JPS6298103A - Controller for dissolved oxygen - Google Patents

Controller for dissolved oxygen

Info

Publication number
JPS6298103A
JPS6298103A JP23610885A JP23610885A JPS6298103A JP S6298103 A JPS6298103 A JP S6298103A JP 23610885 A JP23610885 A JP 23610885A JP 23610885 A JP23610885 A JP 23610885A JP S6298103 A JPS6298103 A JP S6298103A
Authority
JP
Japan
Prior art keywords
condensate
dissolved oxygen
valve
condenser
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23610885A
Other languages
Japanese (ja)
Inventor
前田 克治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23610885A priority Critical patent/JPS6298103A/en
Publication of JPS6298103A publication Critical patent/JPS6298103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Gas Separation By Absorption (AREA)
  • Percussion Or Vibration Massage (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、例えば、原子力発電プラントのような発電プ
ラントにおける復水器ホットウェルや復水・給水系配管
の接液部の腐蝕を防止する溶存酸素制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention provides a method for preventing corrosion of condenser hot wells and wetted parts of condensate/water supply system piping in power plants such as nuclear power plants. Relating to an oxygen control device.

(発明の技術釣合m) 一般に、高純度の水の流動水中では、第2図の溶存酸素
濃度と腐蝕率との関係を示ずグラフのように、溶存酸素
濃度が高くなるにつれて腐蝕率が低減されることtま知
られている。
(Technical balance of the invention m) In general, in flowing water of high purity, the relationship between the dissolved oxygen concentration and the corrosion rate as shown in Figure 2 is not shown, and as shown in the graph, the corrosion rate increases as the dissolved oxygen concentration increases. This is known to be reduced.

又・一方、沸騰水型の原子力発電プラントでは、復水器
が真空のために、復水溶存酸素濃度がぎわめで低濃度ま
で低下し、これに起因して、低溶存酸素に接液する炭素
鋼から腐蝕が問題にへる。しかも、この炭素鋼の腐蝕に
より、復水浄化系への腐蝕生成物による負C1rJが増
大すると共に、給水系から腐蝕生成物を原子炉(蒸気発
生器〉へ持込み増加する等の欠点がある。
On the other hand, in boiling water type nuclear power plants, the condenser is in a vacuum, so the dissolved oxygen concentration in the condensate drops to a very low concentration, and as a result, the carbon in contact with the low dissolved oxygen Corrosion becomes a problem from steel. Furthermore, due to the corrosion of carbon steel, there are disadvantages such as an increase in the negative C1rJ caused by corrosion products to the condensate purification system, and an increase in the number of corrosion products brought into the nuclear reactor (steam generator) from the water supply system.

従来、この種の蒸気タービンにJ:る発電プラントでは
、復水給水系を炭素鋼配管とし、腐蝕を抑制するために
、一定量の酸素ガスの注入を実施しているけれども、酸
素ガスの供給・補充を常に一定の状態に制御することは
、その管理を厳重に実施することが必要であり、これに
伴なうaill litシステムの設置が高価となる。
Conventionally, in power plants using this type of steam turbine, the condensate water supply system is made of carbon steel piping, and a certain amount of oxygen gas is injected to suppress corrosion. - Controlling replenishment to a constant state requires strict management, and the associated installation of an ail-lit system becomes expensive.

又一方、復水器iiツl−ウ]−ルの接液部の腐蝕11
411611のために、復水器ボットウェルの水中に直
接的に酸素ガスを汁入りろ技術手段も採用されているI
Jれども、復水器自体が真空に保持されているので、注
入Ill!2索ガスの大部分が脱気され−C1これを6
効にしかも、無駄なく(す用することは困難である。
On the other hand, corrosion of the wetted parts of the condenser II
For 411611, technical means to directly introduce oxygen gas into the water of the condenser botwell has also been adopted.
However, since the condenser itself is kept under vacuum, the injection Ill! Most of the 2-chord gas is degassed -C1 this is 6
It is difficult to use it effectively and without waste.

