JPS59222790A - Auxiliary core cooling system of liquid metal cooled reactor - Google Patents

Auxiliary core cooling system of liquid metal cooled reactor

Info

Publication number
JPS59222790A
JPS59222790A JP58095618A JP9561883A JPS59222790A JP S59222790 A JPS59222790 A JP S59222790A JP 58095618 A JP58095618 A JP 58095618A JP 9561883 A JP9561883 A JP 9561883A JP S59222790 A JPS59222790 A JP S59222790A
Authority
JP
Japan
Prior art keywords
liquid metal
reactor
cooling system
auxiliary core
core cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58095618A
Other languages
Japanese (ja)
Inventor
「峰」 雅夫
天田 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58095618A priority Critical patent/JPS59222790A/en
Publication of JPS59222790A publication Critical patent/JPS59222790A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Details Of Measuring And Other Instruments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉の補助炉心冷却系に係り、特に、液体
金属を冷却材とする原子炉に使用するのに好適な補助炉
心冷却系に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an auxiliary core cooling system for a nuclear reactor, and particularly to an auxiliary core cooling system suitable for use in a nuclear reactor that uses liquid metal as a coolant. .

〔発明の背景〕[Background of the invention]

第1図に従来の液体金属冷却原子炉における補助炉心冷
却系の一例を示す。第1図において、原子炉容器内液体
金属の上部には不活性ガスのカバーガス空間21がある
。原子炉通常運転時原子炉容器1の下部プレナム2内の
重圧で冷たい液体金属は、炉心3で発生ずる熱を冷却し
た後、低圧で熱い上部プレナム4に流入し、出口ノズル
5よシ流出し、1次主冷却系中間熱ダ換器6で冷却され
た後、1次主循環ポンプ7で昇圧され、再び入口ノズル
8よシ下部グレナム2に流入する。通常、このような主
冷却系は独立に複数設置される。1次主冷却系中間熱交
換器6で2次主冷却系に伝達された熱は、さらに水蒸気
系に伝達され、タービン発電機を回転させる。原子炉ト
リップ時には、タービンが解列され、炉心の崩壊熱は通
常、主冷却系の一部を利用した間接補助炉心冷却系9(
以下IRAC8と略す)により除去される。寸た、IR
AC8のバックアップとして、主冷却系を利用しないで
炉心を冷却する直接補助炉心冷却系(以下DRAC8と
略す)を備えている。DRA、C8は、1次系を磁ボン
グ13で、上部ブレナムの冷却材を中間熱交換器12に
循環し、これを空気冷却器15で冷却された2次冷却材
で冷却した後、下部プレナム2へ戻すものであるが、運
転しないときには、出口弁14を閉とし、DRAC8の
1次冷却材の循環を止めている。液体金属冷却の原子炉
の特徴として、下部プレナム2と上部プレナム4の冷却
材温度差が非常に大きいこと及び冷却材の熱伝導率が非
常に良いことがあるが、これらに起因して原子炉トリッ
プ時、機器構造材に熱衝撃が加わり易いという問題があ
る。特に原子炉容器1内の上部プレナム4においては、
通常運転時熱い液体金属であるところへ原子炉トリップ
後下部プレナム2の冷たい液体金属が流入するため、原
子炉トリラグ後数十分で第2図に示す如く、炉容器1内
において冷たい部分17と熱い部分18が、境界面19
を隔てて、上下に分離し、熱い部分18では流動が生じ
ないという温度成層化が生じる。
FIG. 1 shows an example of an auxiliary core cooling system in a conventional liquid metal cooled nuclear reactor. In FIG. 1, there is a cover gas space 21 of inert gas above the liquid metal in the reactor vessel. During normal reactor operation, the heavy pressure and cold liquid metal in the lower plenum 2 of the reactor vessel 1 cools down the heat generated in the reactor core 3, flows into the lower pressure and hot upper plenum 4, and flows out through the outlet nozzle 5. After being cooled by the intermediate heat exchanger 6 in the primary main cooling system, the pressure is increased by the primary main circulation pump 7, and the fluid flows through the inlet nozzle 8 and into the lower glenum 2 again. Usually, a plurality of such main cooling systems are installed independently. The heat transferred to the secondary main cooling system by the primary main cooling system intermediate heat exchanger 6 is further transferred to the steam system to rotate the turbine generator. During a reactor trip, the turbines are disassembled and the decay heat of the core is normally transferred to the indirect auxiliary core cooling system 9 (which uses part of the main cooling system).
(hereinafter abbreviated as IRAC8). IR
As a backup for AC8, there is a direct auxiliary core cooling system (hereinafter abbreviated as DRAC8) that cools the core without using the main cooling system. The DRA, C8 uses a magnetic bong 13 for the primary system, circulates the coolant in the upper plenum to the intermediate heat exchanger 12, cools it with the secondary coolant cooled by the air cooler 15, and then transfers it to the lower plenum. However, when not in operation, the outlet valve 14 is closed and the circulation of the primary coolant of the DRAC 8 is stopped. The characteristics of a liquid metal cooled nuclear reactor are that the difference in coolant temperature between the lower plenum 2 and the upper plenum 4 is very large, and the coolant has very good thermal conductivity. There is a problem in that during a trip, thermal shock is likely to be applied to the structural materials of the equipment. Especially in the upper plenum 4 inside the reactor vessel 1,
After the reactor trip, the cold liquid metal in the lower plenum 2 flows into the place where the liquid metal is hot during normal operation. The hot part 18 is the boundary surface 19
Temperature stratification occurs in which there is no flow in the hot portion 18.

