JPS6214140B2 - - Google Patents

Info

Publication number
JPS6214140B2
JPS6214140B2 JP7202079A JP7202079A JPS6214140B2 JP S6214140 B2 JPS6214140 B2 JP S6214140B2 JP 7202079 A JP7202079 A JP 7202079A JP 7202079 A JP7202079 A JP 7202079A JP S6214140 B2 JPS6214140 B2 JP S6214140B2
Authority
JP
Japan
Prior art keywords
output
detection
transistor
automatic gain
gain control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7202079A
Other languages
Japanese (ja)
Other versions
JPS55163919A (en
Inventor
Masami Miura
Michio Isoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7202079A priority Critical patent/JPS55163919A/en
Publication of JPS55163919A publication Critical patent/JPS55163919A/en
Publication of JPS6214140B2 publication Critical patent/JPS6214140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/34Muting amplifier when no signal is present or when only weak signals are present, or caused by the presence of noise signals, e.g. squelch systems
    • H03G3/348Muting in response to a mechanical action or to power supply variations, e.g. during tuning; Click removal circuits

Landscapes

  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)

Description

【発明の詳細な説明】 本発明はラジオ受信機の電源投入時のシヨツク
音を防止する回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a circuit for preventing a shock sound when a radio receiver is turned on.

ラジオ受信機、特に従来のAMラジオ受信機は
第1図にブロツクダイヤグラムを示すように、ア
ンテナ1で受信した信号を同調および高周波増幅
段2で同調、高周波増幅した後、周波数変換段3
で455kHzの中間周波数信号に変換し、中間周波
増段4でこの中間周波数信号を増幅して、検波段
5でAM検波して音声信号に変え、この音声信号
を端子7を介して電力増幅器8からスピーカー9
で音声を得る一方、検波段5の出力をさらに自動
利得制御回路6に加えて自動利得電圧を得、この
自動利得電圧を高周波増幅段2と中間周波増幅段
4とに加えて利得制御を行つている。
As shown in the block diagram of FIG. 1, a radio receiver, especially a conventional AM radio receiver, is configured to tune and amplify the signal received by an antenna 1 at a high frequency amplification stage 2, and then perform a high frequency amplification at a frequency conversion stage 3.
is converted into a 455kHz intermediate frequency signal, intermediate frequency multiplication stage 4 amplifies this intermediate frequency signal, detection stage 5 performs AM detection to convert it into an audio signal, and this audio signal is sent via terminal 7 to power amplifier 8. from speaker 9
While obtaining audio, the output of the detection stage 5 is further applied to an automatic gain control circuit 6 to obtain an automatic gain voltage, and this automatic gain voltage is applied to the high frequency amplification stage 2 and the intermediate frequency amplification stage 4 to perform gain control. It's on.

このような構成のAM受信機では、電源投入時
に検波段7の出力にシヨツク音が表われ、このシ
ヨツク音が電力増幅段8で増幅されてスピーカ9
より音声として出力されてしまう。このシヨツク
音の音声出力は聴感上非常に聞き苦しいものであ
り、又電力増幅段8の出力の大きな場合にはスピ
ーカ9の破損をも生じていた。
In an AM receiver with such a configuration, a shock sound appears in the output of the detection stage 7 when the power is turned on, and this shock sound is amplified by the power amplification stage 8 and transmitted to the speaker 9.
It will be output as audio. The audio output of this shock sound is very difficult to hear, and when the output of the power amplification stage 8 is large, the speaker 9 may be damaged.

