. (For example, refer to Patent Document 1). However, there is no description regarding a technique for efficiently recovering waste heat discharged from two or more independent converters in an efficient manner.

また、冶金炉の廃ガスを回収して、蒸気を生成させ、前記蒸気をガスタービンに導いて、前記ガスタービンによって発電する方法が開示されている(例えば、特許文献2参照)。しかしながら、前記冶金炉で生成する廃ガスからの熱を安定的に回収する方法に関する記載は見当たらない。   Further, a method is disclosed in which waste gas from a metallurgical furnace is collected to generate steam, the steam is guided to a gas turbine, and power is generated by the gas turbine (see, for example, Patent Document 2). However, there is no description regarding a method for stably recovering heat from waste gas generated in the metallurgical furnace.

更には、冶金炉で回収された低温の廃熱を吸収式冷凍機に導いて、冷水を得る技術も開示されている(例えば、特許文献3参照)。しかしながら、前記廃熱を安定して回収する方法に関する記載は見当たらない。   Furthermore, a technique for obtaining cold water by guiding low-temperature waste heat recovered in a metallurgical furnace to an absorption refrigerator is also disclosed (for example, see Patent Document 3). However, there is no description regarding a method for stably recovering the waste heat.

特公平06−063014号公報Japanese Patent Publication No. 06-063014 特開平05−340501号公報JP 05-340501 A 特開平9−125126号公報JP 9-125126 A

このように、冶金炉あるいは製錬炉から回収された廃熱を効率よく回収する技術は広く知られているようであるが、複数の異なる運転状態にある還元炉の廃熱を安定的に回収する技術に関する文献は見当らない。   As described above, the technology for efficiently recovering the waste heat recovered from the metallurgical furnace or smelting furnace seems to be widely known. However, the waste heat of the reduction furnaces in different operating states can be recovered stably. There is no literature about the technology to do.

本発明は、複数の金属製造用還元炉を冷却する際に発生する廃熱のうち、高温にある廃熱を効率よく回収する方法の提供を目的としている。   An object of the present invention is to provide a method for efficiently recovering waste heat at a high temperature among waste heat generated when cooling a plurality of reduction furnaces for metal production.

かかる実情に鑑みて鋭意検討を重ねてきたところ、複数の金属製造用還元炉から発生する廃熱を統合して用いることで、熱量の安定した廃熱を回収することができることを見出し、本願発明を完成するに至った。   As a result of extensive studies in view of such circumstances, it has been found that by using waste heat generated from a plurality of reduction furnaces for metal production, waste heat with a stable calorific value can be recovered. It came to complete.

すなわち、本発明は、金属塩化物を還元して金属を製造する複数の還元炉で発生する廃熱の回収方法であって、複数の還元炉から発生する廃熱を統合して再利用することを特徴としている。   That is, the present invention is a method for recovering waste heat generated in a plurality of reduction furnaces that produce metal by reducing metal chloride, and integrates and reuses waste heat generated from a plurality of reduction furnaces. It is characterized by.

また、本願発明は、前記還元炉から発生する廃熱のうち、廃熱回収下限温度以上の廃熱のみを統合して利用することを好ましい態様とするものである。   Moreover, this invention makes it a preferable aspect to integrate and utilize only the waste heat more than a waste heat recovery minimum temperature among the waste heat generated from the said reduction furnace.

さらに、本願発明は、廃熱が一定量に制御された操業炉群に属す還元炉の中で、廃熱温度が最初に廃熱回収温度下限を下回ることが予想される還元炉を選択すると共に、休止炉群に属する還元炉の中で、廃熱回収温度下限を最初に上回った還元炉を選択することを好ましい態様とするものである。   Furthermore, the present invention selects a reduction furnace in which the waste heat temperature is first expected to fall below the lower limit of the waste heat recovery temperature among the reduction furnaces belonging to the operation furnace group in which the waste heat is controlled to a constant amount. Among the reduction furnaces belonging to the outage furnace group, it is preferable to select a reduction furnace that first exceeds the lower limit of the waste heat recovery temperature.

本願発明は、前記の方法で回収された廃熱を、蒸気を介して吸収式冷凍機に供給して冷水を得ることを好ましい態様とするものである。さらには、前記の方法で回収された廃熱を熱交換器に供給して温風を得ることを好ましい態様とするものである。   This invention makes it a preferable aspect to supply the waste heat collect | recovered by the said method to an absorption refrigerating machine via a vapor | steam, and to obtain cold water. Furthermore, the waste heat recovered by the method described above is preferably supplied to a heat exchanger to obtain hot air.

以上の特徴をもった本願発明を実施することで、金属製造用還元炉で発生する廃熱を効率よく回収することができるという効果を奏するものである。   By implementing the present invention having the above-described features, it is possible to efficiently recover the waste heat generated in the reduction furnace for metal production.

