JPS6214095A - Controller for pressure and water level of nuclear reactor - Google Patents

Controller for pressure and water level of nuclear reactor

Info

Publication number
JPS6214095A
JPS6214095A JP60152362A JP15236285A JPS6214095A JP S6214095 A JPS6214095 A JP S6214095A JP 60152362 A JP60152362 A JP 60152362A JP 15236285 A JP15236285 A JP 15236285A JP S6214095 A JPS6214095 A JP S6214095A
Authority
JP
Japan
Prior art keywords
reactor
main
water
water level
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60152362A
Other languages
Japanese (ja)
Inventor
建男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60152362A priority Critical patent/JPS6214095A/en
Publication of JPS6214095A publication Critical patent/JPS6214095A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Fluid Pressure (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子炉圧力および水位vIIIl装置に係り、
特に、沸騰水型原子炉の原子炉起動時、停止時における
圧力および水位をυ制御する原子炉圧力および水位制御
I装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a nuclear reactor pressure and water level device,
In particular, the present invention relates to a reactor pressure and water level control device I that controls the pressure and water level during reactor startup and shutdown of a boiling water reactor.

〔発明の技術的背景とその闇題点〕[Technical background of the invention and its dark problems]

一般に、沸騰水型原子炉は第3図に示されるように構成
され、原子炉の起動時には、原子炉圧力容器1内の炉内
圧力を一定速度で昇圧させる。このため、原子炉圧力容
器1内の炉水は熱膨張を受ける一方、制御棒の引扱きに
より制御棒駆a機構ハウジング内の冷却水2が原子炉圧
力容器1内へ流入する。これによって、炉水位は上昇す
るので、その余剰炉水は、原子炉冷却材浄化ポンプ3、
再生熱交換器4、非再生熱交換器5、ろ過脱塩装置6か
ら成る原子か冷W材浄化系の放出配管7を経て主復水器
8へ放出する。
Generally, a boiling water reactor is configured as shown in FIG. 3, and when the reactor is started, the pressure inside the reactor pressure vessel 1 is increased at a constant rate. Therefore, while the reactor water in the reactor pressure vessel 1 undergoes thermal expansion, the cooling water 2 in the control rod drive mechanism housing flows into the reactor pressure vessel 1 due to handling of the control rods. As a result, the reactor water level rises, and the excess reactor water is transferred to the reactor coolant purification pump 3,
It is discharged to the main condenser 8 through the discharge piping 7 of the atomic or cold W material purification system consisting of the regenerative heat exchanger 4, the non-regenerative heat exchanger 5, and the filtration demineralizer 6.

一方、主タービン9に接続した主蒸気管10には、定期
検査1目に主然気管10の水張りをした後に水張り水を
主復水器8ヘドレンさUる主蒸気ドレン配管11が設け
られている。この主蒸気ドレン配管11は、原子炉起動
時には、主蒸気管10中の水滴を主復水器8へ放出させ
るために、全ての主蒸気ドレン弁12を開放して運転す
る。したがって、原子炉起動時において、炉圧が上昇す
るのに従い、主蒸気ドレン配管11より主復水器8へ放
出される炉蒸気mが増加する。
On the other hand, the main steam pipe 10 connected to the main turbine 9 is provided with a main steam drain pipe 11 that drains water from the main condenser 8 after filling the main trachea 10 with water during the first periodic inspection. There is. The main steam drain pipe 11 is operated with all main steam drain valves 12 open in order to discharge water droplets in the main steam pipe 10 to the main condenser 8 at the time of reactor startup. Therefore, at the time of reactor startup, as the reactor pressure increases, the amount of reactor steam m discharged from the main steam drain pipe 11 to the main condenser 8 increases.

その結果、原子炉圧力容器1内の炉内圧力が一定以上に
達ザると、主復水器8へ放出される炉蒸気流ωが前記炉
水膨張並びにit、II i11棒駆動ハウジングから
冷却水2流聞に較べ多くなるから、炉水位を一定に保つ
ためには、給水ポンプ13によって主復水器8から復水
を給水づる必要がある。
As a result, when the reactor pressure in the reactor pressure vessel 1 reaches a certain level or higher, the reactor steam flow ω released to the main condenser 8 is caused by the expansion of the reactor water and cooling from the it, II i11 rod drive housing. Since the amount of water increases compared to the amount of water used in the second round, in order to keep the reactor water level constant, it is necessary to supply condensate from the main condenser 8 using the water supply pump 13.

