JPS62140357A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JPS62140357A
JPS62140357A JP60281325A JP28132585A JPS62140357A JP S62140357 A JPS62140357 A JP S62140357A JP 60281325 A JP60281325 A JP 60281325A JP 28132585 A JP28132585 A JP 28132585A JP S62140357 A JPS62140357 A JP S62140357A
Authority
JP
Japan
Prior art keywords
negative electrode
electrolyte secondary
alloy
fusible
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60281325A
Other languages
Japanese (ja)
Inventor
Hide Koshina
秀 越名
Takafumi Fujii
隆文 藤井
Nobuo Eda
江田 信夫
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60281325A priority Critical patent/JPS62140357A/en
Publication of JPS62140357A publication Critical patent/JPS62140357A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To suppress the action of a fusible alloy against the electrolyte, and obtain a stable charge and discharge cycle, by forming a metallic layer not participating in the charge and discharge reactions at the surface of the fusible alloy negative electrode facing the opposite electrode. CONSTITUTION:At the negative electrode of a nonaqueous electrolyte secondary cell, a fusible alloy 2 of Pb-Bi-Cd type is applied, and at its surface facing the opposite electrode, a Ni layer 1 not participating in the charge and discharge reactions is vacuum evaporated. The negative electrode 2 formed with such a layer 1 can control the action of the alloy 2 against the electrolyte and obtain a stable charge and discharge cycle without losing the primary property as a negative electrode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非水電解液二次電池に関するもので、特にその
負極被覆材の改良に関するものである9従ヰの技術 2へ 従来よシこの種の非水電解液二次電池には負極活物質と
して、リチウム、ナトリウム、アルミニウムなどを用い
ることが知られている。またこのような負極活物質をデ
ンドライトなどが生じないようにするため、負極材料に
可融合金などの合金を使うことが知られている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a non-aqueous electrolyte secondary battery, and particularly relates to an improvement of its negative electrode coating material. It is known that lithium, sodium, aluminum, etc. are used as negative electrode active materials in non-aqueous electrolyte secondary batteries. Furthermore, in order to prevent dendrites from forming in such a negative electrode active material, it is known to use an alloy such as a fusible metal for the negative electrode material.

このような合金としては、Cd、Pb、Bi、Snなど
の低融点金属を合金にしたものと、高融点の5n−Ni
合金などがある。可融合金の中で負極活物質の吸蔵能力
が大きいのはPb −In −Cd系合金、Pb−Bi
−cd金合金、約1700 m Ah/ccの吸蔵能力
をもつ。
Such alloys include alloys of low melting point metals such as Cd, Pb, Bi, and Sn, and high melting point metals such as 5n-Ni.
There are alloys, etc. Among fusible alloys, Pb-In-Cd alloys and Pb-Bi have the highest storage capacity for negative electrode active materials.
-cd gold alloy, with a storage capacity of about 1700 mAh/cc.

可融合金の特徴を次にあげる。The characteristics of fusible metals are listed below.

(1)合金系の選択によシ充放電々位の制御、設計がで
きる。
(1) The charging and discharging levels can be controlled and designed by selecting the alloy system.

(2)一般的に延性があシ、加工性に優れている。(2) Generally has good ductility and excellent workability.

((ロ)低融点金属(cd 、Bi 、Sn 、Pbな
ど)を用いるため、高融点の5n−Ni合金などに比べ
、合金化にともなう消費エネルギーが少なく安価に製造
できる。
((b) Since low melting point metals (CD, Bi, Sn, Pb, etc.) are used, the energy consumption associated with alloying is lower than that of high melting point 5n-Ni alloys, etc., and manufacturing is possible at low cost.

3ぺ−5 以上の他にリチウムを活物質として用いるLl−A1合
金、Li−Hg  合金などがあるが、可融合金と比較
し、一般的にLi−A4合金はβ相(原子比でリチウム
が45〜55パーセント)シか利用できないため容量は
小さい。寸たLi−Hg合金は放電時に液状となり、極
板形成が困難である。
3 Page-5 In addition to the above, there are Ll-A1 alloys and Li-Hg alloys that use lithium as an active material, but compared to fusible alloys, Li-A4 alloys generally have a β phase (lithium in atomic ratio). (45-55%) is not available, so the capacity is small. A small Li-Hg alloy becomes liquid during discharge, making it difficult to form an electrode plate.