〔発明の目的〕[Purpose of the invention]

本発明は、」ニ述した難点を解消ザるために、蒸気ター
ビンブラントにおいて、溶存酸素濃度を適正に制御する
飽和溶存酸素水を復水器ホラ1〜つIルヘ自動的に供給
し、復水給水中の溶存酸素濃度を機能的に調整づる制御
11機能にJ、って復水器ホラ1−ウ■ル11)復水・
給水系配管の接液部の腐蝕を防止するようにしたことを
目的とする溶存酸素ffi制御装置を提供するbのであ
る。
In order to solve the above-mentioned problems, the present invention automatically supplies saturated dissolved oxygen water that appropriately controls the dissolved oxygen concentration to the condenser holes in a steam turbine blunt. The control 11 function that functionally adjusts the dissolved oxygen concentration in the water supply is the function of the condenser.
The present invention provides a dissolved oxygen ffi control device whose purpose is to prevent corrosion of the wetted parts of water supply system piping.

〔発明の概要〕[Summary of the invention]

本発明は、蒸気タービンプラントにおいて、復水ポンプ
の吐出側の復水管に開閉弁を備えた復水回収ジインを1
u水器ホツトウエルへ連通するようにして配管し、この
復水回収ラインに復水貯蔵タンク、復水移送ポンプ及び
流量調整弁を配設し、上記復水管に溶存酸素濃度リを付
設し、この溶存酸素センリで上記開閉弁を開閉制罪して
復水貯水タンクの飽和溶存酸素水を復水器ホットウェル
へ供給して接液部の腐蝕を防止するように構成したもの
である。
The present invention provides a single condensate recovery engine equipped with an on-off valve in a condensate pipe on the discharge side of a condensate pump in a steam turbine plant.
A condensate storage tank, a condensate transfer pump, and a flow rate adjustment valve are installed in this condensate recovery line, and a dissolved oxygen concentration meter is attached to the condensate pipe. The dissolved oxygen sensor controls the opening and closing of the on-off valve to supply saturated dissolved oxygen water from the condensate storage tank to the condenser hotwell to prevent corrosion of the wetted parts.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の一実施例について説明Jる。 Hereinafter, the present invention will be described with reference to an illustrated embodiment.

第1図において、符号1は、例えば、沸騰水型の原子炉
による蒸気発生器(ボイラー)であって、この蒸気発生
器1で発生した蒸気は、主蒸気管2を通って蒸気タービ
ン3へ移送され、こ)で蒸気タービン3を回転させ、し
かる後、復水器ホラl〜つIル4へ導入される。すると
、この復水器ホラ(−ウェル4内は、これに接続された
エゼクタ5によって真空状態に保持されているため、上
記復水器ホラ1−ウェル4内の復水は、脱気状態に保持
されることになる。しかして、復水器ホットウェル・1
の復水(ま、ド1水管(jに設置された復水ポンプ7に
よって加圧され、これを復水フィルタ8及び復水脱塩塔
9を通すことによって復水中の不純物は除去される。し
かして、上記復水は、上記復水管6に設(Jられ/j給
水ヒータ10へ移送され、こ1て゛加温された後、再び
上記原子炉による蒸気発生器1へ還流して蒸気を発生す
る蒸気タービンブラン1へを構成している。
In FIG. 1, reference numeral 1 denotes a steam generator (boiler) using, for example, a boiling water nuclear reactor, and steam generated in this steam generator 1 passes through a main steam pipe 2 to a steam turbine 3. This rotates the steam turbine 3 and is then introduced into the condenser chamber 4. Then, since the inside of this condenser hole (well 4) is maintained in a vacuum state by the ejector 5 connected to it, the condensate in the condenser hole 1-well 4 is degassed. Therefore, the condenser hotwell 1
The condensate is pressurized by a condensate pump 7 installed in a water pipe (J), and impurities in the condensate are removed by passing it through a condensate filter 8 and a condensate demineralization tower 9. The condensate is then transferred to the feedwater heater 10 installed in the condensate pipe 6, where it is heated, and then returned to the steam generator 1 of the nuclear reactor to generate steam. It constitutes a steam turbine blanc 1 that is generated.

