JPS6214035B2 - - Google Patents

Info

Publication number
JPS6214035B2
JPS6214035B2 JP3953381A JP3953381A JPS6214035B2 JP S6214035 B2 JPS6214035 B2 JP S6214035B2 JP 3953381 A JP3953381 A JP 3953381A JP 3953381 A JP3953381 A JP 3953381A JP S6214035 B2 JPS6214035 B2 JP S6214035B2
Authority
JP
Japan
Prior art keywords
copper
acid
hydrogen peroxide
polyethylene glycol
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3953381A
Other languages
Japanese (ja)
Other versions
JPS57155379A (en
Inventor
Mitsuo Takano
Makoto Kusakabe
Eiji Usu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3953381A priority Critical patent/JPS57155379A/en
Publication of JPS57155379A publication Critical patent/JPS57155379A/en
Publication of JPS6214035B2 publication Critical patent/JPS6214035B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はニツケル薄膜のエツチング剤に関する
ものである。 現在、一般的に用られているプリント基板は、
数十ミクロンの銅張積層板上にハンダあるいはフ
オトレジスト等でパターンエツチングレジストを
施し、レジストにより被覆されていない部分の銅
を種々の方法により溶解除去して目的とする銅回
路パターンを得ている。しかし、多量の銅を溶解
除去しなければならない等の不利益な点も多く、
このため最近、プリント基板の作成についても
種々の改良開発が行われている。その一つとして
基板に直接無電解ニツケルメツキを行い、ニツケ
ル薄膜を形成させ、その表面に電解により数十ミ
クロンの銅回路パターンのみを設けたプリント基
板がある。 本発明はこのような基板のエツチング剤に関す
るものであるが、このような基板のエツチング
は、銅パターンによつて被覆されていないニツケ
ル薄膜を溶解除去することが目的となるが、銅パ
ターン上にはエツチングレジストが存在しないた
めに銅パターンの浸蝕を極力抑制しニツケル薄膜
のみを溶解除去する選択的エツチングが要求され
る。 本発明者らは先きに、硫酸等の酸、過酸化水素
および遊離塩素イオンからなる系は、上記目的を
有利に実施できるエツチング剤であることを発明
した。例えば過酸化水素100g/、硫酸100g/
の組成の溶液に塩化アンモニウム200ppmを添
加した系は、塩化アンモニウム無添加の系に比較
して銅の溶解速度を30℃に於いて1/15以下に抑制
できる。ニツケルの溶解速度は塩化アンモニウム
添加、無添加に関係なくほぼ一定である。 しかし、上記酸―過酸化水素―遊離塩素イオン
からなるエツチング剤は、必ずしも銅の腐蝕抑制
効果が十分とは言えず、処理条件および操作を精
密にコントロールする必要がある。本発明者らは
上記エツチング剤を基本とし、更に銅の腐蝕を抑
制するエツチング剤について研究を重ね本発明を
完成した。 即ち、本発明は硫酸、硝酸およびリン酸からな
る群から選ばれた酸、過酸化水素および遊離塩素
イオンを含有する溶液に第3級アミン、ポリオキ
シアルキレン基を有する化合物(重合度1〜3の
ポリエチレングリコールを除く)、ポリビニルア
ルコール、ポリビニルエーテル、ポリビニルピロ
リドンおよびピロールからなる群から選ばれた化
合物を共存させることを特徴とする無電解ニツケ
ル薄膜用エツチング剤に関するものである。 本発明で使用する酸、過酸化水素および遊離塩
素イオンの濃度は、それぞれ0.1〜50重量%、0.1
〜50重量%および2〜20000ppmの範囲で選択出
来る。各成分の濃度の設定は、ニツケル薄膜の厚
さ、許容される銅パターン部の溶解量、希望する
処理時間等から一概に決定出来ないが、操作性等
の観点から好ましい酸、過酸化水素および遊離塩
素イオンの濃度範囲は、それぞれ1〜30重量%、
1〜30重量%および5〜5000ppmである。 第3級アミン、ポリオキシアルキレン基を有す
る化合物(重合度1〜3のポリエチレングリコー
ルを除く)、ポリビニルアルコール、ポリビニル
エーテル、ポリビニルピロリドンおよびピロール
等の化合物(以下、化合物全体を総称するときは
単に添加剤と称す)の濃度は0.5g/以上、好
ましくは1.0〜30g/である。又、処理温度は
5〜60℃好ましくは10〜40℃である。 上記添加剤を酸―過酸化水素―遊離塩素イオン
からなる系に添加することにより、何故銅の腐蝕
が抑制されるのかその機構は明らかではないが、
添加物が銅表面に吸着する作用および添加剤と塩
素イオンの相互作用のために腐蝕が抑制されるも
のと考えられる。 本発明で使用する第3級アミンとは、トリエチ
ルアミン、トリプロピルアミン、トリブチルアミ
ン、トリアミルアミン、トリヘキシルアミン、ト
リオクチルアミン、N,N―ジメチルベンジルア
ミン、N,N―ジベンジルアニリン、N,N―ジ
ブチルアニリンおよびN,N―ジエチルシクロヘ
キシルアミン等である。 ポリオキシアルキレン基を有する化合物(重合
度1〜3のポリエチレングリコールを除く)と
は、重合度4以上のポリエチレングリコール、ポ
リプロピレングリコール、ポリエチレングリコー
ルラウリルエーテル、ポリエチレングリコールノ
ニルフエニルエーテル、ポリエチレングリコール
オレイルエーテル、ポリエチレングリコールステ
アリルエーテル、ジエチレングリコールジエチル
エーテル、ポリエチレングリコールモノステアレ
ート、ポリエチレングリコールジステアレート、
ポリエチレングリコールモノラウレート、ポリエ
チレングリコールオレエート、ポリエチレングリ
コールソルビタンモノラウレート、ポリエチレン
グリコールソルビタンモノステアレート、ポリエ
チレングリコールモノオレエートおよびポリエチ
レングリコールステアリルアミン等である。 ポリビニルエーテルとはポリビニルメチルエー
テル、ポリビニルエチルエーテルおよびポリビニ
ルイソブチルエーテル等である。 本発明で使用する遊離塩素イオンを提供する物
質としては、水可溶性の塩化物あるいは実質的に
溶液中で塩素イオンを遊離する無機、有機化合物
等広範に亘るが、特に望まない限り、過酸化水素
の分解に対して不活性な塩化物を使用することが
望ましく、この意味からもごく一般的な塩化物で
