JPS6228692A - Method of operating nuclear-reactor coolant purification system - Google Patents

Method of operating nuclear-reactor coolant purification system

Info

Publication number
JPS6228692A
JPS6228692A JP60167617A JP16761785A JPS6228692A JP S6228692 A JPS6228692 A JP S6228692A JP 60167617 A JP60167617 A JP 60167617A JP 16761785 A JP16761785 A JP 16761785A JP S6228692 A JPS6228692 A JP S6228692A
Authority
JP
Japan
Prior art keywords
water supply
water
purification system
flow rate
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60167617A
Other languages
Japanese (ja)
Inventor
木下 詳一郎
章 水谷
知弘 和田
森谷 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP60167617A priority Critical patent/JPS6228692A/en
Publication of JPS6228692A publication Critical patent/JPS6228692A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は沸騰水型軽水炉の原子炉起動・停止時に給水配
管に発生する可能性のあった熱応力の発生を防止するの
に有効な原子炉冷却浄化系(以下「浄化系」と略称)、
給水系、及びこれらの運転方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a nuclear reactor that is effective in preventing the occurrence of thermal stress that may occur in water supply piping during reactor startup and shutdown of a boiling water type light water reactor. Cooling purification system (hereinafter abbreviated as "purification system"),
Concerning water supply systems and how to operate them.

〔発明の背景〕[Background of the invention]

従来、原子炉の起動時に一次冷却水の余剰水を復水器に
放出するためのラインは設けてし)るが。
Conventionally, a line is installed to discharge excess primary cooling water to the condenser at the time of reactor startup.

この設置目的は、原子炉水位調節のための余剰水の放出
であり、本発明の如く、給水配管内に高温水と低温水が
層状に分離する現象を防止するために、給水流量に応じ
て、浄化系水を復水器に放出する方法は知られていない
The purpose of this installation is to release surplus water for adjusting the reactor water level, and as in the present invention, in order to prevent the phenomenon in which high-temperature water and low-temperature water separate into layers in the water supply pipe, it is necessary to release surplus water according to the water supply flow rate. , there is no known method for discharging purified water into a condenser.

第3図に従来技術による構成及び原子炉起動を示す。浄
化系は、原子炉冷温停止中に既に運転を開始し、原子炉
1→浄化系ポンプ5→再生熱交換器7→非再生熱交換器
8→ろ過脱塩装置10→再生熱交換器7→給水配管22
→原子炉1の経路で原子炉冷却材を循環させる。
FIG. 3 shows the configuration and reactor startup according to the prior art. The purification system has already started operating during the reactor cold shutdown, and is operated in the following order: reactor 1 → purification system pump 5 → regenerative heat exchanger 7 → non-regenerative heat exchanger 8 → filtration desalination device 10 → regenerative heat exchanger 7 → Water supply piping 22
→Reactor coolant is circulated through the reactor 1 route.

その後、制御棒引抜後の原子炉昇温昇圧過程では、原子
炉1の昇温昇圧に伴って浄化系の入口出口温度もしだい
に上昇する。浄化系に流入した冷却材は、再生熱交換器
(管側)7.非再生熱交換器8による冷却、ろ過脱塩装
置10による浄化を経て、再び再生熱交換器(11M側
)7で加熱され。
Thereafter, in the reactor temperature and pressure increasing process after the control rods are withdrawn, the temperature and pressure at the inlet and outlet of the purification system gradually rises as the temperature and pressure of the reactor 1 increases. The coolant that has flowed into the purification system is transferred to the regenerative heat exchanger (tube side)7. After being cooled by the non-regenerative heat exchanger 8 and purified by the filtration and demineralization device 10, it is heated again by the regenerative heat exchanger (11M side) 7.

高温水となって給水配管に合流する。It becomes high temperature water and joins the water supply pipe.

一方、給水系の運転状態は、原子炉が昇温昇圧過程にあ
って蒸気発生量が少ないタービン起動前では、給水流量
は蒸気発生量程度に少なく、給水温度は約30℃である
On the other hand, in the operating state of the water supply system, before the turbine is started, when the reactor is in the process of increasing temperature and pressure and the amount of steam generated is small, the flow rate of the feed water is as small as the amount of steam generated, and the temperature of the feed water is about 30°C.