一方、上記復水ポンプ7の吐出側の復水管6には、例え
ば、電[社弁のような開閉弁11を備えた復水回収ライ
ン12が上記復水器ホラl−ウェル4へ連通づ−るよう
にして配管されており、この復水回収ライン12には、
空気中の酸素を溶解して飽lll溶存酸累濃度を維持す
る復水貯蔵タンク13、復水移送ポンプ14及び水位計
15を備えた流量調整弁16が順に配設されている。又
、上記給水ヒータ10の近傍の上記復水管6には、溶存
酸素(検出) it 17及び溶存酸索濃度信号変換鼎
18とで構成される溶存M索センザ19が付設されてお
り、この溶?’7− F[!f索センサ19は、上記開
閉弁11と電気的に接続されてJ3す、この開閉弁11
は、溶I7酸素レンリ19にJ、って間開じて制御し1
!7るようになっCいる。
On the other hand, in the condensate pipe 6 on the discharge side of the condensate pump 7, a condensate recovery line 12 equipped with an on-off valve 11, such as a Denshi valve, is connected to the condenser hollow l-well 4. This condensate recovery line 12 is
A condensate storage tank 13 that dissolves oxygen in the air to maintain a saturated dissolved acid concentration, a condensate transfer pump 14, and a flow rate adjustment valve 16 equipped with a water level gauge 15 are arranged in this order. Further, a dissolved M-line sensor 19 consisting of a dissolved oxygen (detection) it 17 and a dissolved oxygen concentration signal converter 18 is attached to the condensate pipe 6 near the water supply heater 10. ? '7- F[! The f-line sensor 19 is electrically connected to the on-off valve 11 and connected to the on-off valve 11.
Then, open and control the molten I7 oxygen level 19.
! 7 It's starting to look like C.

他方、上記復水回収ライン12には枝管20が上記原子
炉による蒸気発生器1の制御棒駆動機構21に連通づ゛
るようにして接続されており、この枝管20には、制御
棒駆動ポンプ22及び流量検出器23を備えた制御棒駆
動流量調整弁21が・ぞれぞれ設けられている。
On the other hand, a branch pipe 20 is connected to the condensate recovery line 12 so as to communicate with a control rod drive mechanism 21 of the steam generator 1 of the nuclear reactor. A control rod-driven flow rate regulating valve 21 with a drive pump 22 and a flow rate detector 23 is provided, respectively.

従って、上記復水貯蔵タンク13には、空気中の酸素が
溶解するので、この復水貯蔵タンク13内の復水は、常
に、鉋和溶存酸県瀧度に維持されている。しかしで、上
記復水脱塩塔9から吐出した一部の復水は、上記復水貯
蔵タンク13に開閉弁11を通して供給されており、し
かも、上記復水器ホットウェル4の復水は、上記水位計
15からの信号によって上記復水貯蔵タンク13からの
復水を復水移送ポンプ14で流LH調整弁16を開弁し
て供給され、一定の水位に維持されるようになっている
Therefore, since oxygen in the air is dissolved in the condensate storage tank 13, the condensate in the condensate storage tank 13 is always maintained at a level of dissolved acid concentration. However, a part of the condensate discharged from the condensate demineralization tower 9 is supplied to the condensate storage tank 13 through the on-off valve 11, and the condensate in the condenser hot well 4 is In response to a signal from the water level gauge 15, condensate from the condensate storage tank 13 is supplied by the condensate transfer pump 14 by opening the flow LH regulating valve 16, and the water level is maintained at a constant level. .

