JPS6313264A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS6313264A
JPS6313264A JP61156976A JP15697686A JPS6313264A JP S6313264 A JPS6313264 A JP S6313264A JP 61156976 A JP61156976 A JP 61156976A JP 15697686 A JP15697686 A JP 15697686A JP S6313264 A JPS6313264 A JP S6313264A
Authority
JP
Japan
Prior art keywords
metal
aluminum
alkali metal
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61156976A
Other languages
Japanese (ja)
Other versions
JPH07114124B2 (en
Inventor
Fusaji Kita
房次 喜多
Kazumi Yoshimitsu
由光 一三
Kozo Kajita
梶田 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61156976A priority Critical patent/JPH07114124B2/en
Publication of JPS6313264A publication Critical patent/JPS6313264A/en
Publication of JPH07114124B2 publication Critical patent/JPH07114124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase charge-discharge cycle performance by forming a negative electrode with main alkali metal and a metal structure comprising a submetal, and electrochemically alloying the submetal with the alkali metal. CONSTITUTION:A negative electrode 3 is formed in such a way that an alkali metal plate 3a, a metal structure 3b and an alkali metal plate 3c are placed inside a negative can 1, and lithium as the alkali metal and aluminium which is main metal of the metal structure are electrochemically alloyed under the existing of electrolyte. Powdering or breaking of the negative electrode 3 is prevented and charge-discharge performance is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非水電解質二次電池に係わり、さらに詳しく
はその負極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of its negative electrode.

〔従来の技術〕[Conventional technology]

非水電解質二次電池の従来技術とその問題点に°ついて
、非水電解質二次電池中、最も普及しているリチウム二
次電池を例にあげて説明すると、従来は、その負極作製
にあたり、2つの方法が採用されていた。その一つは純
粋な金属リチウムを板状にして負極に用いるものであり
、他の一つは、例えば米国特許第4,002,492号
明細書に示されるように、リチウムをアルミニウムなど
の他の金属と合金化するものであった。
The conventional technology and problems associated with non-aqueous electrolyte secondary batteries will be explained using lithium secondary batteries, which are the most popular among non-aqueous electrolyte secondary batteries, as an example. Two methods were employed. One is to use pure metallic lithium in the form of a plate for the negative electrode, and the other is to use lithium in other materials such as aluminum, as shown in U.S. Pat. No. 4,002,492, for example. It was alloyed with other metals.

前者の金属リチウムをそのまま板状にして用いる方法で
は、充電時にリチウムがデンドライト状(樹枝状)に析
出し、このデンドライト状リチウムが非常に活性で電解
質と反応したり、あるいは根元から折れて脱落し、充放
電反応に利用できなくなって充放電サイクル特性が低く
なるという問題があった。また、前記デンドライト状リ
チウムが充放電の繰り返しによって成長し、正極と負極
を隔離するセパレータを貫通して、正極と接触し内部短
絡を引き起こして電池としての機能を失わせるという問
題も発生した。また、後者のリチウムをアルミニウムな
どと合金化させて負極に用いる方法は、充電時にリチウ
ムとアルミニウムとの電気化学的合金化反応により、リ
チウムをアルミニウム結晶中に拡散させることによって
、リチウムがデンドライト状にとどまるのを少なくして
電解質との反応を抑制したり、デンドライト成長を抑制
しようとするものであるが、デンドライト抑制に関して
は効果が認められるものの、例えばJ。
In the former method, in which metallic lithium is used as it is in the form of a plate, lithium precipitates in the form of dendrites (dendritic branches) during charging, and this dendrite-like lithium is very active and reacts with the electrolyte, or breaks off from the base and falls off. However, there was a problem in that it could no longer be used for charge/discharge reactions, resulting in poor charge/discharge cycle characteristics. In addition, the dendrite-like lithium grows through repeated charging and discharging, penetrates the separator that separates the positive electrode and negative electrode, and comes into contact with the positive electrode, causing an internal short circuit and causing the battery to lose its function. In addition, the latter method of alloying lithium with aluminum etc. and using it for the negative electrode causes lithium to diffuse into the aluminum crystal through an electrochemical alloying reaction between lithium and aluminum during charging, causing the lithium to form a dendrite shape. This method attempts to suppress the reaction with electrolytes and suppress dendrite growth by reducing the amount of lingering, but although it has been found to be effective in suppressing dendrites, for example, J.

0、Bosenhard J、Electroanal
、Chem、+94+77  (1978)に示される
ように、充放電の繰り返しによって、負極が微細化ない
しは崩壊して、金属粒子間の充分な電子伝導が得られな
くなって電池性能が急激に劣化するという問題があった
0, Bosenhard J, Electroanal
, Chem, +94+77 (1978), due to repeated charging and discharging, the negative electrode becomes finer or collapses, making it impossible to obtain sufficient electron conduction between metal particles, resulting in rapid deterioration of battery performance. was there.

そのため、そのような負極の微細化ないしは崩壊を抑制
するための方法として、アルミニウムをマグネシウム、
ホウ素、ガリウムなどの他の金属と合金化することが提
案されている(例えば、特開昭60−86760号公報
)。
Therefore, as a method to suppress the miniaturization or collapse of such negative electrodes, aluminum is replaced with magnesium,
It has been proposed to alloy it with other metals such as boron and gallium (for example, JP-A-60-86760).

