JPS6214111Y2 - - Google Patents

Info

Publication number
JPS6214111Y2
JPS6214111Y2 JP13305983U JP13305983U JPS6214111Y2 JP S6214111 Y2 JPS6214111 Y2 JP S6214111Y2 JP 13305983 U JP13305983 U JP 13305983U JP 13305983 U JP13305983 U JP 13305983U JP S6214111 Y2 JPS6214111 Y2 JP S6214111Y2
Authority
JP
Japan
Prior art keywords
converter
cooling
cooling box
slag
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13305983U
Other languages
Japanese (ja)
Other versions
JPS6040455U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13305983U priority Critical patent/JPS6040455U/en
Publication of JPS6040455U publication Critical patent/JPS6040455U/en
Application granted granted Critical
Publication of JPS6214111Y2 publication Critical patent/JPS6214111Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は製鋼用転炉の炉体の改良に関する。 転炉は第1図(縦断面図)に示す如き形状をな
し、作業の必要に応じてトラニオンによつて図の
Pの出鋼口側又はその反対側に傾動させることが
出来る。(図において1は鉄皮、Lはライニング
である。)そして、その炉体は第2図(断面図)
に示すように、転炉鉄皮1の内側に永久張り耐火
物層2、内張り耐火物層3をまいて構成されてい
る(Lは2,3を含む総称)。この内、永久張り
耐火物には、繰返し(数炉代)使用に耐える強度
と内張り耐火物の損耗により露出して炉修に入る
までの短期間の使用に耐える溶鋼、溶滓に対する
耐食性が要求され、炉内に面している内張り耐火
物3には、溶滓に対する耐食性、熱的スポーリン
グに対する耐スポール性及びスラグ浸透による変
質に起因する構造的スポーリングに耐える性質等
が要求される。 転炉は上記の如き耐火物ライニングで保護され
て精錬操業を行うものであるが、最近の脱ガス処
理や連続鋳造比率の増加のために、転炉吹止温度
が上昇し、転炉炉体(耐火物)への負荷は著しく
増大してきている。このため、炉体耐火物の高品
質化(原料の高純度化、焼成比率の上昇、焼成温
度の高温化、グラフアイトを使用したMgO−C
煉瓦の使用等)を行つてきたが、同時に熱間補修
技術としてスラグコーテイング及び熱間吹き付け
補修が行われている。 上記の内、スラグコーテイングは、出鋼後に炉
内にスラグを必要量(約10トン/250t転炉)だけ
残し、軽焼ドロマイト(CaO−MgO)を2〜2.5
トン(250t転炉の場合)添加し、スラグ中の
MgO成分の濃度(従つてスラグの粘性)を上昇
させ、このスラグを、転炉を3〜4回傾動させる
ことによつて、炉内表面に付着させ、耐用性のあ
るコーテイング層を形成させる方法である。 然し、上記スラグコーテイングは、転炉の傾動
方向が第1図に示した出鋼口側及びその反対側に
限られているため、その時にスラグ接触する部位
にしか利用出来ない。 第3図は転炉の内面展開図で、転炉の内壁面が
転炉の直立及び傾動時に内壁面に対して移動する
溶鋼浴と接触する部位、及びスラグコーテイング
の可能或いは不可能な部位を示す。図において転
炉内壁面をA,B,C,Dの4部位に分割してい
るが、A部位は湯溜りより上部のトラニオン側の
炉腹及び絞り、C部位は出鋼口側及びその反対側
(装入側)の炉底、湯溜り、炉腹、絞り、B部位
は上記両者の中間、D部位は装入側絞りの上部、
と大別出来る。これらの部位の溶鋼浴との接触の
有無及びスラグコーテイングの可能、不可能は次
表に示す通りである。
The present invention relates to improvement of the furnace body of a converter for steelmaking. The converter has a shape as shown in FIG. 1 (longitudinal sectional view), and can be tilted by a trunnion to the tapping port side of P in the figure or to the opposite side, depending on the necessity of the work. (In the figure, 1 is the iron shell and L is the lining.) The furnace body is shown in Figure 2 (cross-sectional view).
As shown in the figure, the converter shell 1 is constructed with a permanent refractory layer 2 and a lining refractory layer 3 spread inside the converter shell 1 (L is a general term including 2 and 3). Among these, permanent refractories are required to have strength that can withstand repeated use (several furnaces) and corrosion resistance against molten steel and molten slag that can withstand short-term use until the lining refractory is worn out and needs to be repaired. The refractory lining 3 facing the inside of the furnace is required to have properties such as corrosion resistance against slag, spalling resistance against thermal spalling, and resistance to structural spalling caused by deterioration due to slag penetration. The converter is protected by a refractory lining as described above during refining operations, but due to recent degassing treatments and an increase in the continuous casting ratio, the blow-off temperature of the converter has increased and the converter body has deteriorated. The load on (refractories) is increasing significantly. For this reason, the quality of furnace refractories has been improved (higher purity of raw materials, higher firing ratio, higher firing temperature, MgO-C using graphite)
At the same time, slag coating and hot spray repair are being used as hot repair techniques. Among the above, slag coating leaves only the required amount of slag in the furnace after tapping (approximately 10 tons/250t converter), and coats 2 to 2.5 tons of light calcined dolomite (CaO-MgO).
tons (in the case of a 250t converter), and the
A method of increasing the concentration of the MgO component (thus the viscosity of the slag) and tilting the converter 3 to 4 times to cause the slag to adhere to the surface inside the furnace to form a durable coating layer. It is. However, since the tilting direction of the converter is limited to the tapping port side shown in FIG. 1 and the opposite side thereof, the above-mentioned slag coating can only be used in the areas that come into contact with the slag at that time. Figure 3 is a developed view of the inside of the converter, showing the areas where the inner wall of the converter comes into contact with the molten steel bath that moves relative to the inner wall when the converter is upright or tilted, and the areas where slag coating is possible or impossible. show. In the figure, the converter inner wall surface is divided into four parts A, B, C, and D. Part A is the furnace belly and throttle on the trunnion side above the pool, and part C is the tapping port side and the opposite side. Side (charging side) hearth bottom, sump, furnace belly, throttle, part B is between the above two parts, D part is the upper part of the throttle on the charging side,
It can be broadly divided into Whether or not these parts come into contact with the molten steel bath and whether or not slag coating is possible are shown in the following table.