このようにして、飽和溶存ll!l水素水水器ホラ1〜
ウエル4へ供給されることによって、復水・給水溶存濃
度が変化するので、復水管6の復水溶存酸素濃度は、上
記溶存W1素センサ19によって検出される。即ち、こ
の溶存酸素センサ19は、溶存酸素濃度が基準要求値(
設定値)以上のとき、上記開閉弁11を絞り込み、その
結果、復水器ホットウェル4の水位が抑制され、上記復
水貯蔵タンク13からの飽和溶存酸素水の供給が抑制さ
れ、これによって復水溶存酸素濃度は低下することにな
る。
In this way, saturated dissolved ll! l Hydrogen water water dispenser hora 1~
The dissolved oxygen concentration in the condensate pipe 6 is detected by the dissolved W1 element sensor 19, since the dissolved oxygen concentration in the condensate pipe 6 changes by being supplied to the well 4. That is, this dissolved oxygen sensor 19 has a dissolved oxygen concentration that is below the standard required value (
set value), the opening/closing valve 11 is throttled down, and as a result, the water level of the condenser hot well 4 is suppressed, and the supply of saturated dissolved oxygen water from the condensate storage tank 13 is suppressed. Water dissolved oxygen concentration will decrease.

他方、上記溶存酸素センサ19が基準要求値以下になっ
たとき、上記開閉弁11を大きく開弁し、上記復水貯蔵
タンク13から復水器ホットウェル4へ供給される飽和
溶存酸素水の水itを増加し、復水溶存酸素濃度を上昇
させて基準要求値の濃度に制御し、これによって復水器
ホラ!・ウェル4や復水・給水系配管の接液部の腐蝕を
防止するようになっている。
On the other hand, when the dissolved oxygen sensor 19 becomes equal to or less than the standard required value, the on-off valve 11 is opened wide and the saturated dissolved oxygen water is supplied from the condensate storage tank 13 to the condenser hot well 4. It is increased, the condensate dissolved oxygen concentration is increased, and the concentration is controlled to the standard required value.・It is designed to prevent corrosion of the wetted parts of Well 4 and condensate/water supply system piping.

〔発明の効果〕〔Effect of the invention〕

以上述べたJ:うに本発明によれば、蒸気タービンプラ
ン1〜にJ3いて、復水ポンプ7の吐出側の復水管6に
開閉弁11を備えた復水回収ライン12を復水器ホット
ウェル4へ連通するにうにして配管し、この復水回収ラ
イン12に復水貯蔵タンク13、復水移送ポンプ14及
び流量調整弁16を配設し、上記復水管6に溶存酸素セ
ンサ19を付設し、この溶存酸素センサ゛19で上記開
閉弁11をi!、制御するようになっているので、常に
基準要求値のl!I索濃度に制御して接液部の腐蝕を防
止できるばかりでなく、構成もl?tI素であるから組
立や保守点検も容易であり、さらに、復水中に不純物に
よる負荷が軽減される等の優れた効果を0ザるものであ
る。
According to the present invention, in the steam turbine plans 1 to 3, the condensate recovery line 12 equipped with the on-off valve 11 is connected to the condensate pipe 6 on the discharge side of the condensate pump 7 to the condenser hotwell. 4, a condensate storage tank 13, a condensate transfer pump 14, and a flow rate adjustment valve 16 are installed in this condensate recovery line 12, and a dissolved oxygen sensor 19 is attached to the condensate pipe 6. Then, this dissolved oxygen sensor 19 controls the on-off valve 11 at i! , so the standard required value l! Not only can corrosion be prevented in wetted parts by controlling the concentration to a certain level, but the structure is also flexible. Since it is a tI element, it is easy to assemble and maintain and inspect, and furthermore, it has excellent effects such as reducing the load caused by impurities in the condensate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による溶存酸素制御装置の線図、第2
図は、溶存酸素濃度と腐蝕率との関係をポリグラフであ
る。 1・・・蒸気発生器、3・・・蒸気タービン、4・・・
復水器ホットウェル、6・・・復水管、7・・・復水ポ
ンプ、8・・・復水フィルタ、9・・・復水脱塩塔、1
0・・・給水ヒータ、11・・・開閉弁、12・・・復
水回収ライン、13・・・復水貯蔵タンク、14・・・
復水移送ポンプ、15・・・水位計、16・・・流m調
整弁、19・・・溶存酸素センサ。 出願人代理人  佐  藤  −錐 角1図 第2図
FIG. 1 is a diagram of the dissolved oxygen control device according to the present invention, FIG.
The figure is a polygraph showing the relationship between dissolved oxygen concentration and corrosion rate. 1... Steam generator, 3... Steam turbine, 4...
Condenser hot well, 6... Condensate pipe, 7... Condensate pump, 8... Condensate filter, 9... Condensate demineralization tower, 1
0... Water supply heater, 11... Open/close valve, 12... Condensate recovery line, 13... Condensate storage tank, 14...
Condensate transfer pump, 15... Water level gauge, 16... Flow meter adjustment valve, 19... Dissolved oxygen sensor. Applicant's Representative Sato - Cone 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンプラントにおいて、復水ポンプの吐出側の
復水管に開閉弁を備えた復水回収ラインを復水器ホット
ウエルへ連通するようにして配管し、この復水回収ライ
ンに復水貯蔵タンク、復水移送ポンプ及び流量調整弁を
配設し、上記復水管に溶存酸素センサを付設し、この溶
存酸素センサで上記開閉弁を制御するようにしたことを
特徴とする溶存酸素制御装置。
In a steam turbine plant, a condensate recovery line equipped with an on-off valve is installed in the condensate pipe on the discharge side of the condensate pump so as to communicate with the condenser hotwell, and a condensate storage tank, a condensate storage tank, A dissolved oxygen control device comprising: a condensate transfer pump and a flow rate adjustment valve; a dissolved oxygen sensor attached to the condensate pipe; and the dissolved oxygen sensor controls the on-off valve.
JP23610885A 1985-10-22 1985-10-22 Controller for dissolved oxygen Pending JPS6298103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23610885A JPS6298103A (en) 1985-10-22 1985-10-22 Controller for dissolved oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23610885A JPS6298103A (en) 1985-10-22 1985-10-22 Controller for dissolved oxygen