ある塩化ナトリウム、塩化カリウム、塩化アンモ
ニウム、塩化アルミニウム、塩化マグネシウムお
よび塩酸等が適当である。過酸化水素の分解触媒
となる金属の塩化物や銅パターン表面への析出を
おこすような銅よりイオン化傾向の貴なる金属の
塩化物の使用は、出来るだけ避けることが望まし
い。 本発明で使用する前記添加剤と比較して若干効
果は少ないが、エチルエーテル、プロピルエーテ
ル等のエーテル、プロピオン酸アミド、アジピン
酸アミド等のアミド、ピペリジン等のイミン、ア
ジピン酸ジエチル、ソルビタンモノラウレート、
2―エトキシエチルアセテート等のエステル、ア
セトン、p―メチルアセトフエノン等のケトンお
よびピリジン等は、銅の腐蝕抑制に寄与する物質
であることも確認した。 エツチング処理は、本発明のエツチング剤にプ
リント基板を単に浸漬する方法あるいはエツチン
グ剤をプリント基板にスプレー処理する方法等に
よつて行い得る。またエツチング処理によつて消
耗された溶液成分を適宜補充する等の方法により
コントロールされた状態で連続的な処理も可能で
ある。 本発明によれば数十秒から数分といつた短時間
のエツチング処理により、ニツケル薄膜を完全に
溶解除去することが出来るのみならず、銅パター
ン部の浸蝕は非常に少ないため極めて信頼性の高
い完全なエツチング基板を得ることが出来る。ま
た操作が簡単であること、本発明に使用する添加
剤は過酸化水素の安定剤としても作用し溶液の安
定化を計り、浴寿命がのびること、酸―過酸化水
素を基本成分とするためにニツケル、銅の回収が
容易であること、公害問題を引き起すことのない
こと等実用上多くの多くの価値を有するエツチン
グ剤を提供するものである。 以下、本発明を実施例により詳しく説明する。 実施例 1 硫酸100g/、過酸化水素100g/、塩化ア
ンモニウム200ppmの組成からなる溶液を調整
し、そこに各種添加剤を1%(液体の場合はv/
v%、固体の場合はwt/v%)を添加し、30℃
に於ける5分間の銅の溶解速度を測定し、得られ
た値から下記の式に基づいて腐蝕抑制率を算出し
た。 腐蝕抑制率(%)=(1―r/r0)×100 (r0およびrは添加剤の無添加の時および添加
の時の銅の溶解速度を示す) 上記の式に基づいて腐蝕抑制率を求めA至乃D
の4段階にランクづけした。その結果を第1表に
示す。Aランクのものが本発明である。
The present invention relates to an etching agent for nickel thin films. Currently, the commonly used printed circuit boards are:
A pattern etching resist is applied using solder or photoresist on a copper-clad laminate with a thickness of several tens of microns, and the copper in areas not covered by the resist is dissolved and removed using various methods to obtain the desired copper circuit pattern. . However, there are many disadvantages such as the need to dissolve and remove a large amount of copper.
For this reason, various improvements and developments have recently been made in the production of printed circuit boards. One of these is a printed circuit board in which electroless nickel plating is performed directly on the substrate to form a nickel thin film, and only a copper circuit pattern of several tens of microns is provided on the surface by electrolysis. The present invention relates to an etching agent for such a substrate, and the purpose of etching such a substrate is to dissolve and remove the nickel thin film that is not covered by the copper pattern. Since there is no etching resist, selective etching is required to suppress corrosion of the copper pattern as much as possible and dissolve and remove only the nickel thin film. The present inventors have previously discovered that a system consisting of an acid such as sulfuric acid, hydrogen peroxide and free chlorine ions is an etching agent that can advantageously carry out the above purpose. For example, hydrogen peroxide 100g/, sulfuric acid 100g/
A system in which 200 ppm of ammonium chloride is added to a solution with the composition can suppress the dissolution rate of copper to 1/15 or less at 30°C compared to a system without ammonium chloride. The dissolution rate of nickel is almost constant regardless of whether ammonium chloride is added or not. However, the above-mentioned etching agent consisting of acid, hydrogen peroxide, and free chlorine ions does not necessarily have a sufficient effect of suppressing copper corrosion, and