本発明に従えば、スポンジチタンのような金属製造用還元炉の冷却の際に発生する廃熱を安定して回収することができるという効果を奏するものである。廃熱を吸収式冷凍機に導くことにより、冷却用コンプレッサーの稼動基数を削減することができその結果、電力使用量を削減できるという効果を奏するものである。さらに、高温の廃熱の大気放出量も削減できるという効果を奏するものである。また、廃ガスが燃焼ガスでなく、電熱加熱された空気であり、燃焼で生成する水分やCOを含まず、機材の腐食を抑制し、環境負荷も小さいという効果を奏するものである。その結果、地球温暖化の原因であるCOの発生量を削減でき、さらに大気に放出される熱量も削減できるという効果を奏するものである。 According to the present invention, it is possible to stably recover waste heat generated when cooling a reduction furnace for metal production such as sponge titanium. By introducing the waste heat to the absorption chiller, the operating number of the cooling compressor can be reduced, and as a result, the power consumption can be reduced. In addition, the amount of high-temperature waste heat released into the atmosphere can be reduced. In addition, the waste gas is not combustion gas but electrothermally heated air, does not include moisture and CO 2 generated by combustion, and has the effect of suppressing corrosion of equipment and reducing the environmental load. As a result, it is possible to reduce the amount of CO 2 that is a cause of global warming and to reduce the amount of heat released to the atmosphere.

本発明の最良の実施形態について図面を用いて以下に説明する。
図1は、本願発明に係る金属製造用還元炉の一例を示している。本実施態様においては、四塩化チタンのマグネシウム還元によりスポンジチタンを製造している金属製造用還元炉Mを表している。
The best embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows an example of a reduction furnace for metal production according to the present invention. In this embodiment, a reduction furnace M for metal production in which titanium sponge is produced by magnesium reduction of titanium tetrachloride is shown.

昇温工程
スポンジチタンの還元反応開始に先立って、反応容器1を還元炉3に挿入後、次いで反応容器1の内部を不活性ガス雰囲気にしつつ、還元炉3に内装したヒーター2に通電して、反応容器1の温度を四塩化チタンと溶融マグネシウムの反応開始温度まで昇温する。この工程を昇温工程と呼ぶ。
Prior to the start of the reduction reaction of the titanium sponge in the temperature raising step , the reaction vessel 1 is inserted into the reduction furnace 3 and then the heater 2 built in the reduction furnace 3 is energized while the inside of the reaction vessel 1 is in an inert gas atmosphere. The temperature of the reaction vessel 1 is raised to the reaction start temperature of titanium tetrachloride and molten magnesium. This process is called a temperature raising process.

定常運転工程
反応容器1の温度が反応開始温度まで達した後、温度の安定を待って、反応容器1に予め装入した溶融マグネシウム表面に四塩化チタンを滴下する。反応容器1内に装入した溶融マグネシウム浴面では、四塩化チタンが溶融マグネシウムと反応してスポンジチタンが生成される。
After the temperature of the steady operation step reaction vessel 1 reaches the reaction start temperature, titanium tetrachloride is dropped onto the surface of the molten magnesium previously charged in the reaction vessel 1 after the temperature is stabilized. On the surface of the molten magnesium bath charged in the reaction vessel 1, titanium tetrachloride reacts with the molten magnesium to produce sponge titanium.

前記四塩化チタンと溶融マグネシウムとの反応は発熱反応であるために前記反応が開始されると反応容器1のうち四塩化チタンとマグネシウムとの反応が進行している表面近傍の部位(以降「反応域」と呼ぶ場合がある。)から反応熱が集中的に発生する。この状態を放置すると反応部の温度は金属チタンと鉄との共晶点(1050℃近傍)を超えて反応容器を溶損する恐れがある。   Since the reaction between titanium tetrachloride and molten magnesium is an exothermic reaction, when the reaction is started, a portion of the reaction vessel 1 near the surface where the reaction between titanium tetrachloride and magnesium proceeds (hereinafter “reaction”). In some cases, the reaction heat is generated intensively. If this state is left as it is, the temperature of the reaction part may exceed the eutectic point of titanium metal and iron (near 1050 ° C.) and the reaction vessel may be melted.

そこで、現場の設備では、図1に示すように反応容器1の反応域に相当する部位に外部から冷却用空気を送って反応域の過熱を抑制している。その結果、図2の定常運転に対応する還元炉の温度は、900℃〜1050℃の範囲に制御されている。本願発明においては前記の状態を定常運転工程と呼ぶ。   Therefore, in the on-site equipment, as shown in FIG. 1, cooling air is sent from the outside to a portion corresponding to the reaction zone of the reaction vessel 1 to suppress overheating of the reaction zone. As a result, the temperature of the reduction furnace corresponding to the steady operation in FIG. 2 is controlled in the range of 900 ° C. to 1050 ° C. In the present invention, the above state is called a steady operation process.