この温度成層化は、温度境界面19の近傍における原子
炉容器壁や炉上部機構20に大きな温度差による熱応力
が発生すること、また、冷たい液体金属が熱い液体金属
と混合することによシ出ロノズル5以降の配管・機器へ
の熱衝撃が緩和されるという効果が、熱い部分18の体
積分が混合に寄与しなくなることにより著しく減少する
等、原子炉構造に対し、悪影響を及はす。
This temperature stratification is caused by the occurrence of thermal stress due to a large temperature difference in the reactor vessel wall and reactor upper structure 20 near the temperature boundary surface 19, and by the mixing of cold liquid metal with hot liquid metal. The effect of mitigating thermal shock on piping and equipment after the exit nozzle 5 will be significantly reduced as the volume of the hot portion 18 no longer contributes to mixing, which will have a negative impact on the reactor structure. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、DRAC5を利用して温度成層化を生
じさせない液体金属冷却原子炉を提供することにある。
An object of the present invention is to provide a liquid metal cooled nuclear reactor that uses DRAC5 and does not cause temperature stratification.

〔発明の概要〕[Summary of the invention]

不発明は原子炉トリップ後一定時間、DRAC8を逆流
させて、下部プレナム2内の冷たい液体金属をカバーガ
ス空間21に設けたリングヘッダ21から上部プレナム
4の上面に注入することにより、上部プレナム4に温度
成層を生じさせないものでおる。
The invention is to reverse the flow of the DRAC 8 for a certain period of time after a reactor trip, and inject the cold liquid metal in the lower plenum 2 from the ring header 21 provided in the cover gas space 21 to the upper surface of the upper plenum 4. The material should not cause temperature stratification.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例を示すもので、第1図と異な
る構成はカバーガス空間21中に複数の下降管23を取
付けたリングへラダ22を設け、これにDRA、C8の
出口配管10を連結したところにある。第4図に本実施
例における原子炉容器1の上部詳細構造を示す。第4図
において原子炉容器上部中央には、炉心上部機構2oや
燃料交換装置24が設置されているため、リングヘッダ
22はこれらの炉内構造物と干渉しないよう、これらの
外周に設ける。リングヘッダ22は、一端をリングヘッ
ダ22の下部、他端をカバーガス空間と接する原子炉容
器1の壁面に溶接したサポートビーム25を周方向に等
間隔に複数個設けることによシ支持される。サポートビ
ーム25は原子炉容器1との溶接部の位置をリングヘッ
ダ22との溶接部の斜め下方とする構造により、リング
ヘッダ22の熱変位を吸収できるようにする。また、D
B、AC8の出口配管10の原子炉容器1との貫通部を
炉容器内液体金属液面からできるだけ離れたカバーガス
空間21内とすることにょシ、下部プレナム2の冷たい
液体金属を出口配管に流す際、上部ズレナム内の熱い液
体金属との温度差にょシ、貫通部に大きな熱応力が生じ
ることを防止する。
FIG. 3 shows an embodiment of the present invention, and the configuration different from that in FIG. It is located where the piping 10 is connected. FIG. 4 shows the detailed structure of the upper part of the reactor vessel 1 in this embodiment. In FIG. 4, the upper core mechanism 2o and the fuel exchange device 24 are installed in the center of the upper part of the reactor vessel, so the ring header 22 is provided around the outer periphery of these reactor internals so as not to interfere with them. The ring header 22 is supported by providing a plurality of support beams 25 at equal intervals in the circumferential direction, one end of which is welded to the lower part of the ring header 22 and the other end of which is welded to the wall surface of the reactor vessel 1 which is in contact with the cover gas space. . The support beam 25 has a structure in which the welded portion with the reactor vessel 1 is located diagonally below the welded portion with the ring header 22, so that thermal displacement of the ring header 22 can be absorbed. Also, D
B. The passage of the outlet pipe 10 of the AC8 with the reactor vessel 1 is to be in the cover gas space 21 as far as possible from the liquid metal level in the reactor vessel, and the cold liquid metal in the lower plenum 2 is connected to the outlet pipe. When flowing, this prevents large thermal stress from occurring in the penetrating part due to the temperature difference with the hot liquid metal in the upper tube.