【表】 上に示されたスラグコーテイングの不可能な部
位に対しては、熱間吹き付け補修が行われる。こ
れは、スラグ排出後、転炉を傾動し、吹き付けガ
ンにより主にMgO系吹き付け材を内張り材に吹
き付けるものである。この作業は転炉内張り寿命
を延長させるために重要であるが、作業時間が20
〜40分とかかり、転炉操業率の低下と、炉体の冷
却による炉体耐火物への熱的な悪影響をもたら
す。又、吹き付け材及び吹き付け費用も転炉耐火
物費用中相当に大きな部分を占める。 本考案は、上記転炉のスラグコーテイングの出
来ない部位に対する吹き付け補修の低減を可能と
し、それにより耐火物原単位の低減と吹き付け作
業時間の短縮による操業度の向上を可能とする、
冷却設備を有する転炉を提供することを目的とす
る。 本考案の冷却設備を有する転炉は、転炉内壁の
溶鋼浴に接触しない部位において、耐火物ライニ
ングに代えて冷却ボツクスを設置したことを特徴
とするものである。以下実施例によつてその詳細
を説明する。 一般に熱的損傷の防止のために、冷却ボツクス
(水冷ボツクス等)が使用されることは多いが、
転炉炉内にこれを用いた実施例は報告されていな
い。これは以下に述べるような安全性の問題によ
る。即ち、溶鋼がなんらかの原因で冷却媒体であ
る水と接触すると、水は体積比で8000倍に膨張
し、この急激に発生した水蒸気が炉内の溶鋼を炉
外に飛散させる危険性があるためである。 本考案においては、上記の危険を避けるため
に、第3図に示したAの部位に冷却ボツクス(或
いはパネル)を設けて冷却(例えば水冷)を行う
ものである。Aの部位は、前に述べたように、転
炉直立時及び傾動時則ち出鋼のための出鋼口側へ
の傾動、サンプリング、測温のための出鋼口反対
側(装入側)への傾動等において、常に溶鋼浴に
接することのない部位であり、又精錬時にもホー
ミングしたスラグと溶鋼の飛沫がふりかかるだけ
の位置である。 上記部位に設ける冷却ボツクス(或いはパネ
ル)の実施例を第4図a,b,cに示す。冷却ボ
ツクスは冷却効果を最もよく発揮させるために、
耐火物ライニング(永久張り及び内張り)を使用
せず、これに代えて直接鉄皮に取付けて炉体を構
成する。図において、1は転炉鉄皮、4は銅等の
金属材料で作つた冷却ボツクス(或いはパネ
ル)、5は冷却媒体の流路である。 上記の如き冷却ボツクスを転炉の溶鋼浴に接触
しない内壁部位に設けると、転炉操業中、スラグ
のフオーミング或いは飛沫、溶鋼のスプラツシユ
により冷却ボツクス表面に容易に付着物層が形成
され、これが耐火性を有する永久付着物となる。 第5図も冷却ボツクスの一例で、冷却ボツクス
表面にキヤスタブルアンカー(スタツド)を設
け、表面にマグネシア系キヤスタブルを20〜30mm
吹き付けたものである。これは付着物層をより容
易に形成させる。図において、6は冷却ボツクス
表面のキヤスタブルアンカー、7はキヤスタブル
の層である。 転炉の溶鋼浴に接触しない部位(第3図A部
位)に冷却ボツクスを設けると、水蒸気の爆発的
な発生のおそれはなく、設置位置の耐火性が向上
し、設置位置の周辺にも冷却効果が及び、この部
位への吹き付け補修を低減或いは不必要とするこ
とが出来る。 次に本考案の実施例について述べる。 実施例 1 250t転炉のトラニオンリングサイドの内壁の、
第6図Xの位置1m×1mを、第4図Cに示すよ
うな冷却ボツクス構造とした。冷却ボツクスの材
質は銅とし、炉内に面する部分の厚さを20mmとし
た。冷却水30/分を圧力2.5Kg/cm2で送り、表
面温度を800℃に保持出来るようにした。 その結果、1500チヤージまで問題なく使用出
来、且冷却ボツクス周辺の内張り耐火物も冷却ボ
ツクスからの冷却により耐食性が著しく向上し、
この部位への吹き付け補修は不要であつた。 実施例 2 250t転炉のトラニオンリングサイドの内壁の、
第6図Yの位置2m×2mを、第5図に示すよう
な冷却ボツクス構造とした。冷却ボツクスの材質
はボイラー用鋼板を用い、炉内に面する部分の厚
さを15mmとした。又、冷却ボツクスの炉内側表面
にキヤスタブルアンカーを設け、その表面にマグ
ネシア系キヤスタブルを30mm吹き付けた。冷却水
120/分を圧力2.5Kg/cm2で送り、表面温度を
700〜800℃に保持出来るようにした。 その結果、1300チヤージの炉寿命まで問題なく
使用出来、又この部位への吹き付け補修も不要で
あつた。
[Table] Hot spray repair is performed on the areas shown above where slag coating is not possible. This involves tilting the converter after discharging the slag, and using a spray gun to spray mainly MgO-based spray material onto the lining material. This work is important to extend the life of the converter lining, but the work time
It takes about 40 minutes, resulting in a decrease in the converter operating rate and a negative thermal effect on the furnace refractories due to cooling of the furnace body. In addition, spraying materials and spraying costs also account for a considerable portion of the cost of converter refractories. The present invention makes it possible to reduce the need for spraying repairs on parts of the converter that cannot be coated with slag coating, thereby making it possible to reduce the unit consumption of refractories and improve operating efficiency by shortening the spraying work time.