冷却工程
前記した反応を継続し所定量のスポンジチタンが反応容器1内で生成後は、反応容器1内への四塩化チタンの滴下を終了すると共に還元炉3のヒーター2の通電を断って、反応容器1を室温近傍まで冷却する。本願発明においては前記の工程を冷却工程と呼ぶ。
Cooling step After the above-described reaction is continued and a predetermined amount of sponge titanium is produced in the reaction vessel 1, the dropping of titanium tetrachloride into the reaction vessel 1 is terminated and the heater 2 of the reduction furnace 3 is turned off, The reaction vessel 1 is cooled to near room temperature. In the present invention, the above process is called a cooling process.

図2は、前記した昇温工程、定常運転工程および冷却工程における反応容器1の温度変化を表している。本願発明においては、前記の各工程のうち、反応容器1の温度が所定の温度以上(以降「廃熱回収下限温度」と呼ぶ場合がある。)にある廃熱を選択的に回収することを好ましい態様とするものである。   FIG. 2 shows the temperature change of the reaction vessel 1 in the temperature raising step, the steady operation step, and the cooling step. In the present invention, among the steps described above, the waste heat at which the temperature of the reaction vessel 1 is equal to or higher than a predetermined temperature (hereinafter sometimes referred to as “waste heat recovery lower limit temperature”) is selectively recovered. This is a preferred embodiment.

前記した態様は、例えば図3に示すように、還元炉3に供給されて反応容器1を冷却して加熱された廃熱を還元炉3に設けられた排出口より外部に放出する際に、自動バルブ10により廃熱回収温度下限以上の廃熱を選択的に廃熱回収装置に供給することができる。   For example, as shown in FIG. 3, the above-described aspect is provided when the waste heat supplied to the reduction furnace 3 and cooled by heating the reaction vessel 1 is discharged to the outside from an outlet provided in the reduction furnace 3. The automatic valve 10 can selectively supply waste heat at or above the lower limit of the waste heat recovery temperature to the waste heat recovery device.

本願発明においては、廃熱回収下限温度は、300℃〜400℃の範囲に設定することが好ましい。前記のような温度域に廃熱回収下限温度を設定することで、熱量の安定した廃熱を廃熱回収装置に供給することができる。   In this invention, it is preferable to set the waste-heat recovery minimum temperature in the range of 300 to 400 degreeC. By setting the waste heat recovery lower limit temperature in the temperature range as described above, it is possible to supply waste heat with a stable amount of heat to the waste heat recovery device.

本願発明においては、金属製造用還元炉Mは、前記したようにバッチ式であるため複数の金属製造用還元炉Mのそれぞれの工程をずらしつつ稼動させることで、工場全体では見かけ上連続的にスポンジチタンが製造されている。   In the present invention, the reduction furnace M for metal production is a batch type as described above, and therefore, by operating each of the plurality of reduction furnaces M for metal production while shifting the process, the entire factory is apparently continuous. Sponge titanium is manufactured.

よって、本願発明においては、各金属製造用還元炉Mから放出される廃熱を一箇所に統合させて利用することが好ましい。その結果、個々の金属製造用還元炉Mの工程は、昇温、定常運転および冷却の各工程を個別に辿っているものの、各金属製造用還元炉Mから排出される廃熱を一箇所に統合することで、熱量の平滑化された廃熱を廃熱回収装置に供給することができる。   Therefore, in this invention, it is preferable to integrate and utilize the waste heat discharged | emitted from the reduction furnace M for each metal manufacture in one place. As a result, the processes of the individual metal production reducing furnaces M individually follow the steps of temperature increase, steady operation and cooling, but the waste heat discharged from each metal production reducing furnace M is in one place. By integrating, the waste heat whose amount of heat is smoothed can be supplied to the waste heat recovery device.

本願発明においては、図4に示すように、個々の金属製造用還元炉Mから排出される廃熱の温度が廃熱回収温度下限以上にある金属製造用還元炉Mを操業炉群として分類して、また、前記冷却工程を終了後、真空分離工程を経て生成したスポンジチタンを抜き出し、さらに反応容器1の整備を完了して昇温中の金属製造用還元炉Mを休止炉群に分類して、各金属製造用還元炉Mから排出される廃熱の統合方法を制御することが好ましい。   In the present invention, as shown in FIG. 4, the reduction furnace M for metal production in which the temperature of the waste heat discharged from each reduction furnace M for metal production is equal to or higher than the lower limit of the waste heat recovery temperature is classified as an operation furnace group. In addition, after completion of the cooling process, the sponge titanium produced through the vacuum separation process is extracted, and further, the maintenance of the reaction vessel 1 is completed, and the metal production reducing furnace M is classified into a dormant furnace group. Thus, it is preferable to control the integration method of the waste heat discharged from each metal production reducing furnace M.