又、原子炉の昇温昇圧中に原子炉に流入する制御棒駆動
水系流入水4、及び冷却材の膨張によって発生する余剰
水は、原子炉水位を一定に保つために、必要に応じて浄
化系ブローダウン弁17を介して復水器18に放出する
In addition, control rod drive water system inflow water 4 that flows into the reactor during the temperature and pressure rise of the reactor, as well as surplus water generated due to the expansion of the coolant, is purified as necessary to keep the reactor water level constant. It is discharged to the condenser 18 via the system blowdown valve 17.

従来の原子炉起動時の浄化系、給水系の運転方法は、以
上の通りであるが、この方法では以下の現象が発生する
可能性をもっていた。
The conventional method of operating the purification system and water supply system during reactor startup is as described above, but this method has the possibility of the following phenomena occurring.

すなわち、タービン起動前のある期間、給水配管22内
に、約200℃の浄化系戻り水と約30℃の給水が合流
して流れることになるが、この時、給水流量が少なく、
合流部での両者の混合が不完・全であるため、給水配管
内上部に高温の浄化系戻り水が、下部に低温の給水が流
れる現象が発生する可能性があった。万一、この現象が
発生した場合、配管上部と下部に温度差がつくため配管
に熱応力が生ずることになる。
That is, for a certain period before starting the turbine, purification system return water at about 200° C. and feed water at about 30° C. flow together in the water supply piping 22, but at this time, the water supply flow rate is small;
Because the two were not completely mixed at the confluence, there was a possibility that high-temperature purification system return water would flow into the upper part of the water supply pipe and low-temperature supply water would flow into the lower part. If this phenomenon were to occur, there would be a temperature difference between the upper and lower parts of the piping, causing thermal stress in the piping.

特開昭57−149996は浄化系配管をリコンビネー
ションテイを介して給水配管に接続する構成としている
。しかし、本公知例は、原子炉の起動・停止時に、浄化
系水が高温・給水が低温となって、給水配管に熱応力が
発生する事象に対して、その防止方法を示していない。
JP-A-57-149996 discloses a structure in which purification system piping is connected to water supply piping via a recombination tee. However, this known example does not provide a method for preventing the occurrence of thermal stress in the water supply piping due to the purification system water becoming high temperature and the supply water becoming low temperature during the startup and shutdown of the nuclear reactor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、原子炉の起動・停止時のある時期に給
水配管内で発生する可能性のあった、高温水と低温水が
非混合状態で層状に分離する現象の発生を防止するため
に、その現象が発生する可能性のある時期に、高温の浄
化系戻り水が給水配管に流入することを回避することに
ある。
The purpose of the present invention is to prevent the occurrence of a phenomenon in which high-temperature water and low-temperature water separate into layers in an unmixed state, which could occur in water supply piping at certain times during the startup and shutdown of a nuclear reactor. The second objective is to prevent high-temperature purification system return water from flowing into the water supply piping during periods when this phenomenon is likely to occur.

〔発明の概要〕[Summary of the invention]

今回、プラント運転データの調査の結果、原子炉起動・
停止時のある給水条件、浄化系条件の下では、給水配管
内で高温の浄化系水と低温の給水が非混合状態で層状に
分離する現象(本文中、以下この現象を「層化流動現象
」と称する。)が起きる可能性があることが判明した。
As a result of a survey of plant operation data, we found that reactor startup and
Under certain water supply conditions and purification system conditions during shutdown, a phenomenon occurs in which high-temperature purification system water and low-temperature supply water separate into layers in an unmixed state in the water supply piping (hereinafter referred to as "stratified flow phenomenon" in the text). It has been found that this may occur.