しかしながら、本発明者らの検討結果によれば、上記の
ようにアルミニウムを他の金属と合金化する場合は、合
金化領域が非常に制限され(例えば、アルミニウムーホ
ウ素合金の場合、ホウ素が数重量%以下でないと薄い板
状に加工できない)、また充放電サイクル特性もアルミ
ニウム単独に比べて改善されるものの、充分とはいえず
、必ずしも満足すべき結果が得られなかった。
However, according to the study results of the present inventors, when aluminum is alloyed with other metals as described above, the alloying area is extremely limited (for example, in the case of an aluminum-boron alloy, boron is (If it is less than 1% by weight, it cannot be processed into a thin plate shape), and although the charge-discharge cycle characteristics are improved compared to aluminum alone, it is not sufficient, and satisfactory results were not necessarily obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述した従来製品の持つ充放電サイクル特性
が低いという問題点や、充放電の繰り返しにより負極が
微細化ないしは崩壊するという問題点を解決し、充放電
サイクル特性の優れた非水電解質二次電池を提供するこ
とを目的とする。
The present invention solves the above-mentioned problems of the conventional products having poor charge-discharge cycle characteristics and the problem that the negative electrode becomes fine or collapses due to repeated charging and discharging. The purpose is to provide secondary batteries.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、アルカリ金属と合金化する主金属Mと副金属
M′とを合金化させずに分散させて構造体にし、この金
属構造体にアルカリ金属を電気化学的に合金化して負極
を構成することにより、負極が充放電反応を起こす際に
副金属M′を負境の結着剤および導電剤として働かせる
ことによって、前述のような従来製品が持つ問題点を解
決し、充放電サイクル特性の優れた非水電解質二次電池
を提供したものである。
In the present invention, a main metal M and a sub-metal M' that are alloyed with an alkali metal are dispersed without alloying to form a structure, and the alkali metal is electrochemically alloyed with this metal structure to form a negative electrode. By doing so, when the negative electrode causes a charge/discharge reaction, the subsidiary metal M' acts as a binder and a conductive agent in the negative boundary, thereby solving the problems of conventional products as described above, and improving the charge/discharge cycle characteristics. This provides an excellent non-aqueous electrolyte secondary battery.

これを詳述すると次の通りである。This is explained in detail as follows.

例えば、負極に2種類ともリチウムと合金化するMlと
M2とからなる2種類の金属を用いた場合、負極の充放
電反応は次の(1)式および(2)式で表される。
For example, when two types of metals consisting of Ml and M2, both of which are alloyed with lithium, are used for the negative electrode, the charge/discharge reaction of the negative electrode is expressed by the following equations (1) and (2).

Ml +xLi” +xe″″、= M 1L i x
  (1)M2+yLi”+ye’−=M2Liy  
f2)上記(1)式、(2)式の反応は、同時に競争的
におこる場合もあるが、大抵は一方の反応が優先的に起
こり、他方の反応がそれに後続する形となる。そこで、
仮に(1)式の反応が優先的に起こり、(2)式の反応
が後続する場合を考えると、実質上(2)式の反応はほ
とんど起こらない。また金属M2がニッケルなどのよう
にリチウム(L i)と合金化しない金属の場合は(2
)式の反応はまったく起こらない。
Ml +xLi"+xe"", = M 1L i x
(1) M2+yLi"+ye'-=M2Liy
f2) The reactions of formulas (1) and (2) above may occur simultaneously and competitively, but in most cases, one reaction occurs preferentially, followed by the other. Therefore,
If we consider a case where the reaction of formula (1) occurs preferentially and the reaction of formula (2) follows, the reaction of formula (2) practically does not occur. In addition, if metal M2 is a metal that does not alloy with lithium (Li), such as nickel, (2
) reaction does not occur at all.

このように、(2)式の反応が(11式の反応に後続す
るか、あるいは(2)式の反応がまったくおこらない場
合、金MM2は、金属M1がリチウムと電気化学的に合
金化して、その内部にリチウムを吸蔵したり、あるいは
その内部からリチウムを電解質中にイオンとして溶出さ
せるとき(このリチウムの吸蔵、電解質中への溶出によ
って金属M1は体積膨張と体積収縮を繰り返し、負極が
微細化ないし崩壊する原因になる)に、それらの合金化
反応や合金化状態からの離税に関与せず、負極中にその
まま残るので、金1i!M1を結合する結着剤や金属M
1と負掻集電体との電子伝導を確保する導電剤として働
く、その結果、負極の微細化や崩壊が防止され、かつ電
子伝導性が確保されるので、充放電を繰り返しても負極
の劣化が抑制され、したがって、従来製品に比べて、充
放電サイクル特性が向上する。
In this way, if the reaction of equation (2) follows the reaction of equation (11), or if the reaction of equation (2) does not occur at all, gold MM2 is formed by metal M1 being electrochemically alloyed with lithium. , when lithium is occluded inside it, or when lithium is eluted from the inside as ions into the electrolyte (due to this lithium intercalation and elution into the electrolyte, the metal M1 repeats volumetric expansion and contraction, and the negative electrode becomes fine). The binder that binds gold 1i!M1 and the metal M
Acts as a conductive agent to ensure electron conduction between 1 and the negative current collector.As a result, the negative electrode is prevented from becoming fine and disintegrated, and electronic conductivity is ensured, so even after repeated charging and discharging, the negative electrode remains stable. Deterioration is suppressed, and therefore charge-discharge cycle characteristics are improved compared to conventional products.

さらに他の例として、アルカリ金属と合金化する金属M
3およびM4とアルカリ金属と合金化しない金属M5と
の3種類の金属を用いた場合を考えると、負極の充放電
反応は、次の(3)、(4)式に示す通りである。
As yet another example, a metal M that alloys with an alkali metal
Considering the case where three types of metals are used: 3 and M4, and a metal M5 that does not alloy with an alkali metal, the charge/discharge reaction of the negative electrode is as shown in the following equations (3) and (4).

M3 +mL t” +me−、=:M3 L im 
(31M4 +n L i” +n e−#M4 L 
il  f41この場合、金属MSは、前述した金属M
2と同様の理由により、金属M3、M4に対して結着剤
、導電剤として働く。
M3 +mL t" +me-, =: M3 L im
(31M4 +n L i” +n e-#M4 L
il f41 In this case, the metal MS is the metal M
For the same reason as 2, it acts as a binder and a conductive agent for metals M3 and M4.