it is necessary to precisely control the processing conditions and operations. The present inventors have completed the present invention based on the above-mentioned etching agent, and have further conducted research on an etching agent that inhibits corrosion of copper. That is, the present invention provides a solution containing an acid selected from the group consisting of sulfuric acid, nitric acid, and phosphoric acid, hydrogen peroxide, and free chlorine ions, and a compound having a tertiary amine and a polyoxyalkylene group (with a degree of polymerization of 1 to 3). The present invention relates to an etching agent for electroless nickel thin films, characterized in that it contains a compound selected from the group consisting of polyvinyl alcohol, polyvinyl ether, polyvinylpyrrolidone, and pyrrole. The concentrations of acid, hydrogen peroxide and free chlorine ions used in the present invention are 0.1 to 50% by weight and 0.1% by weight, respectively.
It can be selected within the range of ~50% by weight and 2~20000ppm. The concentration of each component cannot be determined unconditionally based on the thickness of the nickel thin film, the allowable amount of dissolution of the copper pattern, the desired processing time, etc., but from the viewpoint of operability etc., acid, hydrogen peroxide and The concentration range of free chlorine ions is 1 to 30% by weight, respectively.
1 to 30% by weight and 5 to 5000 ppm. Compounds such as tertiary amines, compounds having polyoxyalkylene groups (excluding polyethylene glycol with a degree of polymerization of 1 to 3), polyvinyl alcohol, polyvinyl ether, polyvinylpyrrolidone, and pyrrole (hereinafter, when referring to all compounds collectively, simply add (referred to as agent) is 0.5 g/ or more, preferably 1.0 to 30 g/. Further, the treatment temperature is 5 to 60°C, preferably 10 to 40°C. Although the mechanism of why copper corrosion is suppressed by adding the above additive to a system consisting of acid, hydrogen peroxide, and free chlorine ions is not clear,
It is thought that corrosion is suppressed due to the adsorption of the additive to the copper surface and the interaction between the additive and chlorine ions. The tertiary amines used in the present invention include triethylamine, tripropylamine, tributylamine, triamylamine, trihexylamine, trioctylamine, N,N-dimethylbenzylamine, N,N-dibenzylaniline, , N-dibutylaniline and N,N-diethylcyclohexylamine. Compounds having a polyoxyalkylene group (excluding polyethylene glycol with a degree of polymerization of 1 to 3) include polyethylene glycol with a degree of polymerization of 4 or more, polypropylene glycol, polyethylene glycol lauryl ether, polyethylene glycol nonylphenyl ether, polyethylene glycol oleyl ether, Polyethylene glycol stearyl ether, diethylene glycol diethyl ether, polyethylene glycol monostearate, polyethylene glycol distearate,