層化流動現象は、給水配管に流入する浄化系戻り水温度
が高く、かつ、給水が低温(約30℃)で、流量小の時
に生ずる可能性がある。給水流量が小さい場合、給水と
これに合流した浄化系水が十分に混合しないため、管内
に低温水部分と高温水部分が混在する。低温水と高温水
が混在すると、両者の密度差によって高温水に浮力が働
らき、管内上部に高温水が上昇し、管内下部に低温水が
沈むため、高温水と低温水の層状の流れが生ずる。
The stratified flow phenomenon may occur when the temperature of the purification system return water flowing into the water supply piping is high, the supply water is low temperature (approximately 30° C.), and the flow rate is small. When the water supply flow rate is small, the water supply and the purification system water that joins it do not mix sufficiently, so low-temperature water portions and high-temperature water portions coexist within the pipe. When low-temperature water and high-temperature water coexist, buoyancy acts on the high-temperature water due to the density difference between the two, causing the high-temperature water to rise to the top of the pipe and the low-temperature water to sink to the bottom of the pipe, resulting in a laminar flow of high-temperature and low-temperature water. arise.

この様な現象は、給水流量が増大し給水配管内の流れが
十分に乱れ、給水と浄化系水が十分に混合する時には生
じない。
Such a phenomenon does not occur when the flow rate of the water supply increases and the flow within the water supply piping is sufficiently disturbed and the water supply and purification system water are sufficiently mixed.

したがって、従来の原子炉起動・停止方法では、原子炉
が高温状態で、かつ、タービンが運転していないある期
間に、給水配管内層化流動現象発生条件が成立する可能
性がある。
Therefore, in the conventional nuclear reactor start-up/shutdown method, there is a possibility that conditions for the occurrence of the inner stratification flow phenomenon in the water supply pipes may be established during a certain period when the reactor is in a high temperature state and the turbine is not operating.

本発明では、給水流量が少なく、層化流動発生条件の範
囲にある時、浄化系水を給水配管に合流させず、別の場
所、すなわち復水器に放出することによって層化流動を
防止することを考案した。
In the present invention, when the water supply flow rate is low and within the range of stratified flow generation conditions, stratified flow is prevented by not allowing purified water to join the water supply piping and discharging it to another location, that is, the condenser. I devised something.

従来より浄化系には、原子炉起動時に炉水膨張による余
剰水を必要に応じて復水器に放出するためのブローダウ
ン配管を設けている。そこで、浄化系水を給水配管に戻
さない期間は、連続的にブローダウン配管によって浄化
系水を復水器に放出することができる。
Conventionally, the purification system has been provided with blowdown piping for discharging surplus water caused by expansion of reactor water to a condenser as needed during reactor startup. Therefore, during the period when the purified water is not returned to the water supply pipe, the purified water can be continuously discharged to the condenser through the blowdown pipe.

この運転方法は水バランス上も、ヒートバランス上も以
下に示す通り十分可能である。水バランス上は、浄化茶
水全量を復水器に放出することにより、原子炉から余剰
水量を超える炉水が流出するため、過剰に流出した分は
給水によって補給することを考慮する必要がある。これ
に対しては、従来よりタービン起動前の原子炉起動時に
は、原子炉水位を一定に保つよう給水流量を制御してお
り、浄化透水全量を復水器に放出した場合も原子炉水位
が低下することはない。
This operating method is fully possible in terms of water balance and heat balance as shown below. In terms of water balance, by discharging the entire amount of purified tea water to the condenser, reactor water that exceeds the amount of surplus water will flow out of the reactor, so it is necessary to consider replenishing the excess flow through water supply. To deal with this, conventionally the flow rate of water supply is controlled to keep the reactor water level constant when the reactor is started before the turbine is started, and even when the entire amount of purified permeable water is released into the condenser, the reactor water level will still drop. There's nothing to do.

又、熱的には浄化系水が保有する熱量を復水器に放出す
ることになり、原子炉起動時にはこの分の熱損失が生ず
るが、この運転モードで運転する期間が起動時のある時
期に限られていること、及び浄化系流量が定格給水流量
の2%程度にすぎないことから、問題はない。
In addition, thermally, the amount of heat held by the purification system water is released to the condenser, and this amount of heat loss occurs when the reactor is started, but the period of operation in this operation mode is limited to a certain period at the time of start-up. There is no problem because the flow rate of the purification system is only about 2% of the rated water supply flow rate.

以上、給水流量が層化流動発生条件の範囲にある時、浄
化系水を給水配管に戻さず、復水器に全量をブローダウ
ンする運転が層化流動発生防止上有効であること、又、
実現可能であることを示した。
As mentioned above, when the water supply flow rate is within the range of stratified flow generation conditions, operation in which the purified water is not returned to the water supply pipe and the entire amount is blown down to the condenser is effective in preventing stratified flow generation, and
It was shown that it is possible.

