JPH0516728Y2 - - Google Patents

Info

Publication number
JPH0516728Y2
JPH0516728Y2 JP1985181469U JP18146985U JPH0516728Y2 JP H0516728 Y2 JPH0516728 Y2 JP H0516728Y2 JP 1985181469 U JP1985181469 U JP 1985181469U JP 18146985 U JP18146985 U JP 18146985U JP H0516728 Y2 JPH0516728 Y2 JP H0516728Y2
Authority
JP
Japan
Prior art keywords
time constant
capacitor
voltage
amplifier
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985181469U
Other languages
Japanese (ja)
Other versions
JPS6289829U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985181469U priority Critical patent/JPH0516728Y2/ja
Publication of JPS6289829U publication Critical patent/JPS6289829U/ja
Application granted granted Critical
Publication of JPH0516728Y2 publication Critical patent/JPH0516728Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (考案の技術分野) 本考案は、無線受信機の自動利得制御回路(以
下AGC回路という)に係り、特にSSB波を受信
する無線受信機に適用して有効な受信機用AGC
回路に関する。
[Detailed description of the invention] (Technical field of the invention) The invention relates to an automatic gain control circuit (hereinafter referred to as AGC circuit) for a radio receiver, and is particularly applicable to a radio receiver that receives SSB waves to achieve effective reception. Aircraft AGC
Regarding circuits.

(従来技術とその問題点) 受信機のAGC回路は、伝搬路で受ける受信波
のレベル変動に対し、受信機の増幅段の直線性を
保護するとともに、受信機の検波出力信号レベル
をほぼ一定に保つ作用を行う回路である。通常の
AGC回路は、受信波を検波し、受信波の振幅の
変化を直流電圧の変化として取出し、その電圧を
利用して受信機の受信波増幅回路の利得を制御す
ることにより、その増幅器の出力信号レベルを一
定に保つている。例えば、受信対象波が搬送波を
伴つている場合には、その搬送波の振幅変化を検
出しAGC制御電圧として利用している。また、
搬送波を有しないSSB波に対しては、側帯波の振
幅変化を検波してAGC制御電圧を得ている。
(Prior art and its problems) The receiver's AGC circuit protects the linearity of the receiver's amplification stage against level fluctuations of the received wave received in the propagation path, and also keeps the receiver's detected output signal level almost constant. This is a circuit that maintains the temperature. normal
The AGC circuit detects the received wave, extracts the change in the amplitude of the received wave as a change in DC voltage, and uses that voltage to control the gain of the received wave amplification circuit of the receiver, thereby generating the output signal of the amplifier. keeping the level constant. For example, if the wave to be received is accompanied by a carrier wave, a change in the amplitude of the carrier wave is detected and used as the AGC control voltage. Also,
For SSB waves that do not have a carrier wave, the AGC control voltage is obtained by detecting changes in the amplitude of sideband waves.

このSSB波の場合、変調信号が電信回線であつ
て側帯波の尖頭レベルがほぼ一定であれば、この
側帯波の振幅を検波してその電圧をAGC制御電
圧とすることには特に問題はない。しかし、側帯
波が音声信号から成つている場合には、特に音声
の無音区間において雑音レベルを検出することに
なり、この検出レベルが受信機利得を増大させ、
雑音が音声信号の平均レベルとほぼ同一になるよ
うに増幅されて出力されることとなる。
In the case of this SSB wave, if the modulation signal is a telegraph line and the peak level of the sideband wave is almost constant, there is no particular problem in detecting the amplitude of this sideband wave and using the resulting voltage as the AGC control voltage. do not have. However, if the sideband consists of a voice signal, a noise level will be detected especially in the silent section of the voice, and this detection level will increase the receiver gain,
The noise will be amplified and output to be approximately the same as the average level of the audio signal.