These include polyethylene glycol monolaurate, polyethylene glycol oleate, polyethylene glycol sorbitan monolaurate, polyethylene glycol sorbitan monostearate, polyethylene glycol monooleate, and polyethylene glycol stearylamine. Polyvinyl ether includes polyvinyl methyl ether, polyvinyl ethyl ether, polyvinyl isobutyl ether, and the like. Substances that provide free chloride ions used in the present invention include a wide range of water-soluble chlorides and inorganic and organic compounds that substantially release chloride ions in solution. Unless specifically desired, hydrogen peroxide may be used. It is desirable to use chlorides that are inert to the decomposition of . It is desirable to avoid as much as possible the use of metal chlorides that act as hydrogen peroxide decomposition catalysts and noble metal chlorides that tend to ionize more than copper and cause precipitation on the surface of the copper pattern. Compared to the above additives used in the present invention, they are slightly less effective, but include ethers such as ethyl ether and propyl ether, amides such as propionic acid amide and adipic acid amide, imines such as piperidine, diethyl adipate, and sorbitan monomer. rate,
It was also confirmed that esters such as 2-ethoxyethyl acetate, acetone, ketones such as p-methylacetophenone, and pyridine are substances that contribute to inhibiting copper corrosion. The etching process can be carried out by simply immersing the printed circuit board in the etching agent of the present invention, or by spraying the etching agent onto the printed circuit board. Continuous processing is also possible under controlled conditions, such as by appropriately replenishing solution components consumed by the etching process. According to the present invention, not only can the nickel thin film be completely dissolved and removed by a short etching process of several tens of seconds to several minutes, but the corrosion of the copper pattern portion is extremely small, resulting in extremely reliable etching. A highly completely etched substrate can be obtained. In addition, the additive used in the present invention also acts as a hydrogen peroxide stabilizer to stabilize the solution and extend the bath life. The present invention provides an etching agent which has many practical values such as ease of recovery of nickel and copper and the fact that it does not cause pollution problems. Hereinafter, the present invention will be explained in detail with reference to Examples. Example 1 A solution consisting of 100 g of sulfuric acid, 100 g of hydrogen peroxide, and 200 ppm of ammonium chloride was prepared, and various additives were added to it at 1% (in the case of liquid, v/
v%, wt/v% in case of solid), and heated at 30°C.
The dissolution rate of copper for 5 minutes was measured, and the corrosion inhibition rate was calculated from the obtained value based on the following formula. Corrosion inhibition rate (%) = (1-r/r 0 ) × 100 (r 0 and r indicate the dissolution rate of copper without and with additives) Corrosion inhibition based on the above formula Find the ratio A to D
Ranked in four stages. The results are shown in Table 1. The A-ranked one is the present invention.