The purpose is to provide a converter with cooling equipment. The converter having the cooling equipment of the present invention is characterized in that a cooling box is installed in place of the refractory lining in a portion of the converter inner wall that does not come into contact with the molten steel bath. The details will be explained below using examples. Generally, cooling boxes (water-cooled boxes, etc.) are often used to prevent thermal damage.
No examples of using this in a converter furnace have been reported. This is due to safety issues as described below. In other words, if molten steel comes into contact with water, which is a cooling medium, for some reason, the water expands 8,000 times in volume, and there is a risk that this rapidly generated water vapor will scatter the molten steel inside the furnace outside the furnace. be. In the present invention, in order to avoid the above-mentioned danger, a cooling box (or panel) is provided at the part A shown in FIG. 3 to perform cooling (for example, water cooling). As mentioned earlier, the part A is used for tilting the converter when it is upright and tilting, that is, for tapping, and for sampling and temperature measurement on the opposite side of the tapping port (charging side). ), it is a part that does not always come into contact with the molten steel bath, and it is also a part that is only exposed to splashes of homing slag and molten steel during refining. An embodiment of the cooling box (or panel) provided at the above location is shown in FIGS. 4a, b, and c. In order to maximize the cooling effect of the cooling box,
Instead of using a refractory lining (permanent lining or inner lining), the furnace body is constructed by attaching it directly to the steel shell. In the figure, 1 is a converter shell, 4 is a cooling box (or panel) made of a metal material such as copper, and 5 is a flow path for a cooling medium. If a cooling box like the one described above is installed on the inner wall of the converter that does not come into contact with the molten steel bath, a layer of deposits will easily form on the surface of the cooling box due to the forming or splashing of slag and the splashing of molten steel during the operation of the converter. It becomes a permanent adhesive that has properties. Figure 5 is also an example of a cooling box. Castable anchors (studs) are provided on the surface of the cooling box, and 20 to 30 mm of magnesia castable is placed on the surface.
It was sprayed. This allows the deposit layer to form more easily. In the figure, 6 is a castable anchor on the surface of the cooling box, and 7 is a castable layer. By installing a cooling box in a part of the converter that does not come into contact with the molten steel bath (part A in Figure 3), there is no risk of explosive generation of steam, the fire resistance of the installation location is improved, and cooling is also provided around the installation location. It is effective and can reduce or eliminate the need for spraying repairs to this area. Next, an example of the present invention will be described. Example 1 On the inner wall of the trunnion ring side of a 250t converter,