また、原子炉起動時には、給水を加熱する給水加熱器1
5は作動していないので、給水温度は常温である。した
がって、給水配管14には前記原子炉冷却材浄化系の戻
り配管16を接続して、主復水Z8からの給水と、原子
炉冷W材浄化系からの炉水温度に近い戻り炉水とを混合
させて、原子炉圧内容2!i1へ供給される給水温度を
高めるようにしている。これによって、原子炉圧力容器
1内に設置しである給水スパージャ17に対しての炉水
、給水両者間の温度差に起因する熱応力的影響を低減す
るようにしている。
Also, at the time of reactor startup, a feed water heater 1 that heats the feed water is installed.
5 is not operating, so the water supply temperature is room temperature. Therefore, the return pipe 16 of the reactor coolant purification system is connected to the water supply pipe 14, and the water supply from the main condensate Z8 and the return reactor water close to the reactor water temperature from the reactor cold W material purification system are connected. Mix and reactor pressure content 2! The temperature of the water supplied to i1 is increased. This reduces the influence of thermal stress on the feed water sparger 17 installed in the reactor pressure vessel 1 due to the temperature difference between the reactor water and the feed water.

しかしながら、給水流量は、制御されていない主然気ド
レン配管10にて主復水器8へ放出する炉蒸気によって
決定され、炉内圧力が高い場合には炉蒸気昂が原子炉冷
却材浄化系からの戻り炉水流量に較べて多くなり、この
戻り炉水の熱量による給水の潤度上昇に寄与する効果が
減少する。
However, the feed water flow rate is determined by the reactor steam discharged to the main condenser 8 in the uncontrolled main air drain piping 10, and when the reactor pressure is high, the reactor steam flow is determined by the reactor steam discharged into the reactor coolant purification system. The flow rate of the return reactor water is larger than that of the return reactor water, and the effect of contributing to an increase in the moisture content of the feed water due to the calorific value of this return reactor water is reduced.

一方、原子炉停止時には、大容量のタービンバイパス弁
18を開成して、炉蒸気をタービンバイパス路を通して
主復水器8に放出することによって原子炉を減圧してい
る。その際、前記主蒸気ドレン配管11の主蒸気ドレン
弁12も、原子炉起動時と同様に全てを同放し、タービ
ンバイパス弁18と併用して使用し、原子炉の減圧に寄
与している。
On the other hand, when the nuclear reactor is shut down, the large-capacity turbine bypass valve 18 is opened to release reactor steam to the main condenser 8 through the turbine bypass path, thereby depressurizing the reactor. At this time, all of the main steam drain valves 12 of the main steam drain pipe 11 are also released in the same manner as at the time of reactor startup, and are used in combination with the turbine bypass valve 18, contributing to the pressure reduction of the reactor.

しかしながら、タービンバイパス弁18は人容曾である
ため、Iff度の高い原子炉の圧力R11御は困難であ
った。
However, since the turbine bypass valve 18 is human-sized, it is difficult to control the pressure R11 of the reactor with a high Iff degree.

〔発明の目的〕[Purpose of the invention]

本発明は上述した事情を考慮してなされたもので、原子
炉起動時には給水スパージ11に対する熱的影響を最小
限に抑制し、原子炉停止時には粘度の高い圧力制御を可
能とした原子炉圧力および水位制御装置を提供すること
を目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and it is possible to minimize the thermal influence on the feed water sparge 11 at the time of reactor startup, and to control the reactor pressure and pressure with high viscosity at the time of reactor shutdown. The purpose is to provide a water level control device.