また、本願発明においては、操業炉群に属する還元炉の中で、廃熱温度が最初に廃熱回収温度下限を切ることが予想される還元炉(図4において還元炉Aに相当)を選択して、前記廃熱温度が下限を切る直前に、前記還元炉に装着された図3に示す自動バルブ10を閉とするように制御することが好ましい。一方、休止炉群に属する還元炉の中で、廃熱温度が、廃熱回収温度下限を最初に上回った還元炉(図4において還元炉Dに相当)を選択して、還元炉に装着された図3に示す自動バルブ10を開とするように制御することが好ましい。   In the present invention, a reduction furnace (corresponding to reduction furnace A in FIG. 4) is selected from among the reduction furnaces belonging to the operating furnace group, where the waste heat temperature is expected to first fall below the lower limit of the waste heat recovery temperature. And it is preferable to control so that the automatic valve 10 shown in FIG. 3 attached to the reduction furnace is closed immediately before the waste heat temperature falls below the lower limit. On the other hand, among the reduction furnaces belonging to the resting furnace group, a reduction furnace (corresponding to reduction furnace D in FIG. 4) whose waste heat temperature first exceeded the lower limit of the waste heat recovery temperature is selected and installed in the reduction furnace. It is preferable to control the automatic valve 10 shown in FIG.

前記、廃熱回収が停止された前記操業炉群に属する還元炉は休止炉群に、また、廃熱回収が開始された休止炉群に属する還元炉は、操業炉群に移して管理することが好ましい。   The reduction furnace belonging to the operating furnace group for which waste heat recovery has been stopped is managed as a shutdown furnace group, and the reduction furnace belonging to the shutdown furnace group for which waste heat recovery has been started is transferred to an operation furnace group for management. Is preferred.

なお、休止炉に属する個々の還元炉と、操業炉郡に属する個々の還元炉は、それぞれ、図4のようにA、B、C、D等の個別のバッチ記号と対応表示して、個々の還元炉の温度プロフィールをモニター画面に表示させておくことが好ましい。   The individual reducing furnaces belonging to the outage furnace and the individual reducing furnaces belonging to the operating furnace group are individually displayed in correspondence with individual batch symbols such as A, B, C, and D as shown in FIG. Preferably, the temperature profile of the reduction furnace is displayed on the monitor screen.

このような表示を個々の制御と併用することで、現場管理者が、個々の還元炉の動きと廃熱回収状況を把握しつつ操業することができるという効果を奏するものである。   By using such a display in combination with individual controls, it is possible for the site manager to operate while grasping the movement of the individual reducing furnaces and the state of waste heat recovery.

また、前記のように還元炉の群管理を行うことで、現場における還元炉の整備状況や運転状況に即した廃熱回収に係る制御を行うことができるという効果を奏するものである。   In addition, by performing group management of the reduction furnace as described above, there is an effect that it is possible to perform control related to waste heat recovery in accordance with the maintenance situation and operation state of the reduction furnace at the site.

さらに、操業炉群の反応を所定の時間進行させた後、操業炉群に属する還元炉の中で、廃熱回収温度下限を切った還元炉の廃熱回収を停止すると共に、休止炉群に属する還元炉の中で、廃熱回収温度下限を最初に上回った還元炉の廃熱を回収することが好ましい。   Furthermore, after the reaction of the operating furnace group has proceeded for a predetermined time, in the reducing furnace belonging to the operating furnace group, the waste heat recovery of the reducing furnace that has cut the lower limit of the waste heat recovery temperature is stopped, and Among the reduction furnaces to which it belongs, it is preferable to recover the waste heat of the reduction furnace that first exceeded the lower limit of the waste heat recovery temperature.

前記のような廃熱回収方法に従うことで、複数の金属製造用還元炉Mから排出される廃熱の熱量を単純に統合する場合に比べて、さらに平滑化して回収することができるという効果を奏するものである。   By following the waste heat recovery method as described above, it is possible to further smooth and recover compared to a case where the heat amounts of waste heat discharged from a plurality of reduction furnaces M for metal production are simply integrated. It is what you play.

本願発明の金属製造用還元炉Mの冷却に用いる空気中の水分は、50g/m以下の空気を用いることが好ましい。前記のような空気としては、大気をそのまま使用することができる。 As the moisture in the air used for cooling the reduction furnace M for metal production of the present invention, it is preferable to use air of 50 g / m 3 or less. The air can be used as it is.