The location 1 m x 1 m in FIG. 6X was made into a cooling box structure as shown in FIG. 4C. The material of the cooling box was copper, and the thickness of the part facing the inside of the furnace was 20 mm. Cooling water was fed 30/min at a pressure of 2.5 kg/cm 2 to maintain the surface temperature at 800°C. As a result, it can be used up to 1500 charges without any problems, and the corrosion resistance of the refractory lining around the cooling box is significantly improved by cooling from the cooling box.
There was no need to spray repair this area. Example 2 On the inner wall of the trunnion ring side of a 250t converter,
The position 2 m x 2 m in FIG. 6 Y was made into a cooling box structure as shown in FIG. 5. The material of the cooling box was boiler steel plate, and the thickness of the part facing the inside of the furnace was 15 mm. In addition, a castable anchor was installed on the inner surface of the cooling box, and 30 mm of magnesia-based castable was sprayed onto the surface. Cooling water
120/min at a pressure of 2.5Kg/ cm2 , and the surface temperature was
The temperature can be maintained at 700-800℃. As a result, the furnace could be used without any problems until its life of 1300 charges, and there was no need for spraying repairs to this area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は転炉の断面図、第2図は転炉炉体の耐
火物による保護状態を示す断面図、第3図は転炉
内壁の溶鋼浴に接触する部位及びスラグコーテイ
ングの可能又は不可能な部位を示す転炉内面展開
図、第4図及び第5図は本考案において使用され
る冷却ボツクスの実施例の断面図、第6図は本考
案の実施例における冷却ボツクスの設置位置を示
す転炉内面展開図である。 1:鉄皮、2:永久張り耐火物、3:内張り耐
火物、P:出鋼口、L:ライニング、4:冷却ボ
ツクス、5:冷却媒体流路、6:キヤスタブルア
ンカー、7:キヤスタブル。
Figure 1 is a cross-sectional view of the converter, Figure 2 is a cross-sectional view showing the state of protection of the converter body by refractories, and Figure 3 shows the parts of the inner wall of the converter that come into contact with the molten steel bath and whether or not slag coating is possible. Figures 4 and 5 are cross-sectional views of an embodiment of the cooling box used in the present invention, and Figure 6 shows the installation position of the cooling box in the embodiment of the present invention. FIG. 2 is a developed view of the inside of the converter. 1: Steel skin, 2: Permanently tensioned refractory, 3: Lining refractory, P: Steel tap, L: Lining, 4: Cooling box, 5: Cooling medium channel, 6: Castable anchor, 7: Castable.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 転炉内壁の溶鋼浴に接触しない部位において、
耐火物ライニングに代えて冷却ボツクスを設置し
たことを特徴とする冷却設備を有する転炉。
In the parts of the converter inner wall that do not come into contact with the molten steel bath,
A converter equipped with cooling equipment characterized by installing a cooling box in place of a refractory lining.
JP13305983U 1983-08-30 1983-08-30 Converter with cooling equipment Granted JPS6040455U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13305983U JPS6040455U (en) 1983-08-30 1983-08-30 Converter with cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13305983U JPS6040455U (en) 1983-08-30 1983-08-30 Converter with cooling equipment