このようなシヨツク音は従来の受信機では次の
ような理由により出力に現われるものと考えられ
る。第1に電源投入時に、検波段5が動作するバ
イアス点まで急激に立ち上がるので出力端子7の
出力も急激に立ち上がる。この出力端子7の出力
の立上がりのスピードに比例してシヨツク音がス
ピーカから出力される。第2に電源投入時に中間
周波増幅4と検波段5がトランス結合されている
場合、このトランスを通つて電源より検波入力に
急激なパルスが加わり同様にパルス的なシヨツク
音がスピーカ9より出力される。これら第1、第
2の原因はパルス的なシヨツク音であるが、第3
の原因として中、強入力電界強度時電源投入る
と、AGC平滑回路の遅れによつて、AGCが高周
波増幅段2、中間周波増幅段3にかからず飽和し
た波形の入力が検波段5に加えられ出力に出、こ
れも聞き苦しいシヨツ音としてスピーカ9に出力
されてきた。
It is thought that such shock noise appears in the output of conventional receivers for the following reasons. First, when the power is turned on, the detection stage 5 rises rapidly to the bias point at which it operates, so the output of the output terminal 7 also rises rapidly. A shock sound is output from the speaker in proportion to the rising speed of the output from the output terminal 7. Second, if the intermediate frequency amplifier 4 and the detection stage 5 are transformer-coupled when the power is turned on, a sudden pulse is applied to the detection input from the power supply through this transformer, and a similar pulse-like shock sound is output from the speaker 9. Ru. The first and second causes are pulse-like shock sounds, but the third cause is
The cause of this is that when the power is turned on during medium to strong input electric field strength, due to the delay in the AGC smoothing circuit, the AGC does not reach the high frequency amplification stage 2 or the intermediate frequency amplification stage 3, but the saturated waveform input is sent to the detection stage 5. This was also output to the speaker 9 as an unpleasant rasping sound.

本発明は、電源投入時のシヨツク音の発生を防
止した受信機を得ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a receiver that prevents the occurrence of a shock sound when the power is turned on.

本発明によれば、自動利得制御電圧の立ち上り
検出手段を備え、この検出手段によつて自動利得
制御電圧が十分に立ち上つた時点を検出し、この
時点まで検波段の出力を発生しないようにした受
信機を得る。
According to the present invention, the automatic gain control voltage rise detection means is provided, and the detection means detects the point in time when the automatic gain control voltage has sufficiently risen, and the output of the detection stage is not generated until this point. get a receiver.

次に図面を参照して、本発明の一実施例をより
詳細に説明する。
Next, one embodiment of the present invention will be described in more detail with reference to the drawings.

第2図に本発明の一実施例を示す。この第2図
は第1図の受信機の検波段5とその周辺および自
動利得制御電圧の立ち上りを検出する手段を示し
たもので、中間周波増幅段4の中間周波出力はス
イツチSW1を介して検波段5に入力され、その出
力が出力端子7から取り出されると共に、抵抗1
9,21とコンデンサ20,22との平滑回路に
加えられ、端子12から自動利得制御電圧が得ら
れる。この平滑回路の入力端子11と出力端子1
2との間にはトランジスタ18のコレクタ・エミ
ツタ間が接続され、そのベースには電源電圧で駆
動される定電流源40とスイツチSW2とコンデン
サ17との直列接続回路のコンデンサ17とスイ
ツチSW2との接続点が接続されている。スイツチ
SW1とSW2とは平滑回路の出力端子12の電位を
検出する検出回路13の出力で制御されている。
FIG. 2 shows an embodiment of the present invention. This figure 2 shows the detection stage 5 of the receiver shown in figure 1 , its surroundings, and the means for detecting the rise of the automatic gain control voltage. is input to the detection stage 5, and its output is taken out from the output terminal 7, and the resistor 1
It is added to a smoothing circuit consisting of capacitors 9 and 21 and capacitors 20 and 22, and an automatic gain control voltage is obtained from terminal 12. Input terminal 11 and output terminal 1 of this smoothing circuit
The collector and emitter of a transistor 18 are connected between the collector and emitter of the transistor 18, and the base thereof is connected to a constant current source 40 driven by the power supply voltage, the capacitor 17 of the series connection circuit of the switch SW 2 and the capacitor 17, and the switch SW 2. The connection points are connected. switch
SW 1 and SW 2 are controlled by the output of a detection circuit 13 that detects the potential of the output terminal 12 of the smoothing circuit.