本願発明の方法で回収された廃熱は、例えば熱交換器を経て一旦蒸気の形にて回収し、回収された蒸気を吸収式冷凍機に導くことにより冷水を製造することができる。前記冷水は、操業現場の暑熱対策用のエアコンに利用することができる。その結果、前記エアコン稼動用のコンプレッサーの使用電力を効果的に削減することができるという効果を奏するものである。   The waste heat recovered by the method of the present invention can be recovered once, for example, in the form of steam through a heat exchanger, and the recovered steam is guided to an absorption refrigerator to produce cold water. The cold water can be used for an air conditioner for heat countermeasures at an operation site. As a result, the power used by the compressor for operating the air conditioner can be effectively reduced.

また、前記冷水は。四塩化チタンの製造工程に必要な冷凍設備に利用することができる。その結果、前記冷凍設備のコンプレッサーの電力を効果的に削減することができるという効果を奏するものである。その結果、電力を製造するために用いる化石エネルギーの燃焼により発生するCOの発生量を抑制することができるという効果を奏するものである。 Also, the cold water. It can be used for refrigeration equipment necessary for the production process of titanium tetrachloride. As a result, the power of the compressor of the refrigeration equipment can be effectively reduced. As a result, there is an effect that the amount of CO 2 generated by the combustion of fossil energy used for producing electric power can be suppressed.

さらには、本願発明で回収される廃熱を構成する空気中の水分量は、その温度における空気中の飽和水蒸気量以下であり、また、COやCOを含む一般的な製錬廃ガスとは異なり、本願発明に係る廃熱は、空気を媒体としているため、前記製錬排ガスに比べてCOやCOの含有量の少ない高品質な空気であるという特徴を有している。 Furthermore, the amount of moisture in the air which constitutes the waste heat recovered by the present invention is below the saturation vapor content in the air at that temperature, also a general refining waste gas containing CO and CO 2 On the other hand, the waste heat according to the present invention uses air as a medium, and therefore has a feature that it is high-quality air with less CO 2 or CO content than the smelting exhaust gas.

このため、廃熱を構成する空気中の水分とCOが反応して生成する炭酸も微量であり熱交換器や配管に対する腐食の影響はほとんどない。また、冬場には、前記廃熱を直接熱交換器に供給することにより暖房用の熱源としても利用することもできる。 For this reason, the amount of carbon dioxide produced by the reaction of water in the air that constitutes the waste heat and CO 2 is very small, and there is almost no influence of corrosion on the heat exchangers and piping. In winter, the waste heat can be directly supplied to a heat exchanger to be used as a heat source for heating.

以上のように、本願発明においては前記廃熱を効率よく回収して冷媒として利用することができるのみならず熱媒として直接利用することができ、その結果、大気中に放出されるCO量を効果的に抑制できるという効果を奏する。 As described above, in the present invention, the waste heat can be efficiently recovered and used as a refrigerant as well as directly as a heat medium, and as a result, the amount of CO 2 released into the atmosphere. There is an effect that can be effectively suppressed.

また、本願発明に係る廃熱の媒体が燃焼ガスでなく空気であるため、ガスの燃焼で新たに生成する水分やCOを含まず、機材の腐食を抑制し、環境負荷も小さいという効果を奏するものである。 In addition, since the waste heat medium according to the present invention is not combustion gas but air, it does not contain moisture or CO 2 newly generated by gas combustion, suppresses corrosion of equipment, and has an effect of reducing environmental load. It is what you play.

また、大気に放出される高温の廃熱自身も削減することができるため、結果として地球温暖化の防止にも貢献できるという効果を奏するものである。   In addition, since the high-temperature waste heat itself released into the atmosphere can be reduced, the result is that it can contribute to the prevention of global warming.

[実施例1]
操業条件
1)金属製造用還元炉M:スポンジチタン製造用還元炉
2)運転基数:15基
3)バッチサイズ:7t/炉
4)廃熱回収温度下限:300℃
5)回収方式:単純統合方式(請求項1〜3に対応)
[Example 1]
Operating Conditions 1) Reduction furnace for metal production M: Reduction furnace for titanium sponge production 2) Number of operating units: 15 3) Batch size: 7t / furnace 4) Waste heat recovery temperature lower limit: 300 ° C
5) Collection method: Simple integration method (corresponding to claims 1 to 3)

図1に示す金属製造用還元炉Mを15基用いて、請求項1に対応した方法に沿って、前記還元炉Mから生成する廃熱を回収した。その結果、還元炉Mから排出される全廃熱のうち、54%の廃熱を回収することができた。また、回収された熱量(電力量)は、1炉あたり64kWhであった。   The waste heat generated from the reduction furnace M was recovered according to the method corresponding to claim 1 using 15 reduction furnaces M for metal production shown in FIG. As a result, 54% of the total waste heat discharged from the reduction furnace M could be recovered. Further, the recovered heat amount (electric power amount) was 64 kWh per furnace.