〔発明の概要〕[Summary of the invention]

上述した目的を達成するため、本発明に係る原子炉圧力
および水位υ制御装置は、原子炉圧力容器内で発生した
蒸気を主タービンに供給する主蒸気配管と、主タービン
で仕事をした蒸気を凝縮させる主復水器と、主蒸気配管
からの原子炉圧力容器内の然気を主復水器へ逃す主蒸気
ドレン配管と、主復水器内の復水を原子炉圧力容器へ給
水する給水配管と、原子炉圧力容器内の炉水を主復水器
へ放出する放出配管とを有するものにおいて、原子炉圧
ノj容器内の水位を検出する水位検出器と、上記原子炉
圧力容器内の炉内圧力を検出する圧力検出ムと、これら
の両検出器からの検出信号を入ツノして前記主蒸気ドレ
ン配管、給水配管および放出配管に設けられた流ff1
M御弁の弁開度tAlXl信号を出力するコントローラ
とを有することを特徴とするものである。
In order to achieve the above-mentioned object, the reactor pressure and water level υ control device according to the present invention has a main steam pipe that supplies steam generated in the reactor pressure vessel to the main turbine, and a main steam pipe that supplies the steam generated in the reactor pressure vessel to the main turbine. A main condenser for condensation, a main steam drain pipe for releasing the natural air in the reactor pressure vessel from the main steam piping to the main condenser, and a main steam drain pipe for supplying condensate in the main condenser to the reactor pressure vessel. In a system having a water supply pipe and a discharge pipe for discharging reactor water in the reactor pressure vessel to the main condenser, a water level detector for detecting the water level in the reactor pressure vessel, and a water level detector for detecting the water level in the reactor pressure vessel; A pressure detector for detecting the pressure inside the furnace, and a flow ff1 installed in the main steam drain pipe, water supply pipe, and discharge pipe by receiving the detection signals from both of these detectors.
The controller is characterized in that it has a controller that outputs a valve opening degree tAlXl signal of the M control valve.

こうすることで、原子炉圧力容器からの主蒸気Gと給水
ωとを平衡させて原子炉水位を一定に制御するとともに
、原子炉圧力容器からの主蒸気mを微小流ffi範囲で
正確にail+御し、精成の高い原子炉の圧力Il制御
特性が得られるようにしたものである。
By doing this, the main steam G from the reactor pressure vessel and the feed water ω are balanced to control the reactor water level at a constant level, and the main steam m from the reactor pressure vessel is accurately maintained at ail+ within the microflow ffi range. The pressure Il control characteristics of a nuclear reactor with high refinement can be obtained.

(発明の実施例〕 以下、本発明の一実施例について添付図面を参照して説
明する。
(Embodiment of the Invention) Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

第1図において、符号20は原子炉格納容器21内に格
納された原子炉圧力容器を示し、この原子炉圧力容器2
0内に冷却材としての炉水22が収容され、この炉水2
2は図示しない炉心を浸漬状態に保持している。上記原
子炉圧力容器20は主蒸気配管23を介して主タービン
24に接続され、原子炉圧内容?!J20で発生した主
蒸気を主タービン24に供給し、仕事をするようになっ
ている。上記主蒸気配管23には主悉気wAfIA弁2
5゜25や主蒸気止め弁26および図示しない主蒸気加
減弁などが設けられている。
In FIG. 1, reference numeral 20 indicates a reactor pressure vessel housed in a reactor containment vessel 21, and this reactor pressure vessel 2
0 contains reactor water 22 as a coolant, and this reactor water 2
2 holds a reactor core (not shown) in an immersed state. The reactor pressure vessel 20 is connected to a main turbine 24 via a main steam pipe 23, and the reactor pressure vessel 20 is connected to a main turbine 24 via a main steam pipe 23. ! The main steam generated by J20 is supplied to the main turbine 24 to do work. The main steam pipe 23 has a main air wAfIA valve 2.
5.25, a main steam stop valve 26, a main steam control valve (not shown), etc. are provided.

主タービン24で仕事をした蒸気は主復水15i27に
て復水され、凝縮される一方、この復水は給水配管28
を経て原子炉圧力15器20内に供給されるJ:うにな
っている。給水配管28には給水ポンプ29や給水弁3
0、図示しない復水ポンプ、脱塩器、給水加熱器等が設
けられている。そして、給水弁30等を開放し、給水ポ
ンプ29を作動させることにより、主復水器27からの
復水は給水配管28を通り、給水スパージャ31から原
子炉の炉水内に給水されるようになっている。
The steam that has done work in the main turbine 24 is condensed and condensed in the main condensate 15i27, while this condensate is transferred to the water supply pipe 28.
The reactor pressure 15 is supplied into the reactor pressure reactor 20 through . The water supply pipe 28 includes a water supply pump 29 and a water supply valve 3.
0. A condensate pump, demineralizer, feed water heater, etc. (not shown) are provided. Then, by opening the water supply valve 30 and the like and operating the water supply pump 29, the condensate from the main condenser 27 passes through the water supply pipe 28 and is supplied from the water supply sparger 31 into the reactor water of the reactor. It has become.