原子炉トリップ信号が発生すると、制御棒がスクラムし
て炉心を未臨界とするため、炉心熱出力は、スクラム後
5分以内に定格出力の2〜3チとなる。
When a reactor trip signal is generated, the control rods scram to make the reactor core subcritical, so that the core thermal output becomes 2 to 3 inches below the rated output within 5 minutes after the scram.

1次及び2次主循環ボングは原子炉トリップ信号を受け
て低速運転に切り換えて炉心流量を約10チとするとと
もに速やかに全てのIRAC8を起動する。本操作によ
し熱い液体金属の上部プレナムには低流量で冷たい液体
金属が炉心出口から流入し始めるため、下部から徐々に
冷たい液体金属が滞留してゆき、この運転状態を継続す
るとスクラム後数十分経過すると温度成層界面が発生す
ることになる。本実施例は、この温度成層界面発生を防
止するために、IRAC8起動の数分後から数時間、D
RAC8を逆流させることによ如炉心流量の約1%以下
の流量で下部プレナム2内の冷たい液体金属をリングヘ
ッダ22に取付けた下降管23から上部プレナム4の上
面に滞留している熱い液体金属中に注入することによシ
熱い液体金属を冷却するとともに、上部プレナム内を攪
拌させる。
The primary and secondary main circulation bongs receive the reactor trip signal and switch to low-speed operation to bring the core flow rate to approximately 10 g, and promptly start up all IRACs 8. During this operation, cold liquid metal begins to flow into the upper plenum of hot liquid metal from the core outlet at a low flow rate, so cold liquid metal gradually accumulates from the bottom. After a few minutes have elapsed, a temperature stratification interface will occur. In this embodiment, in order to prevent the occurrence of this temperature stratified interface, the D
By back-flowing the RAC 8, the cold liquid metal in the lower plenum 2 is transferred from the downcomer pipe 23 attached to the ring header 22 at a flow rate of about 1% or less of the core flow rate to the hot liquid metal stagnant on the upper surface of the upper plenum 4. The hot liquid metal is cooled by injection into the upper plenum, and the upper plenum is agitated.

DRAC8逆流操作は、IRAC8起動完了信号を遅延
回路を介して電動弁であるDR,AC8出口弁14開動
作信号に変換し、出口弁14を全開とすることにより行
う。このときDRAGSの電磁ボ/グ1.3.16及び
空気冷却器15は起動させない。
The DRAC8 reverse flow operation is performed by converting the IRAC8 activation completion signal into an opening operation signal for the DR, AC8 outlet valve 14, which is an electric valve, through a delay circuit, and fully opening the outlet valve 14. At this time, the DRAGS electromagnetic port 1.3.16 and air cooler 15 are not activated.

下部プレナム2は上部プレナム4に比べて高圧となって
いるため、本操作によシ、下部ブレナム内液体金属の一
部は炉心3をバイパスしてDRAGSの1次系を逆流し
、上部ブレナムへ注入される。
Since the lower plenum 2 has a higher pressure than the upper plenum 4, this operation causes some of the liquid metal in the lower plenum to bypass the core 3, flow back through the DRAGS primary system, and return to the upper plenum. Injected.