〔発明の実施例〕[Embodiments of the invention]

(実施例1) 本発明の一実施例を第1図に示゛す。 (Example 1) An embodiment of the present invention is shown in FIG.

本実施例は、起動・停止時の一時期にブローダウン弁1
7全開、浄化系出口弁15全閉とすることを主要な特徴
とする。この運転は層化流動現象の発生を防止するため
浄化系水を給水配管22に戻さず、全量を復水器18に
放出する場合に行う。
In this embodiment, the blowdown valve 1 is
7 is fully open, and the purification system outlet valve 15 is fully closed. This operation is performed when the purified system water is not returned to the water supply pipe 22 and the entire amount is discharged to the condenser 18 in order to prevent the stratified flow phenomenon from occurring.

さらに本実施例では、流量計21で給水流量を検知し、
層化流動発生防止上復水器への全量ブローダウンが必要
な給水流量範囲の時に、自動的に浄化系出口弁15を閉
じ、ブローダウン弁17を開するインターロックを設け
ている。
Furthermore, in this embodiment, the flow meter 21 detects the water supply flow rate,
To prevent the occurrence of stratified flow, an interlock is provided to automatically close the purification system outlet valve 15 and open the blowdown valve 17 when the water supply flow rate is within a range that requires full blowdown to the condenser.

以下、本実施例による原子炉起動法を示す。まず、原子
炉冷温停止中に浄化系を起動する。ただし、この時、浄
化系は50%容量運転とするものとし、2台の50%容
量浄化系ポンプ5のうち1台のみを起動、2基の50%
容量ろ過脱塩器10のうち1基のみ通水するように操作
スイッチ6及び14を操作する。これは、浄化系出口弁
15を全開、ブローダウン弁17を全開とした場合に、
再生熱交換器7による冷却効果が期待できないため1.
非再生熱交換器8の冷却能力のみによって、ろ過説塩装
置10の入口温度条件(約50℃以下)まで冷却が可能
な程度に浄化系流量が低減したものである。流量計21
が検知する給水流量がOの時点では、浄化系出口弁15
閉、ブローダウン弁17開のインターロックとする。浄
化系流量は、ろ過説塩器11出口の流量調節弁12で自
動的にろ過説塩器1基当りの定格流量に調節される。
The reactor startup method according to this embodiment will be described below. First, the purification system is activated during cold shutdown of the reactor. However, at this time, the purification system shall be operated at 50% capacity, and only one of the two 50% capacity purification system pumps 5 will be started, and the 50% capacity of the two pumps will be activated.
The operation switches 6 and 14 are operated so that only one of the capacity filtration demineralizers 10 is allowed to pass water. This occurs when the purification system outlet valve 15 is fully opened and the blowdown valve 17 is fully opened.
1. Because the cooling effect of the regenerative heat exchanger 7 cannot be expected.
The flow rate of the purification system is reduced to such an extent that it can be cooled down to the inlet temperature condition (approximately 50° C. or lower) of the filtration salt theory device 10 only by the cooling capacity of the non-regenerative heat exchanger 8. Flow meter 21
When the water supply flow rate detected by is O, the purification system outlet valve 15
There is an interlock between closing the blowdown valve 17 and opening the blowdown valve 17. The flow rate of the purification system is automatically adjusted to the rated flow rate for each salt filtration device by the flow control valve 12 at the outlet of the salt filtration device 11.

原子炉から浄化系を経て復水器に流出した浄化系定格流
量分の給水を補給するため、給水制御袋@26によって
給水流量制御弁2oの開度を調節する。給水制御装置は
、原子炉水位信号を受けて原子炉水位を一定に保つ制御
を行う。
In order to replenish the supply water corresponding to the rated flow rate of the purification system flowing out from the reactor through the purification system to the condenser, the opening degree of the water supply flow rate control valve 2o is adjusted by the water supply control bag @26. The water supply control device receives the reactor water level signal and performs control to keep the reactor water level constant.