次に、この実施例の動作を第3図および第4図
を参照して説明する。第3図はスイツチSW1
SW2との状態を示したもので、第4図は検波出力
端子7とAGC電圧端子12との電源投入時の電
圧の変動の様子を示したものである。まず電源投
入時(t=0〜t1)に於いてはスイツチSW1は検
波段5の入力が端子14を介して接地されるよう
になつており、検波段5の出力端子7には出力は
生じない。またスイツチSW2はコンデンサ17に
定電流源40から定電流が強制充電されるように
なつている。この時、定電流源40からの定電流
はトランジスタ18のベース・エミツタ接合を通
して平滑回路のコンデンサ20と22をも充電す
る。従つてこの時には電源投入によるシヨツク音
が中間周波増幅段の出力に表われても検波段の出
力に生じることはなく、シヨツク音がスピーカに
生じることもない。
Next, the operation of this embodiment will be explained with reference to FIGS. 3 and 4. Figure 3 shows switch SW 1 and
FIG . 4 shows the state of voltage fluctuation between the detection output terminal 7 and the AGC voltage terminal 12 when the power is turned on. First, when the power is turned on (t = 0 to t 1 ), the switch SW 1 is configured so that the input of the detection stage 5 is grounded via the terminal 14, and the output terminal 7 of the detection stage 5 is connected to the ground. does not occur. Further, the switch SW 2 is configured such that the capacitor 17 is forcibly charged with a constant current from a constant current source 40 . At this time, the constant current from the constant current source 40 also charges the capacitors 20 and 22 of the smoothing circuit through the base-emitter junction of the transistor 18. Therefore, at this time, even if the shock noise caused by power-on appears in the output of the intermediate frequency amplification stage, it will not be generated in the output of the detection stage, and the shock noise will not be generated in the speaker.

次に時刻t=t1で、平滑回路の出力端子12の
電位が所定の電位以上になると検出回路13の出
力によつてスイツチSW1,SW2の状態が変化す
る。従つて中間周波段4の出力は端子10からス
イツチSW1を通して検波段5に入力される。又、
スイツチSW2は開くのでコンデンサ17および2
0,22への強制充電は停止される。この時には
検波段5の正常動作時の出力直流電位よりも高い
直流電位に平滑回路の入力端子11および出力端
子12とが上つているので、検波段5は検波動作
はしていない。また検出回路13が出力を生じる
時刻t1としてはこのような時刻を選ぶ。平滑回路
の入力端子11と出力端子12との電圧は、自動
利得制御を前段にかけて上記のシヨツク音の第3
の原因を防ぐため、正常動作時の大入力が入つた
ときの最大AGC電圧よりも上に選ぶ。この時点
で、第4図のように出力はある電位までもち上が
つている。
Next, at time t= t1 , when the potential of the output terminal 12 of the smoothing circuit exceeds a predetermined potential, the states of the switches SW1 and SW2 change according to the output of the detection circuit 13. Therefore, the output of the intermediate frequency stage 4 is input to the detection stage 5 from the terminal 10 through the switch SW1 . or,
Since switch SW 2 is open, capacitors 17 and 2
Forced charging to 0 and 22 is stopped. At this time, since the input terminal 11 and the output terminal 12 of the smoothing circuit have risen to a DC potential higher than the output DC potential during normal operation of the detection stage 5, the detection stage 5 is not performing a detection operation. Furthermore, such a time is selected as the time t1 at which the detection circuit 13 produces an output. The voltage between the input terminal 11 and the output terminal 12 of the smoothing circuit is controlled by applying automatic gain control in the first stage to reduce the voltage between the input terminal 11 and the output terminal 12 of the smoothing circuit.
To prevent this, select a value higher than the maximum AGC voltage when a large input is applied during normal operation. At this point, the output has risen to a certain potential as shown in FIG.