つまり、アルカリ金属と合金化する金属Mとアルカリ合
金化しない金属M′とを合金化させずに分散させた場合
、充放電時にアルカリ金属と合金化しない金属M′は、
アルカリ金属と合金化する金属Mの結着剤、導電剤とし
て働き、負極の微細化ないしは崩壊を抑制し、その微細
化ないしは崩壊によって引き起こされていた電池特性の
劣化を防止することができる。
In other words, when a metal M that alloys with an alkali metal and a metal M' that does not alloy with an alkali metal are dispersed without being alloyed, the metal M' that does not alloy with an alkali metal during charging and discharging is
It acts as a binder and conductive agent for the metal M that is alloyed with the alkali metal, suppresses the miniaturization or collapse of the negative electrode, and can prevent the deterioration of battery characteristics caused by the miniaturization or collapse.

また、両者ともアルカリ金属と合金化する金属MとM′
を合金化させずに分散させた場合、金属Mが優先的に合
金化するとき、他方の金g M / は結着剤、導電剤
として働くとともにアルカリイオン供与体としても働き
、負極の*m化ないしは崩壊を抑制し、その微細化ない
しは崩壊によって生じていた電池特性の劣化を防止し、
またアルカリイオン供与体として働くことによって電池
の分極を低減し、充放電サイクル特性を向上させる。
Also, metals M and M', both of which alloy with alkali metals,
When the metal M is preferentially alloyed without alloying, the other gold g M / acts as a binder and conductive agent and also acts as an alkali ion donor, and the *m of the negative electrode suppresses the formation or collapse of the battery, and prevents the deterioration of battery characteristics caused by the miniaturization or collapse.
Also, by acting as an alkali ion donor, it reduces battery polarization and improves charge-discharge cycle characteristics.

そこで、前記におけるアルカリ金属と合金化する金属M
を主金属とし、金属M′を開会属として、主金属Mに開
会属M′を合金化させずに分散させた構造体を形成し、
この金属構造体にアルカリ金属を電気化学的に合金化さ
せて負極に用いると、負極の微細化ないしは崩壊が防止
され、充放電サイクル特性を向上させることができる。
Therefore, the metal M alloyed with the alkali metal in the above
is the main metal, metal M′ is the opening metal, and a structure is formed in which the opening metal M′ is dispersed in the main metal M without being alloyed,
When this metal structure is electrochemically alloyed with an alkali metal and used for a negative electrode, the negative electrode is prevented from becoming finer or disintegrated, and the charge/discharge cycle characteristics can be improved.

主金属Mはアルカリ金属と合金化できるものであること
を要するが、開会属M′はアルカリ金属と合金化するも
のでもよいし、アルカリ金属と合金化しないものでもよ
い、このように開会JIM’としてアルカリ金属と合金
化する金属を用いる場合もあるので、上記のようにアル
カリ金属を金属構造体に合金化するという表現をとって
いる。ただし、開会泥M′としてアルカリ金属と合金化
する金属を用いた場合でも、充放電サイクル時の反応は
主に生金IMのアルカリ金属合金化物の反応になる。主
金属Mは、通常、量的にも開会属M′より多くされるが
、アルカリ金属と合金化するという観点からの主金属と
いう意味である。
The main metal M is required to be alloyable with an alkali metal, but the opening metal M' may be a metal that alloys with an alkali metal or a metal that does not alloy with an alkali metal. In some cases, a metal that is alloyed with an alkali metal is used as a metal structure, so the term "alloying an alkali metal with a metal structure" is used as described above. However, even when a metal that alloys with an alkali metal is used as the opening mud M', the reaction during the charge/discharge cycle is mainly a reaction of the alkali metal alloy of the raw metal IM. The main metal M is usually larger in quantity than the opening metal M', but it is meant as a main metal from the viewpoint of alloying with an alkali metal.

主金属Mと開会属M′とを合金化させずに分散させた金
属構造体は、例えばプラ゛ズマ溶射法によって主金属M
と開会属M′とを溶着させて形成することができるし、
蒸着、スパッタなどによっても形成することができる。
A metal structure in which the main metal M and the opening metal M' are dispersed without alloying can be obtained by, for example, using a plasma spraying method.
It can be formed by welding and the opening member M',
It can also be formed by vapor deposition, sputtering, or the like.

また主金属Mと開会属M′とを粉末化し、加圧成形する
ことによって金属構造体を形成することもできる。
Further, the metal structure can also be formed by powdering the main metal M and the opening metal M' and press-molding the powder.

アルカリ金属としては、例えばリチウム(Lt)、ナト
リウム(Na)、カリウム(K)、ルビジウム(Rb)
、セシウム(Cs)などがあげられるが、通常はリチウ
ムが他のアルカリ金属に比べて軽く、単位体積、単位重
量当たりの取り出しうる電気量が多いことから用いられ
る。
Examples of alkali metals include lithium (Lt), sodium (Na), potassium (K), and rubidium (Rb).
, cesium (Cs), etc., but lithium is usually used because it is lighter than other alkali metals and can extract a large amount of electricity per unit volume and unit weight.

主金属Mとしては、例えばアルミニウム(AI)、ビス
マス(Bi)、アンチモン(Sb)、砒素(As)、珪
素(Si)、ガリウム(C,a)、ホウ素(B)、イン
ジウム(In)、ゲルマニウム(Ge)などの単体また
はそれらの合金が用いられる。
Examples of the main metal M include aluminum (AI), bismuth (Bi), antimony (Sb), arsenic (As), silicon (Si), gallium (C, a), boron (B), indium (In), and germanium. A simple substance such as (Ge) or an alloy thereof is used.