[実施例2]
操業条件
1)金属製造用還元炉M:スポンジチタン製造用還元炉
2)運転基数:15基
3)バッチサイズ:7t/炉
4)廃熱回収温度下限:300℃
5)回収方式:優先選択方式(請求項5〜6に対応)
[Example 2]
Operating Conditions 1) Reduction furnace for metal production M: Reduction furnace for titanium sponge production 2) Number of operating units: 15 3) Batch size: 7t / furnace 4) Waste heat recovery temperature lower limit: 300 ° C
5) Collection method: Priority selection method (corresponding to claims 5 to 6)

図4に示すように金属製造用還元炉Mを操業炉群と休止炉群に分類し、さらに、前記操業炉群から廃熱温度が最初に廃熱回収温度下限を切ことが予想される還元炉を選択すると共に、休止炉群に属する還元炉の中で、熱風温度が廃熱回収温度下限を最初に上回った還元炉を優先的に選択して還元炉から排出される廃熱を回収した。その結果、金属製造用還元炉Mの1炉あたりの回収熱量は、実施例1に比べて141%の改善効果が認められた。   As shown in FIG. 4, the reduction furnace M for metal production is classified into an operation furnace group and a dormant furnace group, and the reduction of the waste heat temperature from the operation furnace group is expected to first fall below the lower limit of the waste heat recovery temperature. In addition to selecting a furnace, among the reduction furnaces belonging to the outage furnace group, the reduction furnace with the hot air temperature first exceeding the lower limit of the waste heat recovery temperature was preferentially selected to recover the waste heat discharged from the reduction furnace. . As a result, an improvement effect of 141% in the amount of heat recovered per furnace of the reduction furnace M for metal production was recognized as compared with Example 1.

[実施例3]
実施例1において回収された廃熱を吸収式冷凍機により冷水を製造し、前記冷水を暑熱対策用のエアコンに使用した。その結果、前記エアコンの消費電力のうち60%を削減することができた。
[Example 3]
Cold water was produced from the waste heat recovered in Example 1 using an absorption refrigerator, and the cold water was used in an air conditioner for measures against heat. As a result, 60% of the power consumption of the air conditioner could be reduced.

[比較例1]
実施例1において、金属製造用還元炉Mから排出される廃熱を回収しないで、全量大気中に放出した。その結果、前記金属製造用還元炉Mの1炉あたりから117kWhの熱量(電力量)が大気中に放出された。
[Comparative Example 1]
In Example 1, the waste heat exhausted from the reduction furnace M for producing metal was not recovered, but was entirely released into the atmosphere. As a result, 117 kWh of heat (electric energy) was released into the atmosphere from one furnace of the metal production reducing furnace M.

本発明によれば、金属製造用還元炉から放出される廃熱を効果的に回収し、冷媒あるいは熱媒として有効活用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the waste heat discharge | released from the reduction furnace for metal manufacture can be collect | recovered effectively, and it can utilize effectively as a refrigerant | coolant or a heat carrier.

本発明の金属製造用還元炉を示す模式図である。It is a schematic diagram which shows the reduction furnace for metal manufacture of this invention. 本発明の還元反応における時間と温度の関係を示すグラフである。It is a graph which shows the relationship between time and temperature in the reduction reaction of this invention. 本発明の反応容器の冷却方法を示す模式図である。It is a schematic diagram which shows the cooling method of the reaction container of this invention. 本発明の複数の反応容器からの廃熱回収方法を示す模式図である。It is a schematic diagram which shows the waste-heat recovery method from the some reaction container of this invention.

符号の説明Explanation of symbols

M…金属製造用還元炉、1…反応容器、2…ヒーター、3…還元炉、10…自動バルブ。 M ... reduction furnace for metal production, 1 ... reaction vessel, 2 ... heater, 3 ... reduction furnace, 10 ... automatic valve.

Claims (10)