次に時刻t=t1〜t2の間では検波段5の正常動
作時の検段出力の直流電位よりも平滑回路の入力
端子11の電圧が高電位なので入力端子11は、
コンデンサ17によつて電位が決まる。今、トラ
ンジスタ18がなく、コンデンサ17と12とを
例えばダイオードで接続した場合には、AGC電
圧が高いので検波段5には入力信号がt=t1の直
後では入つてこないので検波出力端子7には、信
号が現われない。次にコンデンサ17の端子電圧
が例えば前記ダイオードを通してコンデンサ22
に放電され、平滑回路の出力端子12は検波出力
端子7と一緒にコンデンサ17の放電時定数に従
がい電位が第4図Bのように落ちてくる。この
時、自動利得制御(AGC)のかかり方が入力に
対して正常にかかるように近づく。このとき入力
端子10に信号が正常に表われ始めるが、AGC
電圧が正常でないため、AGCの時定数により
AGCループが振動し、飽和した出力信号がAGC
ループの遅れで検波出力端子7に表われてしま
う。この飽和した波形によるシヨツク音を防ぐた
めに、トランジスタ18は使用されてもおり、ト
ランジスタ18が飽和し平滑回路の入力端子11
と出力端子12とをトランジスタ18でつなぎ、
平滑回路のローパスフイルタ特性による遅れ時間
を無くしてAGCループの遅れを無くしている。
この飽和状態が徐々にとけることにより、第4図
のように検波出力端子11に波形が表われはじめ
る。コンデンサ17が放電を続け、入力に対する
本来の正常動作における(出力端子12の電圧)
+(トランジスタ18のVBE)に電圧がなつたと
きに放電をやめる。この時刻がt=t2の時点であ
る。
Next, between time t= t1 and t2 , the voltage at the input terminal 11 of the smoothing circuit is higher than the DC potential of the detection stage output during normal operation of the detection stage 5, so the input terminal 11 is
The potential is determined by the capacitor 17. Now, if there is no transistor 18 and the capacitors 17 and 12 are connected, for example, with diodes, the AGC voltage is high and the input signal does not enter the detection stage 5 immediately after t= t1 , so the detection output terminal 7 No signal appears. Next, the terminal voltage of the capacitor 17 is applied to the capacitor 22 through the diode, for example.
The output terminal 12 of the smoothing circuit, together with the detection output terminal 7, follows the discharge time constant of the capacitor 17, and the potential drops as shown in FIG. 4B. At this time, the automatic gain control (AGC) becomes closer to normal for the input. At this time, a signal begins to appear normally at input terminal 10, but the AGC
Because the voltage is not normal, due to the AGC time constant
The AGC loop oscillates and the saturated output signal is the AGC
It appears on the detection output terminal 7 due to the loop delay. In order to prevent the shock noise caused by this saturated waveform, the transistor 18 is also used.
and the output terminal 12 are connected by a transistor 18,
The delay time due to the smoothing circuit's low-pass filter characteristics is eliminated, eliminating the delay in the AGC loop.
As this saturation state gradually dissolves, a waveform begins to appear at the detection output terminal 11 as shown in FIG. The capacitor 17 continues to discharge and the (voltage at the output terminal 12) in normal operation with respect to the input
The discharge stops when the voltage reaches + (V BE of transistor 18). This time is t= t2 .

よつてt=t2で検波出力端子7は、本来の正常
動作時の直流電位におちつき正常動作を行なう。
Therefore, at t= t2 , the detection output terminal 7 settles to the direct current potential during normal operation and performs normal operation.

このように、本実施例によれば検波出力端子7
を第4図のように直流電位0Vから上昇させるた
め急激な直流電位の変動がなく、急激な電源の立
ち上りでもシヨツク音を防ぐことができる。また
ゆつくりした立ち上りの電源の投入においても同
様の出力の現われ方をする。またAGCを電源投
入時にかけているため、飽和した波形によるシヨ
ツク音も無くなり出力が徐々に現われ、聴感上、
きわめて快よい電波投入時の放音となる。
In this way, according to this embodiment, the detection output terminal 7
As shown in Fig. 4, since the DC potential is raised from 0V, there is no sudden change in the DC potential, and it is possible to prevent shock noise even when the power supply suddenly starts up. Also, when the power is turned on with a slow rise, the output appears in a similar manner. In addition, since AGC is applied when the power is turned on, the shock noise caused by the saturated waveform disappears, and the output gradually appears, which improves the audibility.
The sound emitted when the radio wave is turned on is extremely pleasant.