Publications (2)

Publication Number Publication Date
JPS6040455U JPS6040455U (en) 1985-03-22
JPS6214111Y2 true JPS6214111Y2 (en) 1987-04-10

Family

ID=30300284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13305983U Granted JPS6040455U (en) 1983-08-30 1983-08-30 Converter with cooling equipment

Country Status (1)

Country Link
JP (1) JPS6040455U (en)

Also Published As

Publication number Publication date
JPS6040455U (en) 1985-03-22

Similar Documents

Publication Publication Date Title
US3416779A (en) Composite refractory lining for basic oxygen furnace
JPS6214111Y2 (en)
US3351460A (en) Method for prolonging the life of refractory linings in furnaces of the kaldo, linz-donowitz, de may or basic or acid converter types
JP3448339B2 (en) Refractory lining of molten metal container
EP0040440B1 (en) A shaft furnace, particularly the refractory construction of the bottom thereof
US3312457A (en) Copper converter
US2683032A (en) Basic lined cupola
JP3081626B2 (en) Method of forming refractory wall of metal smelting furnace
CN208362436U (en) Fuming furnace
CN112129112A (en) Smoke outlet water jacket and smoke outlet of side-blown converter
SU576341A1 (en) Blast furnace blowing tuyere
CA2323619A1 (en) Wall structure for a metallurgical vessel and blast furnace provided with a wall structure of this nature
JPS63299853A (en) Lining construction in molten steel ladle
CN216115361U (en) Smelting furnace slag hole protection device and smelting furnace with same
JPS6219906Y2 (en)
US3625500A (en) Metallurgical furnace fume exhausting
US3518330A (en) Method for prolonging the life of the cone section of the refractory lining of a basic oxygen furnace of the kaldo type
JPH05331521A (en) Steel tapping hole in refining furnace for steel-making
JPH0443964B2 (en)
JPH04316983A (en) Furnace wall structure for metallurgic furnace
JP2783894B2 (en) Iron bath smelting reduction method
JPS629316Y2 (en)
CN108425020A (en) Fuming furnace
JPS6030570A (en) Pan for molten steel
JPS5846400Y2 (en) Arc furnace lid for steelmaking