【表】【table】

【表】【table】

【表】【table】

【表】 前記硫酸、過酸化水素および塩化アンモニウム
の組成におけるニツケルの溶解速度は添加剤無添
加の時0.45μ/minであり、各種添加剤を添加し
たものもそれとほぼ同等であつた。 実施例 2 基板上の全面に0.5μの厚さの無電解ニツケル
メツキ薄膜を有し、その上に20μの銅回路パター
ンを形成させたプリント基板を硫酸147g/、
過酸化水素102g/、塩化アンモニウム
200ppmおよびトリ―n―アミルアミン10g/
の組成からなる溶液で30℃、スプレー圧1.5Kg/
cm2に於いてスプレーエツチングを行つた結果、ニ
ツケル薄膜は約60秒で完全に除去することができ
た。又、この間の銅パターン部の溶解量は極めて
少なかつた。 実施例 3 実施例1と同じプリント基板を硝酸63g/、
過酸化水素102g/、塩化アンモニウム
200ppmおよびポリエチレングリコール
(#600)の組成からなる溶液で30℃に於いて浸漬
処理を行つた結果、ニツケル薄膜は約90秒で完全
に除去することが出来、この間の銅パターン部の
溶解量は極めて少なかつた。 実施例 4 実施例1と同じプリント基板をリン酸98g/
、過酸化水素102g/、塩化アンモニウム
200ppmおよびピロール10g/の組成からなる
溶液で30℃、スプレー圧1.5Kg/cm2おいてスプレ
ーエツチングを行つた結果、ニツケル薄膜は約3
分で完全に除去することが出来、この間の銅パタ
ーン部の溶解量は極めて少なかつた。 実施例 5 実施例1と同じプリント基板を硫酸98g/、
リン酸49g/、過酸化水素102g/、塩化ア
ンモニウム200ppmおよびポリビニルピロリドン
10g/の組成からなる溶液で30℃に於いて浸漬
処理を行つた結果、ニツケル薄膜は約90秒で完全
に除去することが出来、この間の銅パターン部の
溶解量は極めて少なかつた。
[Table] The dissolution rate of nickel in the above composition of sulfuric acid, hydrogen peroxide and ammonium chloride was 0.45 μ/min when no additives were added, and was almost the same when various additives were added. Example 2 A printed circuit board with a 0.5 μ thick electroless nickel plating thin film on the entire surface and a 20 μ thick copper circuit pattern formed thereon was heated with 147 g of sulfuric acid.
Hydrogen peroxide 102g/, ammonium chloride
200ppm and tri-n-amylamine 10g/
A solution with the composition of 30℃, spray pressure 1.5Kg/
As a result of spray etching at cm 2 , the nickel thin film could be completely removed in about 60 seconds. Moreover, the amount of dissolution of the copper pattern portion during this period was extremely small. Example 3 The same printed circuit board as Example 1 was treated with nitric acid 63g/,
Hydrogen peroxide 102g/, ammonium chloride
As a result of immersion treatment at 30℃ in a solution consisting of 200ppm and polyethylene glycol (#600), the nickel thin film could be completely removed in about 90 seconds, and the amount of copper pattern dissolved during this time was There were very few. Example 4 The same printed circuit board as in Example 1 was treated with 98 g of phosphoric acid/
, hydrogen peroxide 102g/, ammonium chloride
As a result of spray etching with a solution consisting of 200 ppm and 10 g of pyrrole at 30°C and a spray pressure of 1.5 kg/ cm2 , the nickel thin film was approximately 3.
It was possible to completely remove it within minutes, and the amount of dissolution of the copper pattern portion during this time was extremely small. Example 5 The same printed circuit board as in Example 1 was treated with 98 g of sulfuric acid/
Phosphoric acid 49g/, hydrogen peroxide 102g/, ammonium chloride 200ppm and polyvinylpyrrolidone
As a result of immersion treatment at 30°C in a solution with a composition of 10 g/ml, the nickel thin film could be completely removed in about 90 seconds, and the amount of copper pattern dissolved during this time was extremely small.