第5図は第2図の実施例を具体化した回路例で
ある。ここで検波器は入力端子37から入力され
る信号をトランジスタ35の検波エミツタホロワ
検波を行なつて出力端子36に検波出力を出力し
ている。トランジスタ23,24,38等で検出
回路13を構成し、トランジスタ28、抵抗41
でスイツチSW2を構成し、トランジスタ31,3
2,34等でスイツチSW1を構成している。
FIG. 5 shows an example of a circuit embodying the embodiment shown in FIG. Here, the detector performs emitter follower detection of a signal input from an input terminal 37 using a transistor 35, and outputs a detected output to an output terminal 36. The detection circuit 13 is composed of transistors 23, 24, 38, etc., and includes a transistor 28 and a resistor 41.
constitutes switch SW 2 , and transistors 31, 3
2, 34 etc. constitute switch SW 1 .

次に動作を説明する。第3図、第4図でt=0
〜t1のとき差動増幅器のトランジスタ24のベー
ス端子25は基準電位に保たれている。このとき
抵抗50,52とコンデンサ51,53とで構成
される平滑回路の出力端子26は0Vなので差動
増幅器のトランジスタ24が導通し、トランジス
タ23が遮断状態となる。トランジスタ24のコ
レクタ抵抗27の電圧降下によりトランジスタ2
8が導通しコンデンサ29を充電する。このと
き、トランジスタ23のコレクタ抵抗30の電圧
降下はないためトランジスタ31は遮断状態とな
り、トランジスタ32も遮断状態となる。よつて
抵抗33によりベース電流が加えられトランジス
タ34が導通し、飽和すると検波トランジスタ3
5を遮断させ、またシヨツク音を含む信号をグラ
ンドに流し込み出力端子36には検波入力端子3
7より入つてくるシヨツク音を含む信号が出力さ
れない。電源投入と同時にこの動作が行なわれる
ためシヨツク音は出てこない。トランジスタ28
によりコンデンサ29が充電されトランジスタ3
7を通して出力端子36及びAGC電圧端子26
は電位が上がる。
Next, the operation will be explained. t=0 in Figures 3 and 4
~ t1 , the base terminal 25 of the transistor 24 of the differential amplifier is maintained at the reference potential. At this time, since the output terminal 26 of the smoothing circuit composed of resistors 50, 52 and capacitors 51, 53 is 0V, the transistor 24 of the differential amplifier is conductive, and the transistor 23 is cut off. Due to the voltage drop across the collector resistor 27 of the transistor 24, the transistor 2
8 conducts and charges the capacitor 29. At this time, since there is no voltage drop across the collector resistor 30 of the transistor 23, the transistor 31 is turned off, and the transistor 32 is also turned off. Therefore, a base current is applied by the resistor 33 and the transistor 34 becomes conductive, and when it is saturated, the detection transistor 3
5 is cut off, and the signal including the shock sound is sent to the ground, and the output terminal 36 is connected to the detection input terminal 3.
The signal including the shock sound coming from 7 is not output. This operation occurs at the same time as the power is turned on, so there is no shock sound. transistor 28
The capacitor 29 is charged and the transistor 3
7 through output terminal 36 and AGC voltage terminal 26
The potential increases.