副金属M′としては、例えば銅(cu)、チタン(Ti
)、鉄(Fe)、ニッケル(Ni)、タンタル(Ta)
、ジルコニウム(Zr)、ステンレス鋼などアルカリ金
属と合金化しない金属の単体またはそれらの合金が用い
られ、また、前記したアルカリ金属と合金化するビスマ
ス、アンチモン、砒素、珪素、ホウ素、インジウム、ガ
リウム、ゲルマニウムなども副金属として用い得る。そ
して、開会mM′は1種類であることを要求さ机ること
がなく、2種類以上の場合がありミ開会スとしてアルカ
リ金属と合金化しない金属とアルカリ金属と合金化する
金属とが用いられる場合もある。
Examples of the submetal M' include copper (cu) and titanium (Ti).
), iron (Fe), nickel (Ni), tantalum (Ta)
, zirconium (Zr), stainless steel, and other metals that do not alloy with alkali metals, or their alloys, and bismuth, antimony, arsenic, silicon, boron, indium, gallium, which alloy with the above-mentioned alkali metals, Germanium and the like can also be used as secondary metals. The opening mM' is not required to be of one type, but may be two or more types, and a metal that does not alloy with an alkali metal and a metal that alloys with an alkali metal are used as opening mM'. In some cases.

好ましい生金WMと副金属M′の組合せとしては、主金
属Mとしてアルミニウムを用い、副金属M′として銅、
チタン、ニッケル、ビスマス、アンチモン、砒素、珪素
、ホウ素、ガリウム、インジウムのうち1種または2種
以上を用いた組合せがあげられる。
As a preferable combination of raw metal WM and sub metal M', aluminum is used as the main metal M, copper is used as the sub metal M',
Examples include combinations using one or more of titanium, nickel, bismuth, antimony, arsenic, silicon, boron, gallium, and indium.

主金属Mと副金属M′との割合は重量比で1:1〜99
:1にするのが好ましい、これは、主金属Mが上記範囲
より少なくなるとそれに伴って合金化できるアルカリ金
属量も少なくなり、アルカリ金属の使用量が少なくなっ
て電池容量が低下し、また副金属M′が上記範囲より少
なくなると副金属M′の効果が充分に発揮できなくなる
からである。
The ratio of main metal M and sub metal M' is 1:1 to 99 by weight.
:1 is preferable. This is because when the main metal M is less than the above range, the amount of alkali metal that can be alloyed also decreases, the amount of alkali metal used decreases, and the battery capacity decreases. This is because if the amount of the metal M' is less than the above range, the effect of the sub metal M' cannot be sufficiently exhibited.

また負極の構成にあたり、アルカリ金属の仕込み量、つ
まり前記金属構造体に最初に合金化させるアルカリ金属
の量としては、該アルカリ金属と主金属Mとの総量中1
0〜90原子%(atomic%)にするのが好ましい
Further, in configuring the negative electrode, the amount of alkali metal charged, that is, the amount of alkali metal initially alloyed with the metal structure, is 1 out of the total amount of the alkali metal and the main metal M.
The content is preferably 0 to 90 atomic%.

本発明の電池において、アルカリ金属イオン伝導性非水
電解質としては、例えば1.2−ジメトキシエタン、l
、2−ジェトキシエタン、エチレンカーボネート、プロ
ピレンカーボネート、γ−ブチロラクトン、テトラヒド
ロフラン、2−メチルテトラヒドロフラン、1.3−ジ
オキソラン、4−メチル−1,3−ジオキソランなどの
単体または2種以上の混合溶媒に、例えばLiClO4
、LiPF6、LiAsF6、LiSbF6、LiBF
a、LiB(C6H5)4などの溶質を1種または2種
以上熔解した液状の有機非水電解質が用いられる。また
、上記電解質中におけるLiPF6などの溶質を安定化
させるために、例えばヘキサメチルホスホリックトリア
ミドなどの安定化剤を添加することも好ましく保用され
る。
In the battery of the present invention, the alkali metal ion conductive nonaqueous electrolyte includes, for example, 1,2-dimethoxyethane, l
, 2-jethoxyethane, ethylene carbonate, propylene carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, etc. alone or in a mixed solvent of two or more, for example. LiClO4
, LiPF6, LiAsF6, LiSbF6, LiBF
A liquid organic non-aqueous electrolyte in which one or more types of solutes such as LiB(C6H5)4 and the like are dissolved is used. Further, in order to stabilize the solute such as LiPF6 in the electrolyte, it is also preferable to add a stabilizer such as hexamethylphosphoric triamide.

正極活物質としては、例えば二硫化チタン(Ti32)
、二硫化モリブデン(MoS2)、三硫化モリブデン(
MoS3)、二硫化鉄(F e 32)、硫化シルコニ
うム(ZrS2)、二硫化ニオブ(Nbs2>、三硫化
リンニー、ケル(NiPS3)、バナジウムセレナイド
(VSe2)、五酸化ニバナジウム(v205)、十三
酸化穴バナジウム(V50,3) 、へ酸化ニクロム(
Cr20B)、へ酸化三クロム(Cr3013)、リチ
ウム二酸化コバルト(L 1co02) 、L i1+
x V3013などを用いることができる。特に二硫化
チタンは結晶構造が層伏で、その内部でのアルカリ金属
イオンの拡散定数が高く、正極側における充放電反応が
スムーズに進行することがら好用される。
As the positive electrode active material, for example, titanium disulfide (Ti32)
, molybdenum disulfide (MoS2), molybdenum trisulfide (
MoS3), iron disulfide (F e 32), silconium sulfide (ZrS2), niobium disulfide (Nbs2>, phosphorus trisulfide, kel (NiPS3), vanadium selenide (VSe2), vanadium pentoxide (v205) , 13-oxide vanadium (V50,3), nichrome heoxide (
Cr20B), trichromium hexoxide (Cr3013), lithium cobalt dioxide (L 1co02), Li1+
x V3013 or the like can be used. In particular, titanium disulfide is preferably used because it has a layered crystal structure, has a high diffusion constant for alkali metal ions therein, and allows the charging/discharging reaction on the positive electrode side to proceed smoothly.