万一、複数のIRAC8の1ル一プ以上が起動失敗した
場合、あるいはDELAC8逆流運転中、IRAC8の
1ル一ズ以上に異常が生じた場合には、IR,&CSブ
ロア回転計信号やIRAC8出入口弁開閉信号等により
 III、AC8の異常を検出し、IR,AC8異常信
号を発生させ、本信号を速やかにDRAC8出口弁開動
作信号に変換するとともに、DRAC8出口弁全開表示
但号とIRAC8異常信号のAND回路によシ、DR,
AC8電磁ボング13及び16並びにDRAC8空気冷
却器15を同時に起動させることにより、速やかにDR
,AC8の正流除熱運転に入る。
In the event that more than one loop of multiple IRAC8s fails to start, or if an abnormality occurs in one or more of the IRAC8s during reverse flow operation of the DELAC8, the IR, &CS blower tachometer signal and the IRAC8 entrance/exit Detects an abnormality in III and AC8 using valve open/close signals, etc., generates an IR, AC8 abnormal signal, and immediately converts this signal into a DRAC8 outlet valve opening operation signal, and also displays a DRAC8 outlet valve fully open display proviso and an IRAC8 abnormal signal. The AND circuit of SI, DR,
By simultaneously starting the AC8 electromagnetic bongs 13 and 16 and the DRAC8 air cooler 15, DR can be quickly
, AC8 enters forward heat removal operation.

この場合、原子炉容器内に温度成層界面が発生すること
になるが、原子炉トリップ後数時間以内のIRAC8故
障事象は、設計上プラント寿命中高々数回想定しておけ
ば充分であり、原子炉構造健全性が損われることはない
In this case, a temperature-stratified interface will occur within the reactor vessel, but it is sufficient to assume that the IRAC8 failure event within a few hours after a reactor trip occurs at most several times during the plant life. The structural integrity of the reactor is not compromised.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、リングへツタ21に複数の下降管22
を原子炉容器1の周方向に等間隔に取イ」け、この下降
管22から、原子炉l・リップ後の一定時間、下部ブレ
ナム2の冷たい液体金属を熱い上部ブレナム4に少量注
入するので、原子炉容器中央部の炉上部機構zOと干渉
することなしじ、冷たい液体金属を上部ブレナム上面の
熱い液体金鶏中に均等に拡散させるととができるという
効果がある。
According to the present invention, a plurality of downcomer pipes 22 are provided on the ivy 21 to the ring.
are placed at equal intervals in the circumferential direction of the reactor vessel 1, and from this downcomer pipe 22, a small amount of the cold liquid metal from the lower blennium 2 is injected into the hot upper brenum 4 for a certain period of time after the reactor lip. This has the effect of uniformly dispersing the cold liquid metal into the hot liquid metal on the upper surface of the upper blenheim without interfering with the upper reactor mechanism zO in the center of the reactor vessel.