発明が解決しようとする問題点 このような従来の構成では、Li f活物質とし、電解
液に過塩素酸リチウム(以下LiC,504と略ス)ヲ
グロピレンカーボネイト(以下PCと略す)とジメトキ
シエタン(以下DMEと略す)の混合液に溶解したもの
を用いた場合、百数士サイクル程度で電解液が活性な負
極合金表面で分解するため、充放電が不可能となる。
Problems to be Solved by the Invention In such a conventional configuration, the Li f active material is used, and the electrolyte contains lithium perchlorate (hereinafter abbreviated as LiC, 504), oglopyrene carbonate (hereinafter abbreviated as PC), and dimethoxy. When a solution dissolved in a mixed solution of ethane (hereinafter abbreviated as DME) is used, the electrolyte decomposes on the surface of the active negative electrode alloy after about a hundred cycles, making charging and discharging impossible.

本発明はこのような問題点を解決することを目的とする
ものである。
The present invention aims to solve these problems.

問題点をjQ!i′決するための手段 上記の問題点を解決するために、本発明は非水電解液二
次電池の負極材料に可融合金を用い、その対極側表面に
充放電反応に関与しない金属層を形成したものである。
JQ about the problems! In order to solve the above-mentioned problems, the present invention uses a fusible alloy as the negative electrode material of a non-aqueous electrolyte secondary battery, and a metal layer that does not participate in the charge/discharge reaction is provided on the surface of the opposite electrode. It was formed.

作用 本発明における金属層を形成した可融合金負極は、可融
合金負極の本来の!1!i性を失わず、可融合金の電解
液に対する作用を極ψ;11;におさえ、安定した充放
電ザイクルを得ることが可能となる。ここでの金属層の
厚さは0.05〜10μmが好寸しく、又金属元素とし
ては周期律第4周期の遷移金属元素が好ましい。
Function: The fusible metal negative electrode formed with the metal layer in the present invention is the original fusible metal negative electrode! 1! It becomes possible to obtain a stable charge-discharge cycle by suppressing the action of the fusible metal on the electrolytic solution to a minimum of ψ;11; without losing i-characteristics. The thickness of the metal layer here is preferably 0.05 to 10 μm, and the metal element is preferably a transition metal element in the fourth period of the periodic rule.

実lイm(9り 本発明は負イホ活物質と1〜てリチウムを使用した場合
についての実施列を第1〜第3図を用いて説明する。
In the present invention, examples of the case where lithium is used as a negative active material will be explained with reference to FIGS. 1 to 3.

ここで用いた負極は、厚さ1層1mのN1層を対極側に
形成した外径15πM、厚さ1007+mのpb−Bi
 −Ccl系可融合金(Pb:Bi:Cd=40:40
:20重量パパーン1・)である。N1層d:電子線加
熱方式の蒸着により形成した。この場合Niを金属層に
選んだが、本発明の範囲内にある元素、すなわち周期律
第4周期の遷移元素はN1とほぼ同5ヘ一/゛ 等の性能をもつことが単極試験よりわかった。また金属
層の厚さは0.05μmより小さい場合は合金表面に均
一に蒸着せず、活性な合金表面がでているため、電解液
の分解が起った。また10μm以上にすると負極可融合
金が負極活物質を吸蔵し難いことがわかった。従って好
適な金属層の厚さは0.05〜10μmである。
The negative electrode used here was a pb-Bi with an outer diameter of 15πM and a thickness of 1007+m, with an N1 layer of 1m thick formed on the opposite electrode side.
-Ccl-based fusible alloy (Pb:Bi:Cd=40:40
:20 weight papart 1.). N1 layer d: Formed by electron beam heating vapor deposition. In this case, Ni was selected for the metal layer, but single-pole tests showed that elements within the scope of the present invention, that is, transition elements in the fourth period of the periodic law, have a performance of approximately the same as N1. Ta. Further, when the thickness of the metal layer was less than 0.05 μm, the metal layer was not uniformly deposited on the alloy surface, and the active alloy surface was exposed, causing decomposition of the electrolyte. It was also found that when the thickness is 10 μm or more, it is difficult for the negative electrode fusible alloy to occlude the negative electrode active material. Therefore, a suitable metal layer thickness is between 0.05 and 10 μm.

第1図は本発明を実施するために用いた外径20問、総
高1.6mmの電池の一部断面図を示す。
FIG. 1 shows a partial cross-sectional view of a battery with an outer diameter of 20 and a total height of 1.6 mm used to carry out the present invention.