また、主蒸気配管23の主蒸気隔離弁25の上流側また
は対をなす主蒸気隔離弁25.25の間から主蒸気ドレ
ン配管33が分岐され、この主蒸気ドレン配管33は途
中で必要に応じて合流され、主復水2927に接続され
る。主蒸気ドレン配管33には途中に複数の主蒸気ドレ
ン弁34が並設されており、これらの主蒸気ドレン弁3
4.31よ原子炉起動時に開放されるようになっている
In addition, a main steam drain pipe 33 is branched from the upstream side of the main steam isolation valve 25 of the main steam pipe 23 or between the main steam isolation valves 25 and 25 that form a pair, and this main steam drain pipe 33 is branched as necessary along the way. and is connected to the main condensate 2927. A plurality of main steam drain valves 34 are arranged in parallel in the main steam drain piping 33, and these main steam drain valves 3
From 4.31 onwards, it will be opened when the reactor starts up.

一方、原子炉圧力容器20内の炉水22Gよ、原子炉冷
却材浄化ポンプ35、再生熱交換Pli36、非再生熱
交換器37、ろ過脱塩装置38 /J\ら成る原子炉冷
却材浄化系40にて浄化される。この原子炉冷却材浄化
系40は、炉水位が上昇したときの余剰か水を放出配管
41を経て主役水!!S27へ放出させ、また、戻り配
管42を経て給水配管28に温度が高い炉水を送り込み
、常温の給水温度を高めるようにしである。
On the other hand, a reactor coolant purification system consisting of reactor water 22G in the reactor pressure vessel 20, a reactor coolant purification pump 35, a regenerative heat exchanger Pli 36, a non-regenerative heat exchanger 37, and a filtration desalination device 38 /J\ It is purified at 40. This reactor coolant purification system 40 discharges excess water when the reactor water level rises through a pipe 41 to the main water! ! The reactor water is discharged to S27, and high-temperature reactor water is sent to the water supply pipe 28 via the return pipe 42 to raise the temperature of the normal temperature water supply.

そして、原子炉圧力容器20内の水位は水位検出器44
によって検出され、原子炉圧力容器20内の圧力は前記
タービン止弁26上流に設けた圧力検出器45によって
検出される。これらの水位検出if!i44、圧力検出
器45によって検出された検出信号としての水位信号A
、圧力信号8(よコントローラ46へ入力されるように
なっている。
The water level inside the reactor pressure vessel 20 is detected by a water level detector 44.
The pressure inside the reactor pressure vessel 20 is detected by a pressure detector 45 provided upstream of the turbine stop valve 26. These water level detection if! i44, water level signal A as a detection signal detected by the pressure detector 45
, pressure signal 8 (Y) is input to the controller 46.

このコントローラ46は、主蒸気ドレン配管33、給水
配管28および放出配管41に設けられた流fafI1
11m弁をwI節制御するようになっている。
This controller 46 controls the flow fafI1 provided in the main steam drain pipe 33, the water supply pipe 28, and the discharge pipe 41.
The 11m valve is controlled by the wI clause.

コントローラ46は具体的には主蒸気ドレン配管33に
設けられた主蒸気ドレン弁34や、給水配管28の給水
小弁47および放出配管41の炉水放出弁48の弁開度
を弁開度f/IwJ信号C,D、Eにより:1JWIυ
1111シている。なお、給水小弁47は給水弁30を
迂回するバイパスラインに設置プられている。
Specifically, the controller 46 controls the valve opening degrees of the main steam drain valve 34 provided in the main steam drain piping 33, the small water supply valve 47 of the water supply piping 28, and the reactor water release valve 48 of the discharge piping 41 according to the valve opening degree f. /IwJ signals C, D, E: 1JWIυ
There are 1111. Note that the small water supply valve 47 is installed in a bypass line that bypasses the water supply valve 30.