また電池の形状は、通常、ボタン形にされるが、筒形の
電池にも通用することができる。
Further, the shape of the battery is usually button-shaped, but it can also be used as a cylindrical battery.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving examples.

実施例1 ・ 厚さ0.1mm、直径7.8mmのリチウム板2枚と厚
さ0.3mm、直径7.81で第3図に模式的に示す構
造のアルミニウムー銅構造体を負極材料に用い、負極缶
内に一方のリチウム板、アルミニウムー銅構造体、他方
のリチウム板の順に配置し、以後、常法に準じて電池組
立を行い、電解質の存在下で電気化学的にリチウムを上
記アルミニウムー銅構造体中のアルミニウムと合金化し
て負極とした。
Example 1 - Two lithium plates with a thickness of 0.1 mm and a diameter of 7.8 mm and an aluminum-copper structure having a structure schematically shown in FIG. 3 with a thickness of 0.3 mm and a diameter of 7.8 mm were used as negative electrode materials. One lithium plate, the aluminum-copper structure, and the other lithium plate were placed in this order in the negative electrode can, and then the battery was assembled according to a conventional method, and lithium was electrochemically added to the above in the presence of an electrolyte. It was alloyed with aluminum in the aluminum-copper structure to form a negative electrode.

なお、アルミニウムー銅構造体を示す第3図において、
11はアルミニウムで、12は銅であり、13はステン
レス鋼製網である。このアルミニウムー銅構造体は、ス
テンレス鋼製網を基材にし、その上にアルミニウムをプ
ラズマ溶射法によって溶着し、ついで銅をプラズマ溶射
法によって上記アルミニウム層上に部分的に溶着し、さ
らにアルミニウムをプラズマ溶射法によって銅およびア
ルミニウム上に溶着し、ついで銅をプラズマ溶射法によ
ってアルミニウム層上に部分的に溶着し、このアルミニ
ウムのプラズマ溶射による溶着および銅のプラズマ溶射
による部分的溶着を繰り返して形成したものであり、ア
ルミニウムと銅の割合は重量比で90 : 10である
In addition, in FIG. 3 showing the aluminum-copper structure,
11 is aluminum, 12 is copper, and 13 is a stainless steel mesh. This aluminum-copper structure uses a stainless steel mesh as a base material, on which aluminum is deposited by plasma spraying, then copper is partially deposited on the aluminum layer by plasma spraying, and then aluminum is deposited on top of the mesh by plasma spraying. Copper and aluminum were welded by plasma spraying, then copper was partially welded onto the aluminum layer by plasma spraying, and this welding of aluminum by plasma spraying and the partial welding of copper by plasma spraying were repeated. The weight ratio of aluminum and copper is 90:10.

上記負極を有する電池の断面図を第1図に示す。A cross-sectional view of a battery having the above negative electrode is shown in FIG.

図中、1はステンレス鋼製で表面にニッケルメッキを施
した負極缶で、2は負掻缶1の内面にスポット溶接した
ステンレス鋼製網よりなる負極集電体である。3は負極
で、第2図に示すように、アルカリ金属板(本実施例で
は、前述のようにリチウム板が用いられている)381
金属構造体(本実施例では、第3図に示すようなアルミ
ニウムー銅構造体が用いられている)3bおよびアルカ
リ金属板(本実施例では前述のようにリチウム板が用い
られている) 3cを上記負極缶1内に配置して電解質
の存在下でアルカリ金属としてのリチウムと金属構造体
の主金属Mであるアルミニウムとを合金化することによ
り形成したものである。4は微孔性ポリプロピレンフィ
ルムからなるセパレータ、5はポリプロピレン不織布か
らなる電解質吸収体である。6は二硫化チタン(T i
 32 )を活物質とし、ポリテトラフルオロエチレン
をバインダー止して加圧成形した正極で、厚さ0.5m
m、直径7゜01lI11の円板状をしており、その一
方の面にはステンレス鋼製網からなる正極集電体7が配
置されている。8はステンレス鋼製で表面にニッケルメ
ッキを施した工種缶で、9はポリプロピレン製のガスケ
ットである。そして、この電池には4−メチル−1,3
−ジオキソラン60容量%、112−ジメトキシエタン
34.8%およびヘキサメチルホスホリックトリアミド
5.2容量%からなる混合溶媒にLiPF6を1.0 
mol/ l溶解した液状の有機鼻水電解質が使用され
ている。この電池の負極中のリチウムの組成は約32原
子%で負極理論電気量は18mAhであり、正極の理1
ris気量は8 m A hである。
In the figure, 1 is a negative electrode can made of stainless steel and whose surface is nickel plated, and 2 is a negative electrode current collector made of a stainless steel mesh spot-welded to the inner surface of the negative electrode can 1. 3 is a negative electrode, as shown in FIG. 2, an alkali metal plate (in this example, a lithium plate is used as described above) 381
Metal structure (in this example, an aluminum-copper structure as shown in FIG. 3 is used) 3b and an alkali metal plate (in this example, a lithium plate is used as described above) 3c is placed in the negative electrode can 1 and formed by alloying lithium as an alkali metal and aluminum as the main metal M of the metal structure in the presence of an electrolyte. 4 is a separator made of a microporous polypropylene film, and 5 is an electrolyte absorber made of a polypropylene nonwoven fabric. 6 is titanium disulfide (T i
32) as an active material, a positive electrode made of polytetrafluoroethylene bound with a binder and pressure molded, with a thickness of 0.5 m.
The positive electrode current collector 7 made of a stainless steel mesh is disposed on one surface of the disk. 8 is a stainless steel can with nickel plating on the surface, and 9 is a polypropylene gasket. And this battery has 4-methyl-1,3
- Add 1.0% of LiPF6 to a mixed solvent consisting of 60% by volume of dioxolane, 34.8% of 112-dimethoxyethane and 5.2% by volume of hexamethylphosphoric triamide.
A liquid organic nasal electrolyte dissolved in mol/l is used. The composition of lithium in the negative electrode of this battery is approximately 32 at.
The ris air volume is 8 mA h.