次に第3図、第4図でt=t1で平滑回路の出力
端子26が上昇してきて、トランジスタ23,2
4からなる差動増幅器が反転する瞬間である。こ
のとき、トランジスタ23が導通し、トランジス
タ24が遮断状態となり、トランジスタ31が導
通し、トランジスタ32が導通し、トランジスタ
34を遮断状態する。また、トランジスタ38が
導通し、ダイオード39を通してトランジスタ2
3のベースに電流を流し込み続けトランジスタ2
3を導通させたままにしておく。よつて検波段の
ベースは本来のバイアスまで戻る。またコレクタ
抵抗27の電圧降下が無くなり、トランジスタ2
8が遮断状態となつて、コンデンサ29への充電
をやめる。
Next, in FIGS. 3 and 4, at t= t1 , the output terminal 26 of the smoothing circuit rises, and the transistors 23 and 2
This is the moment when the differential amplifier consisting of 4 is inverted. At this time, the transistor 23 is turned on, the transistor 24 is turned off, the transistor 31 is turned on, the transistor 32 is turned on, and the transistor 34 is turned off. Also, the transistor 38 becomes conductive, and the transistor 2 passes through the diode 39.
Current continues to flow into the base of transistor 2.
Leave 3 conductive. Therefore, the base of the detection stage returns to its original bias. In addition, the voltage drop across the collector resistor 27 is eliminated, and the transistor 2
8 becomes cut off and stops charging the capacitor 29.

次に、第3図、第4図でt=t1〜t2のときは前
記したような動作を行なう。t=t2のとき以後で
は正常動作となり、検出回路13やスイツチ
SW1,SW2は検波段5と自動利得制御回路6に対
し動作していない。
Next, when t= t1 to t2 in FIGS. 3 and 4, the above-described operation is performed. After t= t2 , normal operation occurs and the detection circuit 13 and switch
SW 1 and SW 2 are not operating for the detection stage 5 and automatic gain control circuit 6.

以上、本発明の一実施例を説明したが、例えば
スイツチSW1で検波段5への電力供給を停止して
検波段5を不動作状態にしたり、検波段5の出力
に設けたりしても同様の効果が得られる。
Although one embodiment of the present invention has been described above, for example, the switch SW 1 may be used to stop the power supply to the detection stage 5 to put the detection stage 5 in an inoperable state, or to be provided at the output of the detection stage 5. A similar effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常のAM受信機のブロツク図、第2
図は本発明の一実施例を示す図、第3図はスイツ
チSW1,SW2の動作を説明する図、第4図A,B
は検波器の出力電圧とAGC電圧の時刻依存性を
示す図、第5図は本発明の一実施例を具体化した
回路図である。 1……アンテナ、2……高周波増幅段、3……
周波数変換段、4……中間周波増幅段、5……検
波段、6……自動利得制御回路、7……端子、8
…電力増幅器、9……スピーカ、10……端子、
14……端子、13,16……スイツチ、40…
…定電流源、17……コンデンサ、11……入力
端子、12……出力端子、18……トランジス
タ、19,21……抵抗、20,22……コンデ
ンサ、23,24,28,31,32,34,3
5,38,58……トランジスタ、37……入力
端子、36……検波出力、50,52……抵抗、
51,53……コンデンサ、54……定電流源、
55……電源、39,43,44,45,46…
…ダイオード、30,33,41,42,48…
…抵抗、49,29……コンデンサ。
Figure 1 is a block diagram of a normal AM receiver, Figure 2
The figure shows an embodiment of the present invention, FIG. 3 is a diagram explaining the operation of switches SW 1 and SW 2 , and FIGS. 4A and B
5 is a diagram showing the time dependence of the output voltage of the wave detector and the AGC voltage, and FIG. 5 is a circuit diagram embodying an embodiment of the present invention. 1...Antenna, 2...High frequency amplification stage, 3...
Frequency conversion stage, 4... Intermediate frequency amplification stage, 5... Detection stage, 6... Automatic gain control circuit, 7... Terminal, 8
...Power amplifier, 9...Speaker, 10...Terminal,
14... terminal, 13, 16... switch, 40...
... Constant current source, 17 ... Capacitor, 11 ... Input terminal, 12 ... Output terminal, 18 ... Transistor, 19, 21 ... Resistor, 20, 22 ... Capacitor, 23, 24, 28, 31, 32 ,34,3
5, 38, 58...transistor, 37...input terminal, 36...detection output, 50,52...resistance,
51, 53... Capacitor, 54... Constant current source,
55... Power supply, 39, 43, 44, 45, 46...
...Diode, 30, 33, 41, 42, 48...
...Resistor, 49,29...Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 受信信号を検波する手段と、該検波手段の出
力により自動利得制御電圧を生じる手段と、前記
自動利得制御電圧が所定電位以上の時検出出力を
生じる検出手段と、該検出手段の検出出力のない
時前記検波手段からの出力を禁止する手段と、前
記検出手段の検出出力のない時コンデンサに充電
する手段と、前記自動利得制御電圧を生じる手段
の入出力端子間の直流的接続を前記コンデンサの
充電電圧でもつて制御する手段とを有し、電源投
入後前記自動利得制御電圧を生じる手段の出力が
前記所定電位になるまで前記検波手段からの出力
を禁止するとともに前記コンデンサを充電し、そ
の後前記自動利得制御電圧が定常電圧になるまで
前記自動利得制御電圧を生じる手段の入出力端子
間を直流的に接続しておくことを特徴とする受信
機。
1 means for detecting a received signal; means for generating an automatic gain control voltage from the output of the detection means; a detection means for generating a detection output when the automatic gain control voltage is at a predetermined potential or higher; means for prohibiting the output from the detection means when there is no detection output; means for charging the capacitor when there is no detection output from the detection means; and DC connection between the input and output terminals of the means for generating the automatic gain control voltage. control means for controlling even the charging voltage of the automatic gain control voltage, and inhibiting the output from the detection means and charging the capacitor until the output of the means for generating the automatic gain control voltage reaches the predetermined potential after power is turned on, and then charging the capacitor. A receiver characterized in that input and output terminals of the means for generating the automatic gain control voltage are connected in a DC manner until the automatic gain control voltage becomes a steady voltage.
JP7202079A 1979-06-08 1979-06-08 Receiver Granted JPS55163919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7202079A JPS55163919A (en) 1979-06-08 1979-06-08 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7202079A JPS55163919A (en) 1979-06-08 1979-06-08 Receiver