このような欠点を解決するため、従来は、搬送
波を有しないSSB回線に適用するAGC回路とし
ては、その時定数を他の回線に適用するAGC回
路の時定数に比べて大きくしていた。しかし、こ
の解決策では、無音区間に出力される雑音レベル
を抑圧する(雑音抑圧)効果はあるものの、
AGC回路の本来の機能である受信波レベルの変
化に応じた利得制御が困難となり、特に短周期フ
エージングに対しては何らの効果も得られないこ
ととなつていた。
To solve these drawbacks, conventional AGC circuits applied to SSB lines without a carrier wave have a time constant that is larger than the time constant of AGC circuits applied to other lines. However, although this solution has the effect of suppressing the noise level output during silent sections (noise suppression),
Gain control in response to changes in the received wave level, which is the original function of the AGC circuit, has become difficult, and it has become impossible to obtain any effect, especially against short-period fading.

SSB回線に適用されるAGC回路の理想動作と
しては、 短周期フエージングに対し良好に動作するよ
うに充放電時定数が小さいこと、 無音区間の雑音抑圧のため無音になつたとき
の放電時定数は充分に大きいこと、 が挙げられる。
The ideal operation of an AGC circuit applied to an SSB line is that the charging/discharging time constant should be small so that it operates well against short-period fading, and the discharging time constant should be small to suppress noise during silent periods. is sufficiently large.

しかし、前述のごとくこの2つの条件を同時に
満足する従来技術はない。
However, as mentioned above, there is no prior art that satisfies these two conditions at the same time.

このため、現在の受信機AGC回路では、受信
情況に応じて、FAST(速動応答するように時定
数が小)とSLOW(緩動応答するように時定数が
大)の2種類の時定数を手動で選択している。
For this reason, current receiver AGC circuits have two types of time constants depending on the reception situation: FAST (small time constant for fast response) and SLOW (large time constant for slow response). are selected manually.

このような構成を有する従来例を第1図に示
す。図において、1は入力端子、2はAGC増幅
部、3は検波器、4,5はコンデンサ、6は抵
抗、7は手動スイツチ、8は直流電圧増幅部、9
は中間周波増幅部、10は出力端子である。入力
端子1から、中間周波(IF)信号が入力され、
中間周波増幅部9で増幅される。この増幅出力は
AGC増幅部2で増幅された後、検波器3で検波
される。この検波電圧は、図中の経路でコンデ
ンサ4または5を充電する。このコンデンサ4ま
たは5に充電された電荷は抵抗7を介して(経路
で)放電する。抵抗7に生じた電圧は直流電圧
増幅部8で増幅された後、中間周波増幅部9の利
得を制御する。ここで、放電経路の時定数をス
イツチ6により切替えることとする。コンデンサ
4と抵抗7による時定数(C1×R)はコンデン
サ5と抵抗7による時定数(C1′×R)より小さ
く設定している。時定数の小さい方をFASTと称
し、大きい方をSLOWと称す。
A conventional example having such a configuration is shown in FIG. In the figure, 1 is an input terminal, 2 is an AGC amplification section, 3 is a detector, 4 and 5 are capacitors, 6 is a resistor, 7 is a manual switch, 8 is a DC voltage amplification section, 9
1 is an intermediate frequency amplification section, and 10 is an output terminal. An intermediate frequency (IF) signal is input from input terminal 1,
The intermediate frequency amplification section 9 amplifies the signal. This amplified output is
After being amplified by the AGC amplifier section 2, it is detected by the detector 3. This detected voltage charges the capacitor 4 or 5 along the path shown in the figure. The charges stored in the capacitor 4 or 5 are discharged via the resistor 7 (through a path). The voltage generated across the resistor 7 is amplified by a DC voltage amplification section 8, and then the gain of the intermediate frequency amplification section 9 is controlled. Here, it is assumed that the time constant of the discharge path is changed by the switch 6. The time constant (C 1 ×R) due to the capacitor 4 and the resistor 7 is set smaller than the time constant (C 1 ′×R) due to the capacitor 5 and the resistor 7. The smaller time constant is called FAST, and the larger one is called SLOW.