その後、原子炉から制御棒を引抜き原子炉の昇温昇圧を
開始するが、給水流量が層化流動発生の可能性のある範
囲にある間は、浄化系出口弁15閉、ブローダウン弁1
7開の状態を継続する。原子炉の昇温昇圧と共に蒸気発
生量が増大しタービンバイパス弁25を開いた後には、
給水流量も蒸気発生量の増大と共に増大する。その後、
蒸気発生量が増大し主蒸気タービン止弁24を開け、タ
ービンを起動する頃には、給水量はさらに増大する。給
水配管と浄化系の合流部の下流の層化流動は、給水流量
が増大した時点では、もはや発生の可能性がない。流量
計21にて給水流量を検知し、十分な流量に達した時点
で、浄化系出口弁15を全開、ブローダウン弁17を全
閉するインターロックとする。この後、浄化系ポンプ5
を2台運転。
After that, the control rods are pulled out from the reactor and the temperature and pressure of the reactor is increased. However, while the feed water flow rate is within the range where stratified flow may occur, the purification system outlet valve 15 is closed and the blowdown valve 1 is closed.
7 will remain open. After the amount of steam generated increases as the temperature and pressure of the reactor increases and the turbine bypass valve 25 is opened,
The flow rate of feed water also increases as the amount of steam generated increases. after that,
By the time the amount of steam generation increases and the main steam turbine stop valve 24 is opened to start the turbine, the amount of water supplied will further increase. Stratified flow downstream of the junction of the water supply pipe and the purification system is no longer likely to occur when the water supply flow rate increases. The flow meter 21 detects the water supply flow rate, and when a sufficient flow rate is reached, an interlock is established in which the purification system outlet valve 15 is fully opened and the blowdown valve 17 is fully closed. After this, purification system pump 5
Operates two cars.

ろ過説塩装置2基運転とする。以降は、従来技術による
方法と同じであり、給水制御装置26も通常運転中は、
原子炉水位、主蒸気流量、給水流量の各信号を受けて給
水制御を行う。
Two salt filtration devices will be operated. The subsequent steps are the same as the conventional method, and during normal operation of the water supply control device 26,
Water supply control is performed by receiving signals for reactor water level, main steam flow rate, and water supply flow rate.

原子炉停止時も、起動時と同様に給水流量が少ない場合
浄化系出口弁15全開、ブローダウン弁17全開、それ
以外の給水流量範囲でその逆の弁開閉状態となる。全量
ブローダウン運転時に浄化系を50%容量運とするのは
、停止時も同様である。
When the nuclear reactor is shut down, the purification system outlet valve 15 is fully open and the blowdown valve 17 is fully open when the feed water flow rate is low, and vice versa in other feed water flow rate ranges, similar to when the reactor is started. The purification system is operated at 50% capacity during full blowdown operation, and this also applies when the system is stopped.

尚、本実施例では、全量ブローダウン運転を行う時の浄
化系流量を50%とすることによって、復水器へ放出す
るために生じる熱損失も、浄化系100%流量を全量ブ
ローダウンする場合の半分として、熱損失を小さく抑え
ている。
In this example, by setting the flow rate of the purification system to 50% when performing full blowdown operation, the heat loss generated due to discharge to the condenser is also reduced when performing full blowdown at 100% flow rate of the purification system. As half of that, heat loss is kept to a small level.

(実施例2) 本発明の一実施例を第2図に示す。(Example 2) An embodiment of the present invention is shown in FIG.

本実施例は、起動・停止時の一時期にブローダウン弁バ
イパス弁28全開、浄化系出口弁15全閉とすることを
主要な特徴とする。この運転は層化流動現象の発生を防
止するため浄化系水を給水配管22に戻さず、全量を復
水器18に放出する場合に行う。さらに、本実施例では
、流量計21で給水流量を検知し、層化流動発生防止の
ために復水器への全量ブローダウンが必要な給水流量範
囲の時に、自動的に浄化系出口弁15を閉じ、ブローダ
ウン弁バイパス弁28を開とするインターロックとする
The main feature of this embodiment is that the blowdown valve bypass valve 28 is fully open and the purification system outlet valve 15 is fully closed at a certain time during startup and shutdown. This operation is performed when the purified system water is not returned to the water supply pipe 22 and the entire amount is discharged to the condenser 18 in order to prevent the stratified flow phenomenon from occurring. Furthermore, in this embodiment, the flow rate of the water supply is detected by the flow meter 21, and when the flow rate of the water supply is in a range that requires blowing down the entire amount to the condenser in order to prevent the occurrence of stratified flow, the purification system outlet valve 15 is automatically activated. is closed and the blowdown valve bypass valve 28 is opened.