Publications (2)

Publication Number Publication Date
JPS55163919A JPS55163919A (en) 1980-12-20
JPS6214140B2 true JPS6214140B2 (en) 1987-03-31

Family

ID=13477302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7202079A Granted JPS55163919A (en) 1979-06-08 1979-06-08 Receiver

Country Status (1)

Country Link
JP (1) JPS55163919A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046131A (en) * 1983-08-23 1985-03-12 Rohm Co Ltd Muting circuit

Also Published As

Publication number Publication date
JPS55163919A (en) 1980-12-20

Similar Documents

Publication Publication Date Title
US4115741A (en) Fast attack automatic gain control circuit
US4293822A (en) Gated AGC amplifier with dc feedback
US5220613A (en) Audio amplifier circuit
JPS6214140B2 (en)
US4462000A (en) Amplifier comprising means for eliminating direct voltage transients on the amplifier output
US4112385A (en) Sound amplifier circuit
JPS6145622Y2 (en)
US4143330A (en) Detector circuit
US5789977A (en) Audio amplifier
US4051442A (en) Gain control circuits for audio amplifiers
JPS6223141Y2 (en)
JPS6046133A (en) Radio receiver
JPH0145150Y2 (en)
JPH0516728Y2 (en)
JPS6329293Y2 (en)
JPH0352685B2 (en)
JPS639763B2 (en)
JPS5935206B2 (en) Transistor direct amplifier
JPS5938763Y2 (en) muting circuit
JP3530326B2 (en) Amplifier
JPS6214763Y2 (en)
JPS5816256Y2 (en) Detection circuit of signal compression/expansion circuit
JPS5824493Y2 (en) automatic volume adjustment device
JPS6143300Y2 (en)
JPS634291Y2 (en)