さらに、原子炉トリップ後の上部プレナム4の上面の熱
い液体金属に下部ブレナム2の冷たい液体金属を注入す
ることにより、上部プレナムの温度成層化を防止するの
で、原子炉容器壁及び1次主冷却系配管・機器の熱衝撃
を解消することができるという効果がある。
Furthermore, by injecting the cold liquid metal of the lower plenum 2 into the hot liquid metal of the upper surface of the upper plenum 4 after a reactor trip, temperature stratification in the upper plenum is prevented, so that the reactor vessel wall and primary main cooling This has the effect of eliminating thermal shock in system piping and equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の構成を説明する系統図、第2図は従来
例の原子炉トリップ後における原子炉容器上部ルナム内
の温度成層化を説明する概念図、第3図は不発明の一実
施例の構成を説明する系統図、第4図は本発明の一実施
例の構造概念図である。 1・・・原子炉容器、2・・・上部ブレナム、3・・・
炉心、4・・・下部ブレナム、9・・・間接補助炉Iし
冷却系、6゜12・・・中間熱交換器、7,13.16
・・・ボンフ゛、】9・・・温度境界m1.22・・・
リングへツタ−123・・・49 相 Z 辺 第 4 図
Figure 1 is a system diagram explaining the configuration of the conventional example, Figure 2 is a conceptual diagram explaining temperature stratification in the upper lunum of the reactor vessel after a reactor trip in the conventional example, and Figure 3 is a system diagram explaining the structure of the conventional example. FIG. 4 is a system diagram illustrating the configuration of the embodiment, and is a conceptual diagram of the structure of an embodiment of the present invention. 1...Reactor vessel, 2...Upper Blenheim, 3...
Core, 4...Lower blennium, 9...Indirect auxiliary furnace I cooling system, 6゜12...Intermediate heat exchanger, 7,13.16
...Bonfi,]9...Temperature boundary m1.22...
To the ring - 123...49 Phase Z side Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、複数の補助炉心冷却系をもち、冷却材に液体金属を
使用する原子炉において、前記補助炉心冷却系の幾つか
の炉容器出口ノズルにリングヘッダと下降管を設置し、
原子炉トリップ後のある時間、前記リングヘッダを設置
した補助炉心冷却系を逆流させることによし、原子炉容
器上部ブレナム内冷却材温度成層の発生を防止すること
を性徴とする液体金属冷却原子炉の補助炉心冷却系。
1. In a nuclear reactor that has a plurality of auxiliary core cooling systems and uses liquid metal as a coolant, ring headers and downcomers are installed at some reactor vessel outlet nozzles of the auxiliary core cooling systems,
A liquid metal cooled nuclear reactor characterized by preventing the occurrence of coolant temperature stratification in the upper brenum of the reactor vessel by backflowing the auxiliary core cooling system in which the ring header is installed for a certain period of time after a reactor trip. auxiliary core cooling system.
JP58095618A 1983-06-01 1983-06-01 Auxiliary core cooling system of liquid metal cooled reactor Pending JPS59222790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58095618A JPS59222790A (en) 1983-06-01 1983-06-01 Auxiliary core cooling system of liquid metal cooled reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58095618A JPS59222790A (en) 1983-06-01 1983-06-01 Auxiliary core cooling system of liquid metal cooled reactor

Publications (1)

Publication Number Publication Date
JPS59222790A true JPS59222790A (en) 1984-12-14

Family

ID=14142529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58095618A Pending JPS59222790A (en) 1983-06-01 1983-06-01 Auxiliary core cooling system of liquid metal cooled reactor

Country Status (1)

Country Link
JP (1) JPS59222790A (en)

Similar Documents

Publication Publication Date Title
JPS62187291A (en) Passive safety device for nuclear reactor
US5045274A (en) Water cooled nuclear reactors
CA2066828A1 (en) Passive indirect shutdown cooling system for nuclear reactors
US4382908A (en) After-heat removal system for a gas-cooled nuclear reactor
US4382907A (en) Liquid metal cooled nuclear reactor
US4302296A (en) Apparatus for insulating hot sodium in pool-type nuclear reactors
JP2899979B2 (en) High temperature gas furnace
US4554129A (en) Gas-cooled nuclear reactor
EP0238079B1 (en) Emergency core cooling apparatus
JPS59222790A (en) Auxiliary core cooling system of liquid metal cooled reactor
JPH02210295A (en) Auxiliary reactor core cooling device
JP2740995B2 (en) Liquid metal-cooled fast reactor and power generation system using the same
JPS60113190A (en) Cooling system of boiling-water type reactor
JPH04125497A (en) Heat exchanger for fast breeder reactor
JPS6046483A (en) Protective device for container of nuclear reactor
Schultz et al. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976
JPS62298797A (en) Method of operating fast breeder reactor plant
JPS6045397B2 (en) Nuclear power generation equipment
JPS58198794A (en) Liquid metal cooled fast breeder
JPH06265679A (en) Emergency core cooling system
JPS5950395A (en) Reactor water level lowering control device
Madni et al. Analysis of loss-of-flow transients in a pool-type LMFBR using SSC-P
Abdul-Razzak et al. CATHENA simulations of steam generator tube rupture
JPS59126295A (en) Device for relaxing temperature distribution of horizontal tube in liquid metal cooled type fast breeder
Doria CANDU Safety# 4: Thermalhydraulic Safety Characteristics Of CANDU Reactors