以下、本実施例による原子炉起動法を示す。まず、原子
炉冷温停止中に浄化系を起動する。この時は給水流量は
Oであるからここでは浄化系は浄化系出口弁15閉、ブ
ローダウン弁バイパス弁28開にて定格流量運転を行う
The reactor startup method according to this embodiment will be described below. First, the purification system is activated during cold shutdown of the reactor. At this time, the water supply flow rate is O, so the purification system operates at the rated flow rate with the purification system outlet valve 15 closed and the blowdown valve bypass valve 28 open.

次に原子炉から制御棒を引抜き原子炉の昇温昇圧を開始
する。昇温昇圧の過程では、給水制御袋@26は、原子
炉水位信号を受けてブローダウン弁17、及び給水流量
制御弁20を開度調節し、ブローダウン流量と給水流量
の協調制御を行い、原子炉水位を一定に保つ。一方給水
流量は、蒸気発生量の増加と共に増大する。
Next, the control rods are pulled out of the reactor and the temperature and pressure of the reactor begins to increase. In the process of increasing the temperature and pressure, the feed water control bag @26 receives the reactor water level signal, adjusts the opening of the blowdown valve 17 and the feed water flow rate control valve 20, and performs coordinated control of the blowdown flow rate and the feed water flow rate. Keep reactor water level constant. On the other hand, the feed water flow rate increases as the amount of steam generation increases.

原子炉の加熱が進み蒸気発生量が増加し、タービンバイ
パス弁25開、さらに、主蒸気タービン止弁24開とな
るに従って給水流量は増大する。
As the reactor heats up and the amount of steam generated increases, the turbine bypass valve 25 opens and the main steam turbine stop valve 24 opens, so the feed water flow rate increases.

流量計21で給水流量が十分に増大したことを検知し、
この流量信号で浄化系出口弁15開、ブローダウン弁バ
イパス弁28閑の通常運転に切替える。
The flow meter 21 detects that the water supply flow rate has increased sufficiently,
With this flow rate signal, the purification system outlet valve 15 is opened and the blowdown valve bypass valve 28 is switched to normal operation.

以降は、従来技術による方法と同じである。The subsequent steps are the same as the method according to the prior art.

原子炉停止時も、起動時と同様に給水流量が少ない場合
、浄化系出口弁15全閉、ブローダウン弁バイパス弁2
8全開、給水流量大で、この逆の弁開閉状態となる。
When the reactor is shut down, as in the case of startup, if the water supply flow rate is low, the purification system outlet valve 15 is fully closed and the blowdown valve bypass valve 2 is closed.
8 Fully open, the water supply flow rate is large, and the valve is in the reverse open/close state.

尚、実施例1では浄化系は起動時には50%容量の運転
であったのに対し、本実施例では起動時より浄化系は1
00%運転であり、浄化能力のうえで実施例1よりも有
利である。
In addition, in Example 1, the purification system was operated at 50% capacity at the time of startup, whereas in this example, the purification system was operated at 1 capacity from the time of startup.
00% operation, which is more advantageous than Example 1 in terms of purification ability.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子炉起動・停止時の給水配管内層化
流動現象発生の可能性を除くことができる。
According to the present invention, it is possible to eliminate the possibility of occurrence of the phenomenon of stratified flow inside the water supply pipes during startup and shutdown of the nuclear reactor.

層化流動が起きる場合には、給水配管内上部に高温水が
、下部に低温水が流れるため、配管の上部と下部に温度
差がつき、この温度差によって管上部が下部よりも大き
く膨張しようとする。
When stratified flow occurs, high-temperature water flows in the upper part of the water supply pipe and low-temperature water flows in the lower part, creating a temperature difference between the upper and lower parts of the pipe, and this temperature difference causes the upper part of the pipe to expand more than the lower part. shall be.