このようなコントローラ46から出力されるi11制御
信号C,D、Eは、原子炉水位が低下した場合には、給
水小弁47を開放して給水を原子炉圧内容′a20に注
入し、原子炉水位が上昇した場合には、主蒸気ドレン弁
34と炉水放出弁48とを開放して炉蒸気または炉水を
主復水器27へ放出するようになっている。ただ、主蒸
気ドレン弁34は、炉水放出弁48に優先して開放され
るようにしである。
These i11 control signals C, D, and E outputted from the controller 46 are used to open the water supply small valve 47 to inject water into the reactor pressure content 'a20 when the reactor water level drops, and to When the reactor water level rises, the main steam drain valve 34 and reactor water release valve 48 are opened to release reactor steam or reactor water to the main condenser 27. However, the main steam drain valve 34 is opened in priority to the reactor water release valve 48.

また、主蒸気ドレン弁34は、原子炉圧力が上昇した場
合にも、圧力検出345の圧力検出信号Bによって開放
するようにしである。この場合、主蒸気ドレン弁34の
開度は、一定の原子炉圧力の昇圧、降圧速度となるよう
に、コントローラ46で制御できるようになっている。
Further, the main steam drain valve 34 is configured to open in response to the pressure detection signal B of the pressure detection 345 even when the reactor pressure increases. In this case, the opening degree of the main steam drain valve 34 can be controlled by the controller 46 so that the reactor pressure increases and decreases at a constant rate.

次に、作用を説明する。原子炉起動時には、原子炉圧力
容器20内の炉水22の熱111&や制御棒の引抜きに
よる制御棒駆fIJ機構ハウジング内の冷却水50の原
子炉圧力容器内への流入による炉水位が土FJ する。
Next, the effect will be explained. At reactor startup, the reactor water level rises to FJ due to the heat 111 of the reactor water 22 in the reactor pressure vessel 20 and the flow of cooling water 50 in the control rod drive fIJ mechanism housing into the reactor pressure vessel due to the withdrawal of the control rods. do.

この炉水位の上背は、水位検出器44により検出され、
その水位検出信号△がコントローラ46に入力される。
The upper back of this reactor water level is detected by the water level detector 44,
The water level detection signal Δ is input to the controller 46.

この人力信号を受けてコントローラ46は弁開度tII
J allll信号比ノJし、この出力信号Cにより主
蒸気ドレン弁34が開放される。主蒸気ドレン弁34の
開放により炉蒸気が主復水器27に放出される。また、
コントローラ46から弁開度1jllll信号Eも出力
され、この制御信号Eにて炉水放出弁48が開放され、
炉水が主復水器27に放出される。これにより、炉水位
の上昇はi、11御される。炉圧が低い場合には、これ
!検出器る圧ノj検出慕45からの圧力検出信号Bがコ
ントローラ46に入ツノされ、このコントローラ46か
らの蒸気1−制御信号Cにて主蒸気ドレン弁34が優先
的に開放されても、放出される炉蒸気は少ないので、炉
水放出弁48から炉水の放出が優先的に行なわれる。
In response to this human power signal, the controller 46 sets the valve opening degree tII.
The output signal C causes the main steam drain valve 34 to open. Furnace steam is discharged to the main condenser 27 by opening the main steam drain valve 34 . Also,
The controller 46 also outputs a valve opening 1jllll signal E, and this control signal E opens the reactor water release valve 48.
Reactor water is discharged into the main condenser 27. As a result, the rise in the reactor water level is controlled by i,11. If the furnace pressure is low, use this! Even if the pressure detection signal B from the pressure sensor 45 is input to the controller 46 and the main steam drain valve 34 is opened preferentially by the steam 1-control signal C from the controller 46, Since the amount of reactor steam to be released is small, reactor water is preferentially released from the reactor water release valve 48.

炉圧が上昇して主然気ドレン弁34からの炉蒸気の放出
が多くなると、炉水放出弁48からの炉水の放出は停止
され、主蒸気ドレン弁34からの炉蒸気放出流量は、炉
水の熱膨張および制御棒引抜きに伴う冷却水50の流量
とバランスする。この場合、vIIII棒の操作などに
よって炉水位が変動したときのみ、これを検出づる水位
検出^44からの水位信号Aがコントローラ46に入力
され、このコントローラ46から出力される給水制御信
@Dによって給水小弁47が開放され、主復水器27か
らの復水が給水される。
When the reactor pressure increases and the amount of reactor steam released from the main steam drain valve 34 increases, the release of reactor water from the reactor water release valve 48 is stopped, and the flow rate of reactor steam released from the main steam drain valve 34 is The thermal expansion of the reactor water and the flow rate of the cooling water 50 accompanying control rod withdrawal are balanced. In this case, only when the reactor water level fluctuates due to the operation of the vIII rod, the water level signal A from the water level detection ^44 that detects this is input to the controller 46, and the water supply control signal @D output from the controller 46 is used to detect the fluctuation. The small water supply valve 47 is opened, and condensate from the main condenser 27 is supplied.