ここで、出力端子10に出力される信号レベル
について、第3図を参照し説明する。第3図にお
いて、aは受信機入力レベルを模式的に示し、斜
線領域は雑音レベルを示す。図bはFASTを選択
した場合の出力信号レベルの応答を示している。
時定数が小さいので、受信機入力レベルの変化に
よく追従しているが、無音区間において雑音レベ
ルがほぼ規準出力レベルまで増幅されている。同
図cは、SLOWを選択した場合の出力信号レベ
ルの応答を示している。無音区間における雑音は
斜線領域で示すように抑圧されているが、同時に
受信信号の変化に追従できず、信号までも打点ハ
ツチング領域で示すように大きく抑圧されてい
る。
Here, the signal level output to the output terminal 10 will be explained with reference to FIG. In FIG. 3, a schematically indicates the receiver input level, and the shaded area indicates the noise level. Figure b shows the output signal level response when FAST is selected.
Since the time constant is small, it follows changes in the receiver input level well, but the noise level is amplified almost to the standard output level during the silent period. Figure c shows the response of the output signal level when SLOW is selected. Noise in the silent section is suppressed as shown by the hatched area, but at the same time it is unable to follow changes in the received signal, and the signal is also greatly suppressed as shown by the hatched area.

以上のように、従来技術にあつては、充分な
AGC効果を得られず、また、時定数選択にも手
数がかかる。
As mentioned above, in the conventional technology, sufficient
The AGC effect cannot be obtained, and time constant selection takes time.

(考案の目的) 本考案は、上述の如き従来技術の欠点に鑑みな
されたもので、構成が簡単で、有音区間では、
FASTに近い作用を無音区間においてはSLOWの
作用を有する受信機用AGC回路を提供するもの
である。そしてその特徴は、時定数の大きい経路
に加えて時定数の小さな放電経路を有せしめたこ
とにある。
(Purpose of the invention) The present invention was devised in view of the above-mentioned drawbacks of the prior art.
The present invention provides an AGC circuit for a receiver that has an effect similar to FAST, but has a SLOW effect during silent periods. Its feature is that it has a discharge path with a small time constant in addition to a path with a large time constant.

(考案の構成と作用) 以下、本考案を図面を用いて詳細に説明する。(Structure and operation of the idea) Hereinafter, the present invention will be explained in detail using the drawings.

第2図は、本考案の実施例を説明する図であつ
て、時定数の説明に関連する部分を示している。
本実施例の特徴はコンデンサ11と抵抗7とで構
成する放電経路′の時定数(C1×R)を大きく
設定するとともに、検波器3に並列にコンデンサ
12を追加したことにある。
FIG. 2 is a diagram illustrating an embodiment of the present invention, and shows parts related to the explanation of time constants.
The feature of this embodiment is that the time constant (C 1 ×R) of the discharge path ′ constituted by the capacitor 11 and the resistor 7 is set to a large value, and a capacitor 12 is added in parallel to the detector 3 .

本実施例は大要次のように動作する。受信信号
レベルが高くなる方向への変化に対しては、充電
経路により、コンデンサ11が放電される。こ
の充電状態において、検波器3は順バイアスの状
態であるので、コンデンサ12は検波器3の順方
向電圧降下分程度の電圧に充電される。受信信号
レベルが低くなる方向への変化に対しては、検波
器3は逆バイアスの状態となり、コンデンサ11
に充電された電荷はコンデンサ12を介して経路
で放電し、コンデンサ12を逆充電する。この
逆充電は、コンデンサ11とコンデンサ12との
容量比で定まる平衡状態まで急激に進行し、直流
電圧増幅部8の入力電圧は、コンデンサ11が逆
充電に消費した電荷分だけ低下する。この平衡状
態に達した後は、コンデンサ11,12の容量
C1,C2および抵抗7の値Rで定まる大きな時定
数で放電することになる。
The present embodiment operates as follows. When the received signal level changes in the direction of increasing, the capacitor 11 is discharged by the charging path. In this charging state, the detector 3 is in a forward bias state, so the capacitor 12 is charged to a voltage approximately equal to the forward voltage drop of the detector 3. When the received signal level changes in the direction of decreasing, the detector 3 becomes reverse biased and the capacitor 11
The charges charged in the capacitor 12 are discharged in a path through the capacitor 12, and the capacitor 12 is reversely charged. This reverse charging rapidly progresses to an equilibrium state determined by the capacitance ratio of capacitor 11 and capacitor 12, and the input voltage of DC voltage amplification section 8 decreases by the amount of charge consumed by capacitor 11 for reverse charging. After reaching this equilibrium state, the capacitance of capacitors 11 and 12 is
Discharge occurs with a large time constant determined by C 1 , C 2 and the value R of the resistor 7.