上記電解質におけるヘキサメチルホスホリックトリアミ
ドはLiPF6を安定化させるための安定化剤である。
Hexamethylphosphoric triamide in the electrolyte is a stabilizer for stabilizing LiPF6.

実施例2 実施例1におけるアルミニウムー銅構造体に代えて、第
3図のアルミニウムー銅構造体の胴部分ヲニッケルに置
き換えた構成のアルミニウムーニッケル構造体を用いた
ほかは実施例1と同様の構成からなる非水電解質二次電
池を作製した。
Example 2 The same procedure as in Example 1 was used except that instead of the aluminum-copper structure in Example 1, an aluminum-nickel structure was used in which the body portion of the aluminum-copper structure shown in FIG. 3 was replaced with nickel. A non-aqueous electrolyte secondary battery consisting of the following configuration was fabricated.

実施例3 第3図のアルミニウムー銅構造体に代えて、第4図に模
式的に示すアルミニウムーガリウム−鋼構造体(アルミ
ニウム、ガリウム、銅の重量比80:15:5)を用い
たほかは実施例1と同様の構成からなる非水電解質二次
電池を作製した。なお、アルミニウムーガリウム−鋼構
造体3bを示す第4図において、2)はアルミニウム、
22はガリウム、23は銅、24はステンレス鋼製網で
ある。このアルミニウムーガリウム−鋼構造体は、ステ
ンレス鋼製網を基材にし、その上にアルミニウムをプラ
ズマ溶射法によって溶着し、つぎにガリウムをプラズマ
溶射法によって上記アルミニウム層上に部分的に溶着し
、ついでアルミニウムをプラズマ溶射法によってそのガ
リウムおよび最初のアルミニウム層上に溶着し、つぎに
銅をプラズマ溶射法によってアルミニウム層上に部分的
に溶着し、さらにアルミニウムをプラズマ溶射法によっ
て溶着し、このアルミニウムのプラズマ溶射法による溶
着、ガリウムのプラズマ溶射法による部分的溶着、アル
ミニウムのプラズマ溶射法による溶着、銅のプラズマ溶
射法による部分的溶着を適宜繰り返して形成したもので
ある。
Example 3 In place of the aluminum-copper structure shown in FIG. 3, an aluminum-gallium-steel structure schematically shown in FIG. 4 (weight ratio of aluminum, gallium, and copper 80:15:5) was used. A non-aqueous electrolyte secondary battery having the same configuration as in Example 1 was manufactured. In addition, in FIG. 4 showing the aluminum-gallium-steel structure 3b, 2) is aluminum,
22 is a gallium mesh, 23 is a copper mesh, and 24 is a stainless steel mesh. This aluminum-gallium-steel structure uses a stainless steel mesh as a base material, on which aluminum is welded by plasma spraying, and then gallium is partially deposited on the aluminum layer by plasma spraying, Aluminum is then deposited by plasma spraying onto the gallium and first aluminum layer, copper is then partially deposited onto the aluminum layer by plasma spraying, aluminum is deposited by plasma spraying, and the aluminum is deposited by plasma spraying. It is formed by appropriately repeating welding by plasma spraying, partial welding of gallium by plasma spraying, partial welding of aluminum by plasma spraying, and partial welding of copper by plasma spraying.

実施例4 実施例1におけるアルミニウムー銅構造体に代えて、第
3図に示すアルミニウムー銅構造体の柄部分をビスマス
に置き換えた構成のアルミニウムービスマス構造体を用
いたほかは実施例1と同様の構成からなる非水電解質二
次電池を作製した。
Example 4 The same procedure as Example 1 was used except that instead of the aluminum-copper structure in Example 1, an aluminum-bismuth structure having a structure in which the handle of the aluminum-copper structure shown in FIG. 3 was replaced with bismuth was used. A non-aqueous electrolyte secondary battery having a similar configuration was fabricated.

比較例1 厚さ0.1++w、直径7,8Iのリチウム板2枚と、
厚さ0.3mm、直径7.8mmのアルミニウム板とを
負極材料として用い、負極缶に一方のリチウム板、アル
ミニウム板、他方のリチウム板の順に配置し、電解質の
存在下でリチウムとアルミニウムとを合金化して負極と
したほかは実施例1と同様の構成からなる非水電解質二
次電池を作製した。
Comparative Example 1 Two lithium plates with a thickness of 0.1++w and a diameter of 7.8I,
Using an aluminum plate with a thickness of 0.3 mm and a diameter of 7.8 mm as a negative electrode material, one lithium plate, an aluminum plate, and the other lithium plate were placed in the negative electrode can in this order, and lithium and aluminum were mixed in the presence of an electrolyte. A non-aqueous electrolyte secondary battery having the same structure as Example 1 was produced except that the negative electrode was alloyed.

上記実施例1〜4の電池および比較例1の電池について
、1.0m Aの定電流で0.5mAhの充放電を1.
5〜2.5vの電圧範囲でサイクルさせたときの0.5
mAh放電終了時の電池電圧と充放電サイクル数との関
係を開ぺ、その結果を第5図に示した。
The batteries of Examples 1 to 4 and the battery of Comparative Example 1 were charged and discharged at 0.5 mAh at a constant current of 1.0 mA for 1.
0.5 when cycled in the voltage range of 5-2.5v
The relationship between the battery voltage at the end of mAh discharge and the number of charge/discharge cycles was investigated, and the results are shown in FIG.