図中1は本発明の金属層、ここではNiを用いている。In the figure, reference numeral 1 indicates a metal layer of the present invention, in which Ni is used here.

2は本発明に係るP b −B i −Cd系可融合金
からなる負極合金でステンレス製封口板4の内面に形成
したステンレス製負極集電体3に圧着固定している。5
はステンレス製ケース、6はチタン製正極集電体、7は
三酸化モリブデンを正極活物質とした正極合剤、8は微
細孔をもつポリプロピレン(以下PPと略す)製セパレ
ータ、9はPP製含浸材、10はPP製ガスケットであ
る。
Reference numeral 2 is a negative electrode alloy made of a P b -B i -Cd based fusible alloy according to the present invention, and is crimped and fixed to a stainless steel negative electrode current collector 3 formed on the inner surface of a stainless steel sealing plate 4 . 5
is a stainless steel case, 6 is a titanium positive electrode current collector, 7 is a positive electrode mixture using molybdenum trioxide as a positive electrode active material, 8 is a separator made of polypropylene (hereinafter abbreviated as PP) with micropores, and 9 is impregnated with PP. 10 is a gasket made of PP.

正極は組成が重量比でMOo、100部に対震カーボン
ブラック15部、フッ素樹脂系結着剤6、。
The composition of the positive electrode was MOo (100 parts by weight), 15 parts of anti-vibration carbon black, and 6 parts of a fluororesin binder.

15部として混合し、容量が80mAh  となるよう
に充填、打抜いたものを用いた。
15 parts were mixed, filled and punched to have a capacity of 80 mAh.

電解液は1モル/4のLie eo 4を溶解したPC
とDMEが体積比1:1の混合液を用いた。
The electrolyte is PC in which 1 mol/4 Lie eo 4 is dissolved.
A mixed solution containing DME and DME at a volume ratio of 1:1 was used.

負極はP b −B i −Cd系可融合金2に前記方
法によシN1層1を蒸着しである。第1図には記載して
いないが、負極活物質のリチウムは50mAhの容量を
もつように打抜き、N1層1の表面に圧着したが、電池
に組み込んだリチウムはNi層1の微細孔から電位勾配
による拡散のため負極合金2に吸蔵されている。
The negative electrode was prepared by depositing a N1 layer 1 on a P b -B i -Cd based fusible alloy 2 by the method described above. Although not shown in Figure 1, lithium as the negative electrode active material was punched out to have a capacity of 50 mAh and pressure-bonded to the surface of the N1 layer 1. It is occluded in the negative electrode alloy 2 due to diffusion due to the gradient.

第2図は本発明の電池の4oサイクル目の充放電曲線を
示すものである。充J々電々流はともに1mAとし、充
電時のカット電圧を3v、放電時のカット電圧を1vと
した。
FIG. 2 shows the charge/discharge curve of the battery of the present invention at the 40th cycle. The charging and current currents were both 1 mA, the cut voltage during charging was 3 V, and the cut voltage during discharging was 1 V.

図中Aが本発明の負極を使用したもの、Bは本発明の処
理を施していないPb−B1−Cd合金を用いたもので
ある。第2図よシ本発明の負極を使用しているものは、
本発明の処理を施していないものと比べ、充放電曲線の
差がないことがわかる。
In the figure, A is the one using the negative electrode of the present invention, and B is the one using the Pb-B1-Cd alloy which has not been subjected to the treatment of the present invention. As shown in Figure 2, the negative electrode of the present invention is used.
It can be seen that there is no difference in charge/discharge curves compared to those not subjected to the treatment of the present invention.

アヘー。Ahhh.

第3図は第1図に示した電池のサイクル特性を示し/こ
ものである。図中人が本発明の負極を使用したもの、B
が本発明の処、T11!を施していないものである。
FIG. 3 shows the cycle characteristics of the battery shown in FIG. 1. In the figure, a person uses the negative electrode of the present invention, B
The present invention is T11! It has not been subjected to

第3図よシ本発明の負極を使用している電池が優れたサ
イクル特性全もつことがわかる。
FIG. 3 shows that the battery using the negative electrode of the present invention has excellent cycle characteristics.