本実施例によるAGC回路のインパルス応答を
示したのが第4図である。同図aは受信機入力に
インパルスを示し、同図bはその応答を示す。同
図b中、aは従来のSLOWの応答を、cは従来
のFASTの応答を、bは本実施例の応答を示す。
曲線bのうちP1からP2の間は、コンデンサ12
の充電区間であり、ほぼFASTの動作し、それ以
後はSLOWの動作をしていることがわかる。
FIG. 4 shows the impulse response of the AGC circuit according to this embodiment. Figure a shows the impulse at the receiver input, and Figure b shows its response. In the figure b, a shows the response of conventional SLOW, c shows the response of conventional FAST, and b shows the response of this embodiment.
Between P 1 and P 2 of curve b, capacitor 12
It can be seen that during the charging period, it operates almost FAST, and after that it operates SLOW.

一方、この回路のAGC応答を第3図dに示す。
図から有音区間での信号抑圧が少なく、無音区間
での雑音抑圧効果が大きいことがわかる。
On the other hand, the AGC response of this circuit is shown in Figure 3d.
It can be seen from the figure that there is little signal suppression in the sound section, and a large noise suppression effect in the silent section.

以上のことから、第4図のP2点の設定は、受
信機入力のフエージングの深さ、要望する雑音抑
圧効果、許容する信号抑圧度などから定めればよ
い。経験的にはFASTで動作する区間P1−P2
受信機の入力電圧が40dB/μVの時、L=10dB
程度とすることで良好なAGC効果を得ている。
From the above, the setting of the P2 point in FIG. 4 can be determined based on the fading depth of the receiver input, the desired noise suppression effect, the allowable degree of signal suppression, etc. Empirically, the section P 1 - P 2 operating in FAST is L = 10 dB when the input voltage of the receiver is 40 dB/μV.
A good AGC effect is obtained by setting it to a certain degree.

(考案の効果) 以上詳細に説明したように、検波器3に並列に
コンデンサ12を挿入し、このコンデンサ12の
容量C2とコンデンサ11の容量C1の容量との比
を適宜選択することにより、FAST,SLOWの2
様の動作をせしめ、無音区間の雑音抑圧度が大き
く有音区間の信号抑圧度の小さいAGC回路を構
成することができる。
(Effect of the invention) As explained in detail above, by inserting the capacitor 12 in parallel with the detector 3 and appropriately selecting the ratio of the capacitance C 2 of the capacitor 12 to the capacitance C 1 of the capacitor 11. , FAST, SLOW 2
It is possible to configure an AGC circuit that has a high degree of noise suppression in silent periods and a small degree of signal suppression in voiced periods.