第5図に示すように、アルミニウム中にそれぞれ銅、ニ
ッケル、ガリウムと銅、ビスマスを合金化させずに分散
させた実施例1〜4の電池は、アルミニウムだけを用い
た比較例1の電池に比べて、各サイクルにおける0、5
mAh放電終了時の電池電圧が高く、また1、5v終了
で見た場合の0.5mAh放電可能なサイクル数も多く
充放電サイクル特性が優れていた。
As shown in Figure 5, the batteries of Examples 1 to 4 in which copper, nickel, gallium, copper, and bismuth were dispersed in aluminum without alloying were different from the battery of Comparative Example 1 in which only aluminum was used. Compared to 0, 5 in each cycle
The battery voltage at the end of mAh discharge was high, and the number of cycles capable of 0.5 mAh discharge was large when viewed at the end of 1.5 V, and the charge/discharge cycle characteristics were excellent.

実施例5 実施例1におけるアルミニウムー銅構造体に代えて、第
3図のアルミニウムー銅構造体のアルミニウム部分をガ
リウムを4原子%含有するアルミニウム合金に置き換え
た構成のアルミニウム合金−鋼構造体を用いたほかは実
施例1と同様の構成からなる非水電解質二次電池を作製
した。
Example 5 In place of the aluminum-copper structure in Example 1, an aluminum alloy-steel structure was used in which the aluminum part of the aluminum-copper structure shown in FIG. 3 was replaced with an aluminum alloy containing 4 atomic percent gallium. A non-aqueous electrolyte secondary battery having the same configuration as in Example 1 except for the use of the following materials was produced.

比較例2 実施例5におけるアルミニウム合金−fIIl造体に代
えて、厚さ0.3mm、直径7.8闘でガリウムを4原
子%含有するアルミニウムーガリウム合金板を用いたほ
かは実施例5と同様の構成からなる非水電解質二次電池
を作製した。
Comparative Example 2 The same as Example 5 except that an aluminum-gallium alloy plate having a thickness of 0.3 mm and a diameter of 7.8 mm and containing 4 at.% of gallium was used instead of the aluminum alloy-fIIl structure in Example 5. A non-aqueous electrolyte secondary battery having a similar configuration was fabricated.

上記実施例5の電池および比較例2の電池について、1
.QmAの定電流で0.5mAhの充放電を1.5〜2
.5vの電圧範囲でサイクルさせたときの0.5m A
 h放電終了時の電池電圧と充放電サイクル数との関係
を調べ、その結果を第6図に示した。
Regarding the battery of Example 5 and the battery of Comparative Example 2, 1
.. 0.5mAh charging/discharging at QmA constant current 1.5~2
.. 0.5mA when cycled in a 5v voltage range
The relationship between the battery voltage at the end of h-discharge and the number of charge/discharge cycles was investigated, and the results are shown in FIG.

第6図に示すように、銅をアルミニウムーガリウム合金
中に分散させた実施例5の電池は、アルミニウムーガリ
ウム合金だけを用いた比較例2の電池に比べて、各サイ
クルにおける0、5mAh放電終了時の電池電圧が高く
充放電サイクル特性が優れていた。
As shown in Figure 6, the battery of Example 5, in which copper was dispersed in the aluminum-gallium alloy, had a lower discharge rate of 0.5 mAh in each cycle than the battery of Comparative Example 2, which used only the aluminum-gallium alloy. The battery voltage at the end of the test was high and the charge/discharge cycle characteristics were excellent.

実施例6 実施例1におけるアルミニウムー銅構造体に代えて、第
3図のアルミニウムー洞を構造体のアルミニウム部分を
ビスマスに置き喚えた構成のビスマス−鋼構造体を用い
たほかは実施例1と同様の構成からなる非水電解質二次
電池を作製した。
Example 6 The same as Example 1 except that instead of the aluminum-copper structure in Example 1, a bismuth-steel structure having the structure in which the aluminum cavity shown in FIG. 3 was replaced by replacing the aluminum part of the structure with bismuth was used. A non-aqueous electrolyte secondary battery with the same configuration was fabricated.

実施例7 実施例1におけるアルミニウムー銅構造体に代えて、第
4図のアルミニウムーガリウム−鋼構造体のそれぞれの
成分をビスマス、ガリウム、ニッケルに置き換えた構成
のビスマス−ガリウム−ニッケル構造体(ビスマス、ガ
リウム、ニッケルの重量比70 : 20 : 10)
を用いたほかは実施例1と同様の構成からなる非水電解
質二次電池を作製した。
Example 7 In place of the aluminum-copper structure in Example 1, a bismuth-gallium-nickel structure ( Weight ratio of bismuth, gallium, and nickel: 70:20:10)
A non-aqueous electrolyte secondary battery having the same configuration as in Example 1 was manufactured except that the following was used.

比較例3 実施例6におけるビスマス−銅構遺体に代えて、厚さ0
.3m++s、直径?、hmのビスマス板を用いたほか
は実施例6と同様の構成からなる非水電解質二次電池を
作製した。
Comparative Example 3 Instead of the bismuth-copper structure in Example 6, a thickness of 0
.. 3m++s, diameter? A non-aqueous electrolyte secondary battery having the same structure as in Example 6 was produced except that a bismuth plate of .hm was used.

上記実施例6〜7の電池および比較例3の電池について
、1.QmAの定電流で0.5mAhの充放電を1.0
〜1.6 Vの電圧範囲でサイクルさせたときの0.5
rrrA h 11t霜終了時の電池電圧と充放電サイ
クル数との関係を調べ、その結果を第7図に示した。
Regarding the batteries of Examples 6 and 7 and the battery of Comparative Example 3, 1. Charge/discharge of 0.5mAh with constant current of QmA to 1.0
0.5 when cycled over a voltage range of ~1.6 V
The relationship between the battery voltage at the end of rrrA h 11t frost and the number of charge/discharge cycles was investigated, and the results are shown in FIG.