このようにして行なわれる原子炉起動時における炉水の
放出流量と復水の給水流mとによる炉圧の変化を、従来
例と比較して示すと第2図のようになる。この第2図に
おいて、aは放出流量、bは本発明による給水流量、C
は従来例による給水流量であり、これからも明らかなよ
うに、給水流量を制限することができる。
FIG. 2 shows changes in reactor pressure due to the reactor water discharge flow rate and the condensate feed water flow m during reactor startup performed in this manner in comparison with the conventional example. In this FIG. 2, a is the discharge flow rate, b is the water supply flow rate according to the present invention, and C
is the water supply flow rate according to the conventional example, and as is clear from this, the water supply flow rate can be limited.

したがって、主蒸気ドレン配管33から放出される炉蒸
気流量を制御することによって、不必要な給水の原子炉
圧力容器20内への注入を!11限できるものとなり、
給水スパージ1?31の健全性向上にとって極めて好ま
しいものとなる。
Therefore, by controlling the flow rate of reactor steam discharged from the main steam drain pipe 33, unnecessary injection of feed water into the reactor pressure vessel 20 can be avoided! It will be possible for the 11th period,
This is extremely favorable for improving the health of the water supply sparge 1-31.

一方、原子炉停止時には、原子炉圧力容器20内の炉内
圧力が圧力検出器45により検出され、この検出器(5
Bがコントローラ46に入力される。
On the other hand, when the reactor is shut down, the reactor pressure inside the reactor pressure vessel 20 is detected by the pressure detector 45, and this detector (5
B is input to the controller 46.

この入力により、コントローラ46から蒸気制御信号C
が出力され、この制御信号Cにより主蒸気ドレン弁34
の弁開度を調節制御し、原子炉の降圧速度が一定となる
ように制御される。これによって、大容量のタービンバ
イパス弁の弁rMaを制御する従来の場合と異なり、精
度が高い圧力制御を可能にする。
This input causes the steam control signal C to be sent from the controller 46.
is output, and this control signal C causes the main steam drain valve 34
The valve opening degree of the reactor is adjusted and controlled so that the pressure reduction rate of the reactor remains constant. This enables highly accurate pressure control, unlike the conventional case of controlling the valve rMa of a large-capacity turbine bypass valve.

りなわら、主蒸気ドレン配管33を経て主復水器27に
放出される炉蒸気流mは、タービンバイパス弁によって
放出される主蒸気流量に比し充分に小さいので、主蒸気
ドレン蒸気流量を制御することは、タービンバイパス弁
による1)11Ilよりも、極めて開度が高い圧力fj
llllが可能となる。
However, since the furnace steam flow m discharged to the main condenser 27 via the main steam drain piping 33 is sufficiently smaller than the main steam flow rate discharged by the turbine bypass valve, the main steam drain steam flow rate is controlled. What this means is that the pressure fj is extremely high in opening compared to 1) 11Il due to the turbine bypass valve.
lllll becomes possible.

その結果、原子炉圧力容器20の原子炉停止時における
圧力変動を極小にすることが可能となり、原子炉圧力の
変動に伴う冷u1材温度の変動による原子炉圧力容器2
0その他の部材に対する繰返し熱応力を低減する効果を
得ることができる。
As a result, it is possible to minimize pressure fluctuations in the reactor pressure vessel 20 during reactor shutdown, and the pressure fluctuations in the reactor pressure vessel 20 due to fluctuations in the temperature of the cold U1 material accompanying fluctuations in the reactor pressure can be minimized.
0 It is possible to obtain the effect of reducing repeated thermal stress on other members.

〔発明の効果〕〔Effect of the invention〕

本発明は上述したように梠成したので、原子炉起動時の
給水ははとノνど不要となり、給水による給水スバージ
Vに対する熱応力的彰費を最小限に低減することが可能
となる。
Since the present invention is structured as described above, there is no need to supply water at the time of reactor startup, and it is possible to minimize the cost of thermal stress caused by the water supply sparge V due to water supply.