Publications (1)

Publication Number Publication Date
JPS6298103A true JPS6298103A (en) 1987-05-07

Family

ID=16995851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23610885A Pending JPS6298103A (en) 1985-10-22 1985-10-22 Controller for dissolved oxygen

Country Status (1)

Country Link
JP (1) JPS6298103A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085326A (en) * 2009-10-16 2011-04-28 Tlv Co Ltd Condensate recovery device
JP2011085325A (en) * 2009-10-16 2011-04-28 Tlv Co Ltd Condensate recovery device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085326A (en) * 2009-10-16 2011-04-28 Tlv Co Ltd Condensate recovery device
JP2011085325A (en) * 2009-10-16 2011-04-28 Tlv Co Ltd Condensate recovery device

Similar Documents

Publication Publication Date Title
JPS6219229A (en) Control device for amount of ammonia to be injected
US4345438A (en) Deaerator level control
US4745757A (en) Combined heat recovery and make-up water heating system
JPS6298103A (en) Controller for dissolved oxygen
JPS5661589A (en) Water-level controller for side stream type condenser
CN206890491U (en) Boiler steam and water circuit
JPS61237903A (en) Controller for water level in drain tank for feedwater heater
JPH01308A (en) How to operate a combined cycle power plant
JPS5851195B2 (en) condensate equipment
SU1072644A1 (en) Nuclear water-moderated water-cooled power plant
SU1543186A1 (en) Method of controlling a thermal deaerator
JPH01184308A (en) Nuclear power plant
JPS61130704A (en) Method of controlling quality of water of drain system of feedwater heater
JPS60205111A (en) Controller for quality of feedwater for transformation operation unit
SU985336A1 (en) Steam turbine plant
SU1183779A1 (en) Boiler
JPS61262504A (en) Automatic controller for boiler
JPS6391408A (en) Feedwater heater drain system controller
JPS62168098A (en) Oxygen injection system to condensate-feedwater system piping
CN2039383U (en) Atmosphere-type thermodynamic oxygen remover
JPS61116184A (en) Control device of by-pass valve
GB2083178A (en) Deaerator level control
RU1778322C (en) Regulation system of power plant with steam-water accumulator
JPH01102202A (en) Drain controller for feedwater heater
JPS5842777Y2 (en) Condensate pressurization equipment for power generation plants