Claims (1)

【特許請求の範囲】[Claims] 1 硫酸、硝酸およびリン酸からなる群から選ば
れた酸、過酸化水素および遊離塩素イオンを含有
する溶液に第3級アミン、ポリオキシアルキレン
基を有する化合物(重合度1〜3のポリエチレン
グリコールを除く)、ポリビニルアルコール、ポ
リビニルエーテル、ポリビニルピロリドンおよび
ピロールからなる群から選ばれた化合物を共存さ
せることを特徴とする無電解ニツケル薄膜用エツ
チング剤。
1. A tertiary amine, a compound having a polyoxyalkylene group (polyethylene glycol with a degree of polymerization of 1 to 3) is added to a solution containing an acid selected from the group consisting of sulfuric acid, nitric acid, and phosphoric acid, hydrogen peroxide, and free chlorine ions. 1. An etching agent for electroless nickel thin films, characterized in that it contains a compound selected from the group consisting of polyvinyl alcohol, polyvinyl ether, polyvinylpyrrolidone, and pyrrole.
JP3953381A 1981-03-20 1981-03-20 Etching agent for non-electrolytic nickel thin film Granted JPS57155379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3953381A JPS57155379A (en) 1981-03-20 1981-03-20 Etching agent for non-electrolytic nickel thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3953381A JPS57155379A (en) 1981-03-20 1981-03-20 Etching agent for non-electrolytic nickel thin film

Publications (2)

Publication Number Publication Date
JPS57155379A JPS57155379A (en) 1982-09-25
JPS6214035B2 true JPS6214035B2 (en) 1987-03-31

Family

ID=12555677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3953381A Granted JPS57155379A (en) 1981-03-20 1981-03-20 Etching agent for non-electrolytic nickel thin film

Country Status (1)

Country Link
JP (1) JPS57155379A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1209886A (en) * 1982-01-11 1986-08-19 Thomas W. Bleeks Peroxide selective stripping compositions and method
US4437929A (en) * 1983-08-22 1984-03-20 Dart Industries Inc. Dissolution of metals utilizing pyrrolidone
US5630950A (en) * 1993-07-09 1997-05-20 Enthone-Omi, Inc. Copper brightening process and bath
CN105862042A (en) * 2016-06-08 2016-08-17 广东工业大学 Nickel stripping solution and preparation method and application thereof

Also Published As

Publication number Publication date
JPS57155379A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
EP0627499B1 (en) Agent for treating surfaces of copper and copper alloys
EP0670379B1 (en) Method for microetching copper or copper alloy surfaces
EP0545218B1 (en) Complexing agent for displacement tin plating
EP3680363B1 (en) Microetching agent for copper, copper surface roughening method and wiring board production method
JP5360703B2 (en) Etching solution
US4439338A (en) Solution for stripping a layer of tin or tin-lead alloy from a substrate by means of a spraying operation
JPH0379778A (en) Copper etching solution composition and etching method
CA2083196C (en) Process for extending the life of a displacement plating bath
KR920006356B1 (en) Composition and method of metal dissolution utilizing a glycol ether
JPS6214035B2 (en)
US4130455A (en) Dissolution of metals-utilizing H2 O2 -H2 SO4 -thiosulfate etchant
JPS6214034B2 (en)
JP4418916B2 (en) Etching composition
JPH01240683A (en) Composition of etching solution for copper and etching method
US4233113A (en) Dissolution of metals utilizing an aqueous H2 O2 -H2 SO4 -thioamide etchant
JP3431931B2 (en) Copper and copper alloy surface treatment method
CA1115627A (en) Metal-dissolution solution containing sulfuric acid, hydrogen peroxide and mono-or dihydro-substituted cycloparaffin
US4158592A (en) Dissolution of metals utilizing a H2 O2 -sulfuric acid solution catalyzed with ketone compounds
US4158593A (en) Dissolution of metals utilizing a H2 O2 -sulfuric acid solution catalyzed with selenium compounds
JPS6211070B2 (en)
JP3367743B2 (en) Copper and copper alloy surface treatment agent
CA2069933C (en) Etching solution containing a vanadium catalyst
US4233111A (en) Dissolution of metals utilizing an aqueous H2 SO4 -H2 O2 -3-sulfopropyldithiocarbamate etchant
KR920006354B1 (en) Composition and method of metal dissolution utilizing a furan derivative
KR920006353B1 (en) Composition and method of metal dissolution utilizing pyrrolidone