一方、原子炉停止時においては、高い粘度の圧力aJ+
制御を可能とづることにより、圧力変動を極小にづるこ
とかでき、原子炉圧力変動による冷却材温度の変動によ
る原子炉圧力容器その他の部材に対する熱応力を低減す
ることができる等の優れた効果を奏する。
On the other hand, when the reactor is shut down, the high viscosity pressure aJ+
By enabling control, pressure fluctuations can be minimized, and thermal stress on the reactor pressure vessel and other components due to fluctuations in coolant temperature due to fluctuations in reactor pressure can be reduced, among other excellent effects. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図、第2図は原子
炉起動時の炉水の放出流量と復水の給水流機との炉圧に
よる変化を従来例と対比して示したグラフ、第3図は従
来例の系統図である。 20・・・原子炉圧力容器、23・・・主蒸気配管、2
4・・・主タービン、25・・・主蒸気隔離弁、27・
・・主復水器、28・・・給水配管、29・・・給水ポ
ンプ、30・・・給水弁、31・・・給水スパージャ、
33・・・主蒸気ドレン配管、34・・・主蒸気ドレン
弁、35・・・原子炉冷却材ポンプ、36・・・再生熱
交換4.37・・・非再生熱交換器、38・・・ろ過脱
塩装置、41・・・放出配管、42・・・戻り配管、4
4・・・水位検出器、45・・・圧力検出器、46・・
・コントローラ、47・・・給水小弁、48・・・炉水
放出弁。 「−−−’−−−”−−−−−一−”’I第1図 第2rIA 第3図
Fig. 1 is a system diagram showing an embodiment of the present invention, and Fig. 2 shows changes in reactor water discharge flow rate and condensate feeder flow rate due to reactor pressure at reactor startup in comparison with a conventional example. The graph shown in FIG. 3 is a system diagram of a conventional example. 20... Reactor pressure vessel, 23... Main steam piping, 2
4... Main turbine, 25... Main steam isolation valve, 27...
...Main condenser, 28...Water supply pipe, 29...Water supply pump, 30...Water supply valve, 31...Water supply sparger,
33... Main steam drain piping, 34... Main steam drain valve, 35... Reactor coolant pump, 36... Regenerative heat exchange 4.37... Non-regenerative heat exchanger, 38...・Filtration desalination equipment, 41...Discharge piping, 42...Return piping, 4
4...Water level detector, 45...Pressure detector, 46...
- Controller, 47... Small water supply valve, 48... Reactor water release valve. "---'---"----"'IFigure 1Figure 2rIA Figure 3

Claims (1)