すなわち、配管を曲げようとする熱応力が発生する。That is, thermal stress is generated that tends to bend the piping.

したがって、もし層化流動の発生を許容してプラントを
運転することを考えれば、層化流量によって発生する熱
応力を支えることができるだけの強度をもつ給水配管支
持構造物が必要となる。又、給水配管自体が疲労する点
も不利である。
Therefore, if a plant is to be operated while allowing stratified flow, a water supply piping support structure is required that has sufficient strength to support the thermal stress generated by stratified flow. Another disadvantage is that the water supply pipe itself becomes fatigued.

本発明によれば、層化流動の発生を防止できるため、こ
の現象を考慮する必要がなく給水配管支持構造物の数量
、質ともに、層化流動発生を考慮する場合に比べ合理化
できる利点がある。また、給水配管の疲労も軽減でき、
プラントの安全性。
According to the present invention, since the occurrence of stratified flow can be prevented, there is no need to take this phenomenon into consideration, and there is an advantage that both the quantity and quality of water supply piping support structures can be rationalized compared to the case where the occurrence of stratified flow is taken into consideration. . In addition, fatigue of water supply piping can be reduced.
Plant safety.

信頼性が向上する。Improved reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明による実施例1及び実施例2
の原子炉起動・停止時の浄化系水金量ブローダウン運転
の状態図、第3図は従来技術による構成及び原子炉起動
・停止時の状態図を示す。 1・・・原子炉、2・・・再循環ポンプ、3・・・再循
環配管、4・・・制御棒駆動水系、5・・・浄化系ポン
プ、6・・・操作スイッチ、7・・・再生熱交換器、8
・・・非再生熱交換器、9・・補機冷却水系、10・・
・ろ過説塩装置、11・・・流量計、12・・・流量調
節弁、13・・・ろ過脱塩装置出口弁、14・・・操作
スイッチ、15・・・浄化系出口弁、16・・・操作ス
イッチ、17・・・ブローダウン弁、18・・・復水器
、19・・・給水ポンプ、2゜・・・給水流量制御弁、
21・・・流量計、22・・・給水配管、23・・・主
蒸気配管、24・・・主蒸気タービン止弁、25・・・
タービンバイパス弁、26・・・給水制御装置、27・
・・タービン、28川ブローダウン弁バイパス弁。
FIGS. 1 and 2 are embodiments 1 and 2 of the present invention.
Fig. 3 shows a state diagram of the purification system water/metal flow blowdown operation when starting and stopping the nuclear reactor, and Fig. 3 shows a configuration according to the prior art and a state diagram when starting and stopping the reactor. DESCRIPTION OF SYMBOLS 1... Nuclear reactor, 2... Recirculation pump, 3... Recirculation piping, 4... Control rod drive water system, 5... Purification system pump, 6... Operation switch, 7...・Regenerative heat exchanger, 8
...Non-regenerative heat exchanger, 9...Auxiliary cooling water system, 10...
・filtration desalination device, 11...flow meter, 12...flow control valve, 13...filtration desalination device outlet valve, 14...operation switch, 15...purification system outlet valve, 16. ...Operation switch, 17...Blowdown valve, 18...Condenser, 19...Water supply pump, 2゜...Water supply flow rate control valve,
21... Flow meter, 22... Water supply piping, 23... Main steam piping, 24... Main steam turbine stop valve, 25...
Turbine bypass valve, 26... Water supply control device, 27.
...Turbine, 28 river blowdown valve bypass valve.

Claims (1)