なお、容量比の選択の自由度を高めるためには
第2図のコンデンサ11,12として複数の容量
を予め準備し、これらをスイツチにより受信状態
に応じて選択することとすればよい。
In order to increase the degree of freedom in selecting the capacitance ratio, a plurality of capacitances may be prepared in advance as the capacitors 11 and 12 shown in FIG. 2, and these may be selected by a switch depending on the reception state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のAGC回路例を示すブロツク回
路図、第2図は本考案の実施例を示すブロツク回
路図、第3図は従来回路及び本考案の動作を説明
するためのタイムチヤート、第4図は本考案回路
の特性を説明するための特性図である。 1……入力端子、2……AGC増幅部、3……
検波器、4,5……コンデンサ、6……抵抗、7
……手動スイツチ、8……直流電圧増幅部、9…
…中間周波増幅部、10……出力端子、11,1
2……コンデンサ。
FIG. 1 is a block circuit diagram showing an example of a conventional AGC circuit, FIG. 2 is a block circuit diagram showing an embodiment of the present invention, FIG. 3 is a time chart for explaining the operation of the conventional circuit and the present invention, and FIG. FIG. 4 is a characteristic diagram for explaining the characteristics of the circuit of the present invention. 1...Input terminal, 2...AGC amplifier section, 3...
Detector, 4, 5... Capacitor, 6... Resistor, 7
...Manual switch, 8...DC voltage amplification section, 9...
...Intermediate frequency amplification section, 10...Output terminal, 11,1
2... Capacitor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 受信波を増幅器により増幅した増幅出力の振幅
検波出力を時定数回路を介してとり出した直流出
力により前記増幅器の増幅利得を自動制御するよ
うに構成され、前記時定数回路は前記振幅検波出
力が充電電流に対して順方向となるダイオードと
コンデンサとの並列接続路を介して該時定数回路
の電圧蓄積コンデンサに印加されるように構成さ
れ、前記並列接続路のコンデンサの容量は前記電
圧蓄積コンデンサの容量より小なるように設定さ
れ、前記時定数回路に時定数の大なる放電路と時
定数の小なる放電路を有せしめた受信機の自動利
得制御回路。
The amplifier is configured to automatically control the amplification gain of the amplifier using a DC output obtained by extracting the amplitude detection output of the amplified output obtained by amplifying the received wave by the amplifier, and the time constant circuit is configured to automatically control the amplification gain of the amplifier. The voltage is applied to the voltage storage capacitor of the time constant circuit through a parallel connection path of a diode and a capacitor that is in the forward direction with respect to the charging current, and the capacitance of the capacitor of the parallel connection path is equal to the voltage storage capacitor. An automatic gain control circuit for a receiver, wherein the time constant circuit has a discharge path with a large time constant and a discharge path with a small time constant.
JP1985181469U 1985-11-27 1985-11-27 Expired - Lifetime JPH0516728Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985181469U JPH0516728Y2 (en) 1985-11-27 1985-11-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985181469U JPH0516728Y2 (en) 1985-11-27 1985-11-27

Publications (2)

Publication Number Publication Date
JPS6289829U JPS6289829U (en) 1987-06-09
JPH0516728Y2 true JPH0516728Y2 (en) 1993-05-06

Family

ID=31126365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985181469U Expired - Lifetime JPH0516728Y2 (en) 1985-11-27 1985-11-27

Country Status (1)

Country Link
JP (1) JPH0516728Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176314A (en) * 1984-02-21 1985-09-10 Rohm Co Ltd Automatic gain adjusting circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176314A (en) * 1984-02-21 1985-09-10 Rohm Co Ltd Automatic gain adjusting circuit

Also Published As

Publication number Publication date
JPS6289829U (en) 1987-06-09

Similar Documents

Publication Publication Date Title
EP0786859B1 (en) Power amplifying circuit and method
TW331681B (en) Wide-band low-noise low-crossover distortion receiver
US6075978A (en) Automatic gain control system and method of automatic gain control
US4528519A (en) Automatic gain control
US4480335A (en) Noise removing apparatus in an FM receiver
EP0654898B1 (en) Transmission circuit
JPH10247856A (en) Radio receiver with under-path detector
JPS6139731A (en) Noise detector
JPH0516728Y2 (en)
JPS6216582B2 (en)
JP3074231B2 (en) AGC circuit for audio equipment
US4271535A (en) Noise eliminating system
EP0939486A3 (en) Filter circuit
JPS632364B2 (en)
EP0202601A2 (en) Optical pulse receiving circuit
JPS6047783B2 (en) Automatic gain control method
JPH0117854Y2 (en)
JP3005472B2 (en) Receiving machine
JPS626728Y2 (en)
JPS6046133A (en) Radio receiver
JPH05145360A (en) Optical reception circuit and optical transformation circuit
JPS6214140B2 (en)
KR800001064Y1 (en) Automatic gain control circuit
JP3200494B2 (en) SSB receiving circuit
JPS5816256Y2 (en) Detection circuit of signal compression/expansion circuit