金属塩化物を還元して金属を製造する複数の還元炉で発生する廃熱の回収方法であって、上記複数の還元炉から発生する廃熱を統合して再利用することを特徴とする金属製造用還元炉の廃熱回収方法。   A method for recovering waste heat generated in a plurality of reduction furnaces for producing metal by reducing metal chloride, wherein the waste heat generated from the plurality of reduction furnaces is integrated and reused Waste heat recovery method for manufacturing reduction furnace. 前記還元炉の運転工程が、昇温工程、定常運転工程および冷却工程からなるバッチ方式で運転されていることを特徴とする請求項1に記載の金属製造用還元炉の廃熱回収方法。   The waste heat recovery method for a reduction furnace for metal production according to claim 1, wherein the operation process of the reduction furnace is operated in a batch system including a temperature raising process, a steady operation process, and a cooling process. 前記定常運転工程または冷却工程にある還元炉のうち、廃熱回収下限温度以上の廃熱のみを統合して利用することを特徴とする請求項1または2に記載の金属製造用還元炉の廃熱回収方法。   The waste of the reduction furnace for metal production according to claim 1 or 2, wherein, among the reduction furnaces in the steady operation process or the cooling process, only waste heat having a temperature equal to or higher than a minimum waste heat recovery temperature is integrated and used. Heat recovery method. 前記複数の還元炉を、廃熱を一定量に制御した操業炉群と、還元炉の運転待機状態にある休止炉群とに分類して制御することを特徴とする請求項1〜3のいずれかに記載の金属製造用還元炉の廃熱回収方法。   The plurality of reduction furnaces are controlled by being classified into an operation furnace group in which waste heat is controlled to a constant amount and a shutdown furnace group in an operation standby state of the reduction furnace. A waste heat recovery method for a reduction furnace for metal production according to claim 1. 前記操業炉群に属す還元炉の中で、廃熱温度が最初に廃熱回収温度下限を下回ることが予想される還元炉を選択すると共に、休止炉群に属する還元炉の中で廃熱回収温度下限を最初に上回った還元炉を選択することを特徴とする請求項4に記載の金属製造用還元炉の廃熱回収方法。   Among the reduction furnaces belonging to the operating furnace group, a reduction furnace in which the waste heat temperature is first expected to be lower than the lower limit of the waste heat recovery temperature is selected, and waste heat recovery is performed in the reduction furnaces belonging to the shutdown furnace group. The waste heat recovery method for a reduction furnace for metal production according to claim 4, wherein a reduction furnace that first exceeds the lower temperature limit is selected. 前記操業炉群に属する還元炉の中で、廃熱回収温度下限を下回った還元炉の廃熱回収を停止すると共に、休止炉群に属する還元炉の中で、廃熱回収温度下限を最初に上回った還元炉の廃熱の回収を開始することを特徴とする請求項5に記載の金属製造用還元炉の廃熱回収方法。   Among the reduction furnaces belonging to the operating furnace group, stop the waste heat recovery of the reduction furnace that has fallen below the lower limit of the waste heat recovery temperature, and first reduce the lower limit of the waste heat recovery temperature among the reduction furnaces belonging to the shutdown furnace group. 6. The method for recovering waste heat of a reduction furnace for metal production according to claim 5, wherein recovery of the waste heat of the reduction furnace that has exceeded is started. 前記還元炉がスポンジチタン、スポンジジルコニウムまたはスポンジハフニウム製造用還元炉であることを特徴とする請求項1〜6のいずれかに記載の金属製造用還元炉の廃熱回収方法。   The waste heat recovery method for a reduction furnace for metal production according to any one of claims 1 to 6, wherein the reduction furnace is a reduction furnace for producing sponge titanium, sponge zirconium or sponge hafnium. 前記廃熱の媒体が、金属製造用還元炉の冷却用空気であることを特徴とする請求項1〜7のいずれかに記載の金属製造用還元炉の廃熱回収方法。   The waste heat recovery method for a reduction furnace for metal production according to any one of claims 1 to 7, wherein the waste heat medium is cooling air for a reduction furnace for metal production. 前記統合された廃熱を熱交換器に供給して蒸気を得ることを特徴とする請求項1〜8のいずれかに記載の金属製造用還元炉の廃熱回収方法。   The waste heat recovery method of a reduction furnace for metal production according to any one of claims 1 to 8, wherein steam is obtained by supplying the integrated waste heat to a heat exchanger. 前記統合して回収された蒸気を吸収式冷凍機に供給して、冷水を得ることを特徴とする請求項1〜8のいずれかに記載の金属製造用還元炉の廃熱回収方法。   The waste heat recovery method for a reduction furnace for metal production according to any one of claims 1 to 8, wherein the integrated and recovered steam is supplied to an absorption refrigerator to obtain cold water.
JP2008242691A 2008-09-22 2008-09-22 Waste heat recovering method of reduction furnace for manufacturing metal Pending JP2010071616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008242691A JP2010071616A (en) 2008-09-22 2008-09-22 Waste heat recovering method of reduction furnace for manufacturing metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242691A JP2010071616A (en) 2008-09-22 2008-09-22 Waste heat recovering method of reduction furnace for manufacturing metal

Publications (1)

Publication Number Publication Date
JP2010071616A true JP2010071616A (en) 2010-04-02

Family

ID=42203582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242691A Pending JP2010071616A (en) 2008-09-22 2008-09-22 Waste heat recovering method of reduction furnace for manufacturing metal

Country Status (1)