【特許請求の範囲】 1、原子炉から取出した冷却材を、ポンプ、熱交換器、
ろ過脱塩装置で浄化し、給水配管に戻す原子炉冷却材浄
化系において、給水配管への接続配管の出口部に止弁を
、又、ろ過脱塩装置通過後の浄化水をタービン復水器に
放出する配管系を設置し、給水流量の変化に応じて給水
流量が小量の時は、浄化系の給水配管への接続配管出口
部の止弁を閉じ、給水配管への戻り流量を0とし、浄化
水は全てタービン復水器へ放出する及び給水流量が所定
量以上の時は、浄化系の給水配管への接続配管出口部の
止弁を開き、浄化水を給水配管に戻すことを特徴とする
原子炉冷却材浄化系運転方法。 2、特許請求の範囲第1項において、給水配管に流量計
を設け、給水流量を検知し、給水流量信号を発し、これ
によつて弁の開閉を自動的に行うインターロックを備え
たことを特徴とする原子炉冷却材浄化系運転方法。
[Claims] 1. The coolant taken out from the nuclear reactor is transferred to a pump, a heat exchanger,
In the reactor coolant purification system, which is purified by the filtration desalination equipment and returned to the water supply piping, a stop valve is installed at the outlet of the connecting pipe to the water supply piping, and purified water after passing through the filtration desalination equipment is transferred to the turbine condenser. When the water supply flow rate is small depending on changes in the water supply flow rate, the stop valve at the outlet of the connection pipe to the water supply pipe of the purification system is closed, and the return flow rate to the water supply pipe is reduced to zero. All purified water is discharged to the turbine condenser, and when the water supply flow rate exceeds a specified amount, the stop valve at the outlet of the connection pipe to the water supply pipe of the purification system is opened and the purified water is returned to the water supply pipe. Characteristic method of operating the reactor coolant purification system. 2. Claim 1 states that a flow meter is provided in the water supply piping to detect the water supply flow rate, issue a water supply flow rate signal, and thereby provide an interlock that automatically opens and closes the valve. Characteristic method of operating the reactor coolant purification system.
JP60167617A 1985-07-31 1985-07-31 Method of operating nuclear-reactor coolant purification system Pending JPS6228692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167617A JPS6228692A (en) 1985-07-31 1985-07-31 Method of operating nuclear-reactor coolant purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167617A JPS6228692A (en) 1985-07-31 1985-07-31 Method of operating nuclear-reactor coolant purification system

Publications (1)

Publication Number Publication Date
JPS6228692A true JPS6228692A (en) 1987-02-06

Family

ID=15853102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167617A Pending JPS6228692A (en) 1985-07-31 1985-07-31 Method of operating nuclear-reactor coolant purification system

Country Status (1)

Country Link
JP (1) JPS6228692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214066B2 (en) 2013-03-15 2019-02-26 Indian Motorcycle International, LLC Two-wheeled vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214066B2 (en) 2013-03-15 2019-02-26 Indian Motorcycle International, LLC Two-wheeled vehicle
US11260712B2 (en) 2013-03-15 2022-03-01 Indian Motorcycle International, LLC Two-wheeled vehicle
US11872866B2 (en) 2013-03-15 2024-01-16 Indian Motorcycle International, LLC Two-wheeled vehicle

Similar Documents

Publication Publication Date Title
JP4148417B2 (en) Stable passive residual heat removal system for liquid metal furnace
US4587079A (en) System for the emergency cooling of a pressurized water nuclear reactor core
JP5173111B2 (en) Fuel cell system
JPS6228692A (en) Method of operating nuclear-reactor coolant purification system
JPS6141807A (en) Feedwater-heater drain system
RU2761108C1 (en) Passive heat discharge system of the reactor plant
JPS6291897A (en) Nuclear reactor coolant purification system
JPH06174885A (en) Accessory cooling system facility
JPS60100095A (en) Supply facility for refrigerant for nuclear reactor
JP2001091689A (en) Starting method for supercritical pressure light water- cooled reactor
JP3044159B2 (en) High-speed standby operation device of fast reactor
JPS62131104A (en) Steam generator plant
JPS5816479B2 (en) Comprehensive reactor backup cooling system equipment
JPS59108985A (en) Reactor coolant supply device
JPH01311298A (en) Preheating device for fast breeder reactor
JPS5877105A (en) Heater drain collector in heat power plant
JPS63273702A (en) Feedwater-heater drain system
JPH068915B2 (en) Reactor water supply
JPS58201094A (en) Reactor coolant cleanup system
JPH09195713A (en) Moisture content separation heater
JPH07209470A (en) Decay heat removing device for fast reactor
JPS59217436A (en) Hot-water supplier
JPH0113079B2 (en)
JPS61277093A (en) Nuclear reactor plant
JPS59222790A (en) Auxiliary core cooling system of liquid metal cooled reactor