発明の効果 以」二の説明から明らかなように本発明の負極を用いた
非水電解液二次電池は従来のものと比較し充放電の分極
の差がなく、安定々充放電サイクル特性を有するもので
ある。
As is clear from the explanation in ``Effects of the Invention'' (2), the non-aqueous electrolyte secondary battery using the negative electrode of the present invention has no difference in polarization during charging and discharging compared to conventional batteries, and has stable charge-discharge cycle characteristics. It is something that you have.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における電池の一部断面図、
第2図は同電池の充放電曲線を示す図、第3図は同電池
のサイクル特性を示す図である。 1・・・・・金属層、2・ ・負極合金、3・ ・・負
極集電体、4 ・・・・封口板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名(A
)  玉3駅葛
FIG. 1 is a partial cross-sectional view of a battery in an embodiment of the present invention;
FIG. 2 is a diagram showing the charge-discharge curve of the same battery, and FIG. 3 is a diagram showing the cycle characteristics of the same battery. 1... Metal layer, 2... Negative electrode alloy, 3... Negative electrode current collector, 4... Sealing plate. Name of agent: Patent attorney Toshio Nakao and one other person (A
) Tama 3 Station Kuzu

Claims (3)

【特許請求の範囲】[Claims] (1)アルカリ金属塩を支持電解質とする非水電解液と
、再充電可能な正極及び可融合金材料からなる負極を備
えた電池であって、可融合金材料からなる負極が、対極
側表面に充放電反応に関与しない金属層を形成したもの
である非水電解液二次電池。
(1) A battery comprising a nonaqueous electrolyte with an alkali metal salt as a supporting electrolyte, a rechargeable positive electrode, and a negative electrode made of a fusible metal material, wherein the negative electrode made of the fusible metal material is on the opposite electrode side. A non-aqueous electrolyte secondary battery that has a metal layer that does not participate in charging and discharging reactions.
(2)金属層が周期律第4周期の遷移金属元素のうちの
一種以上の元素からなる特許請求の範囲第1頂記載の非
水電解液二次電池。
(2) The non-aqueous electrolyte secondary battery according to claim 1, wherein the metal layer comprises one or more of the transition metal elements in the fourth period of the periodic law.
(3)金属層の厚さが0.05〜10μmである特許請
求の範囲第1項記載の非水電解液二次電池。
(3) The nonaqueous electrolyte secondary battery according to claim 1, wherein the metal layer has a thickness of 0.05 to 10 μm.
JP60281325A 1985-12-13 1985-12-13 Nonaqueous electrolyte secondary cell Pending JPS62140357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60281325A JPS62140357A (en) 1985-12-13 1985-12-13 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60281325A JPS62140357A (en) 1985-12-13 1985-12-13 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JPS62140357A true JPS62140357A (en) 1987-06-23

Family

ID=17637531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60281325A Pending JPS62140357A (en) 1985-12-13 1985-12-13 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JPS62140357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011008987A (en) * 2009-06-24 2011-01-13 Sanyo Electric Co Ltd Negative electrode of lithium secondary battery, and lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011008987A (en) * 2009-06-24 2011-01-13 Sanyo Electric Co Ltd Negative electrode of lithium secondary battery, and lithium secondary battery

Similar Documents

Publication Publication Date Title
JPH0550815B2 (en)
JPS6313264A (en) Nonaqueous electrolyte secondary battery
GB2060242A (en) Rechargeable nonaqueous silver alloy anode cell
JPH10241670A (en) Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JPS62243247A (en) Nonaqueous secondary battery
JP3707617B2 (en) Negative electrode and battery using the same
JPH0665044B2 (en) Lithium organic primary battery
KR101113350B1 (en) Negative electrode and the battery using it
JPS62140357A (en) Nonaqueous electrolyte secondary cell
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JPS62140358A (en) Nonaqueous electrolyte secondary cell
JP2006059714A (en) Negative electrode and battery
JPH0470744B2 (en)
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JPS6188466A (en) Nonaqueous electrolyte secondary battery
JP2798742B2 (en) Non-aqueous electrolyte secondary battery
JPH03182059A (en) Secondary battery with non-aqueous electrolytic solution
JPH0523016B2 (en)
JPS6220246A (en) Nonaqueous electrolyte secondary battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JPS6220248A (en) Nonaqueous electrolyte secondary battery
JPS60167265A (en) Nonaqueous electrolyte secondary battery
JPS59163755A (en) Nonaqueous electrolyte secondary battery
JPS62123651A (en) Lithium secondary battery
JPS60257073A (en) Lithium solid electrolyte secondary battery