【特許請求の範囲】 1、原子炉圧力容器内で発生した蒸気を主タービンに供
給する主蒸気配管と、主タービンで仕事をした蒸気を凝
縮させる主復水器と、主蒸気配管からの原子炉圧力容器
内の蒸気を主復水器へ逃す主蒸気ドレン配管と、主復水
器内の復水を原子炉圧力容器へ給水する給水配管と、原
子炉圧力容器内の炉水を主復水器へ放出する放出配管と
を有するものにおいて、原子炉圧力容器内の水位を検出
する水位検出器と、上記原子炉圧力容器内の炉内圧力を
検出する圧力検出器と、これらの両検出器からの検出信
号を入力して前記主蒸気ドレン配管、給水配管および放
出配管に設けられた流量制御弁の弁開度制御用制御信号
を出力するコントローラとを有することを特徴とする原
子炉圧力および水位制御装置。 2、各流量制御弁は、コントローラから出力される蒸気
制御信号にて弁開度が制御される主蒸気ドレン弁と、コ
ントローラからの給水制御信号にて弁開度が制御される
給水小弁と、上記コントローラからの放出制御信号にて
弁開度が制御される炉水放出弁である特許請求の範囲第
1項に記載の原子炉圧力および水位制御装置。 3、コントローラは、原子炉水位が低下したとき、給水
配管に設けた流量制御弁を開放させ、原子炉水位が上昇
したとき、主蒸気ドレン配管に設けた流量制御弁が放出
配管に設けた流量制御弁に対して優先的に開放させる制
御信号を出力するようにした特許請求の範囲第1項に記
載の原子炉圧力および水位制御装置。 4、コントローラは、原子炉圧力が上昇したとき、主蒸
気ドレン配管に設けた流量制御弁を開放させる制御信号
を出力するように構成された特許請求の範囲第1項に記
載の原子炉圧力および水位制御装置。
[Claims] 1. Main steam piping that supplies steam generated in the reactor pressure vessel to the main turbine, a main condenser that condenses the steam that has done work in the main turbine, and atoms from the main steam piping. A main steam drain pipe that releases steam in the reactor pressure vessel to the main condenser, a water supply pipe that supplies condensate in the main condenser to the reactor pressure vessel, and a main steam drain pipe that releases the steam in the reactor pressure vessel to the main condenser. A water level detector that detects the water level in the reactor pressure vessel, a pressure detector that detects the in-core pressure in the reactor pressure vessel, and a pressure detector that detects both of these, in a device that has a discharge pipe that discharges to a water container. and a controller that inputs a detection signal from the reactor and outputs a control signal for controlling the valve opening of the flow control valve provided in the main steam drain pipe, the water supply pipe, and the discharge pipe. and water level control devices. 2. Each flow control valve consists of a main steam drain valve whose valve opening is controlled by a steam control signal output from the controller, and a small water supply valve whose valve opening is controlled by a water supply control signal from the controller. The reactor pressure and water level control device according to claim 1, which is a reactor water release valve whose opening degree is controlled by a release control signal from the controller. 3. When the reactor water level drops, the controller opens the flow control valve installed in the water supply pipe, and when the reactor water level rises, the flow control valve installed in the main steam drain pipe opens the flow rate control valve installed in the discharge pipe. A nuclear reactor pressure and water level control device according to claim 1, which outputs a control signal for preferentially opening a control valve. 4. The controller is configured to output a control signal to open a flow control valve provided in the main steam drain pipe when the reactor pressure increases. Water level control device.
JP60152362A 1985-07-12 1985-07-12 Controller for pressure and water level of nuclear reactor Pending JPS6214095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60152362A JPS6214095A (en) 1985-07-12 1985-07-12 Controller for pressure and water level of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60152362A JPS6214095A (en) 1985-07-12 1985-07-12 Controller for pressure and water level of nuclear reactor

Publications (1)

Publication Number Publication Date
JPS6214095A true JPS6214095A (en) 1987-01-22

Family

ID=15538874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60152362A Pending JPS6214095A (en) 1985-07-12 1985-07-12 Controller for pressure and water level of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6214095A (en)

Similar Documents

Publication Publication Date Title
KR880010431A (en) Reactor plant
US7333584B2 (en) Nuclear power plant and operation method thereof
JPS6214095A (en) Controller for pressure and water level of nuclear reactor
Ishiwatari et al. Improvements of feedwater controller for the super fast reactor
JP3354299B2 (en) Automatic high-pressure and high-pressure sample water supply system
JP3280164B2 (en) Steam condensed water circulation device for fuel cell power generator and control method thereof
JPS61258196A (en) Method of preventing and controlling deformation of feedwater piping for boiling water type nuclear power plant
JPS5977012A (en) Reheating type steam turbine plant
JPS6277503A (en) Temperature elevator for feed water in nuclear reactor
JPS6066194A (en) Method and device for cooling control rod drive
JP3067053B2 (en) Condenser
JPS63187194A (en) Nuclear reactor pressure controller
JPS6298103A (en) Controller for dissolved oxygen
JPS58102197A (en) Device for operating and monitoring feedwater heater bypass valve of reactor
JPH02264893A (en) Method of controlling nuclear power plant
JPH0471480B2 (en)
JP2006029940A (en) Hydrogen injection method for boiling water type nuclear power plant
JPH0663607B2 (en) Turbine plant with feedwater heater drain injection device
JPS59197709A (en) Control system of water level of deaerator
JPS6050496A (en) Water supply system of boiling-water type nuclear reactor
JPS597809A (en) Feeding device for steam generator
JPS6228692A (en) Method of operating nuclear-reactor coolant purification system
JPS5919894A (en) Auxiliary cooling device of fast breeder
JPH10246795A (en) Water feeding and condensing facility in nuclear reactor
JPS62282298A (en) Nuclear reactor heater