Country Link
JP (1) JP2010071616A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184625A (en) * 2013-03-22 2014-10-02 Kobe Steel Ltd Exhaust heat utilization device of kneader and exhaust heat utilization method of kneader
JP2015040685A (en) * 2013-08-23 2015-03-02 東邦チタニウム株式会社 Waste heat usage method of reaction furnace for manufacturing titanium metal, manufacturing method of dry solid using the waste heat and waste solid
CN114959916A (en) * 2022-06-17 2022-08-30 中国恩菲工程技术有限公司 Heat recovery system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253102A (en) * 1975-10-28 1977-04-28 Ishikawajima Harima Heavy Ind Co Ltd Gas discharge equalizer of heat equalizer furnace
JPS55140090A (en) * 1979-04-20 1980-11-01 Nakayama Steel Works Ltd Device for recovering highhtemperature exhaust gas and collecting dusts of single or plural melting furnace for steel making
JPS591645A (en) * 1982-06-25 1984-01-07 Nippon Mining Co Ltd Recovering device for waste heat for copper smelting converter
JPH07252549A (en) * 1994-03-16 1995-10-03 Sumitomo Sitix Corp Method for refining titanium
JPH09125126A (en) * 1995-10-30 1997-05-13 Sumitomo Metal Ind Ltd Method for utilizing exhaust heat in converter and device for recovering exhaust heat in converter
JPH09202909A (en) * 1996-01-26 1997-08-05 Nippon Steel Corp Smelting reduction equipment and operation thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253102A (en) * 1975-10-28 1977-04-28 Ishikawajima Harima Heavy Ind Co Ltd Gas discharge equalizer of heat equalizer furnace
JPS55140090A (en) * 1979-04-20 1980-11-01 Nakayama Steel Works Ltd Device for recovering highhtemperature exhaust gas and collecting dusts of single or plural melting furnace for steel making
JPS591645A (en) * 1982-06-25 1984-01-07 Nippon Mining Co Ltd Recovering device for waste heat for copper smelting converter
JPH07252549A (en) * 1994-03-16 1995-10-03 Sumitomo Sitix Corp Method for refining titanium
JPH09125126A (en) * 1995-10-30 1997-05-13 Sumitomo Metal Ind Ltd Method for utilizing exhaust heat in converter and device for recovering exhaust heat in converter
JPH09202909A (en) * 1996-01-26 1997-08-05 Nippon Steel Corp Smelting reduction equipment and operation thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184625A (en) * 2013-03-22 2014-10-02 Kobe Steel Ltd Exhaust heat utilization device of kneader and exhaust heat utilization method of kneader
JP2015040685A (en) * 2013-08-23 2015-03-02 東邦チタニウム株式会社 Waste heat usage method of reaction furnace for manufacturing titanium metal, manufacturing method of dry solid using the waste heat and waste solid
CN114959916A (en) * 2022-06-17 2022-08-30 中国恩菲工程技术有限公司 Heat recovery system
CN114959916B (en) * 2022-06-17 2023-09-29 中国恩菲工程技术有限公司 heat recovery system

Similar Documents

Publication Publication Date Title
US20220235426A1 (en) Method and system for producing steel or molten-iron-containing materials with reduced emissions
CN201289290Y (en) Rapid cooling type intermediate frequency induction sintering furnace
BR112012008165B1 (en) METHOD AND APPARATUS FOR PRODUCING IRON-CARBON COMPOSITE
JP5726614B2 (en) Refractory brick cooling structure and method for converter
JP2010071616A (en) Waste heat recovering method of reduction furnace for manufacturing metal
EP2877606B1 (en) Starting a smelting process
ZA200705597B (en) Metal vapour condensation and liquid metal withdrawal
CN104762488B (en) A kind of method of direct vanadium alloying in esr process
Rodd et al. SNNC: a new ferronickel smelter in Korea
KR101239650B1 (en) Method for refining low nitrogen of molten steel
JP2007197803A (en) Method for recovering waste heat from tuyere in blast furnace
KR101351318B1 (en) Apparatus for Recovering Sensible Heat and Method Thereof
Johansen et al. Carbothermic aluminum
KR101374242B1 (en) Magnesium produduce apparatus
KR20100075246A (en) Reaction vessel for sponge titanium
CN201201953Y (en) Fused state reduction furnace for producing molten iron
JP3965670B2 (en) Metal refining method
JP2007183025A (en) Water cooling and heating system
CN115232972B (en) Control method for wet treatment of aluminum ash
JP2007302916A (en) Method for recovering waste heat from tuyere in blast furnace, and tuyere for blowing air into blast furnace
KR102224887B1 (en) Steelmaking waste heat recovery apparatus and method using the same
JP5353118B2 (en) Blast furnace operation method
KR20140108256A (en) Starting a smelting process
Ho et al. Energy audit of a steel mill
WO2019163607A1 (en) Operating method for metal refining furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140210

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140228