第7図に示すように、銅をビスマス中に合金化させずに
分散させた実施例6の電池やガリウムとニッケルをビス
マス中に合金化させずに分散させた実施例7の電池は、
ビスマスだけを用いた比較例3の電池に比べて、各サイ
クルにおける0、5mAh放電終了時の電池電圧が高く
充放電サイクル特性が優れていた。
As shown in FIG. 7, the battery of Example 6 in which copper was dispersed in bismuth without being alloyed, and the battery in Example 7 in which gallium and nickel were dispersed in bismuth without being alloyed,
Compared to the battery of Comparative Example 3 using only bismuth, the battery voltage at the end of 0 and 5 mAh discharge in each cycle was high and the charge/discharge cycle characteristics were excellent.

実施例8 実施例1におけるアルミニウムー銅構造体に代えて、第
4図のアルミニウムーガリウム−鋼構造体のアルミニウ
ム、ガリウム部分をそれぞれホウ素、アンチモンに置き
換えた構成のホウ素−アンチモンー銅構造体(ホウ素、
アンチモン、銅の重量比70 : 20 : 10)を
用いたほかは実施例1と同様の構成からなる非水電解質
二次電池を作製した。
Example 8 In place of the aluminum-copper structure in Example 1, a boron-antimony-copper structure (boron ,
A non-aqueous electrolyte secondary battery having the same structure as in Example 1 was produced except that the weight ratio of antimony and copper was 70:20:10.

比較例4 実施9118におけるホウ素−アンチモンー銅構造体に
代えて、厚さ0.31、直径7.8a+mのホウ素板を
用いたほかは実施例8と同様の構成からなる非水電解質
二次電池を作製した。
Comparative Example 4 A non-aqueous electrolyte secondary battery having the same configuration as Example 8 was used, except that a boron plate with a thickness of 0.31 and a diameter of 7.8 a+m was used in place of the boron-antimony-copper structure in Example 9118. Created.

上記実施例8の電池および比較例4の電池について、1
.0m Aの定電流で0.25m A hの充放電を1
.5〜2.5vの電圧範囲でサイクルさせたときの0.
25m A h放電終了時の電池電圧と充放電サイクル
数との関係を調べ、その結果を第8図に示した。
Regarding the battery of Example 8 and the battery of Comparative Example 4, 1
.. Charging and discharging 0.25mA h with a constant current of 0mA
.. 0.0 when cycled in the voltage range of 5-2.5V.
The relationship between the battery voltage at the end of 25 mAh discharge and the number of charge/discharge cycles was investigated, and the results are shown in FIG.

第8図に示すように、ホウ素中にアンチモンと銅を分散
させた実施例8の電池は、ホウ素だけを用いた比較例4
の電池に比べて、各サイクルにおける0、25m A 
h放電終了時の電池電圧が高く、また、1.5v終了で
見た場合の0.25m A h放電可焼なサイクル数も
多く充放電サイクル特性が優れていた。
As shown in FIG. 8, the battery of Example 8 in which antimony and copper were dispersed in boron is different from the battery in Comparative Example 4 in which only boron was used.
0,25 mA in each cycle compared to a battery of
The battery voltage at the end of h discharge was high, and the number of 0.25 mA h discharge burnable cycles when viewed at the end of 1.5V was also large, and the charge/discharge cycle characteristics were excellent.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、アルカリ金属と合金
化する主金属M中に開会IBM’を合金化させずに分散
させて形成した金属構造体にアルカリ金属を電気化学的
に合金化させて負極を構成することによって、負極の微
細化ないしは崩壊を防止し、充放電サイクル特性を向上
させることができた。
As explained above, in the present invention, an alkali metal is electrochemically alloyed with a metal structure formed by dispersing the opening IBM' without alloying it in the main metal M to be alloyed with the alkali metal. By configuring the negative electrode, it was possible to prevent the negative electrode from becoming finer or to collapse, and to improve charge/discharge cycle characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る非水電解質二次電池の一例を示す
断面図であり、第2図は第1図に示す電池の負極材料が
合金化する前の状態を示す断面図である。第3図は本発
明の非水電解質二次電池に用いられた金属構造体の一例
を模式的に示す部分拡大断面図であり、第4図は本発明
の非水電解質二次電池に用いられた金属構造体の他の例
を模式的に示す部分拡大断面図である。第5図は実施例
1〜4の電池と比較例1の電池の充放電サイクルを繰り
返した時の0.5mAh放電終了時の電池電圧と充放電
サイクル数との関係を示す図であり、第6図は実施例5
の電池と比較例2の電池の充放電サイクルを繰り返した
時の0.5mAh放電終了時の電池電圧と充放電サイク
ル数との関係を示す図である。第7図は実施例6〜7の
電池と比較例3の電池の充放電サイクルを繰り返した時
の0.5mAh放電終了時の電池電圧と充放電サイクル
数との関係を示す図であり、第8図は実施例8の電池と
比較例4の電池の充放電サイクルを繰り返した時の0.
25mAh放電終了時の電池電圧と充放電サイクル数と
の関係を示す図である。 3・・・負極、 3a、3c・・・アルカリ金属板、3
b・・・金属構造体、 6・・・正極、 11・・・ア
ルミニウム、 12・・・銅、 2)・・・アルミニウ
ム、22・・・ガリウム、 23・・・銅 寸ωへ− 忍累gぷ  − ジ 是 −日  〉 り  囚 w 是 櫂 1) 〉 トQ の 挿 個 任 日  〉 第  8  図 充放電サイクル数(回)
FIG. 1 is a sectional view showing an example of a non-aqueous electrolyte secondary battery according to the present invention, and FIG. 2 is a sectional view showing a state before the negative electrode material of the battery shown in FIG. 1 is alloyed. FIG. 3 is a partially enlarged sectional view schematically showing an example of a metal structure used in the non-aqueous electrolyte secondary battery of the present invention, and FIG. FIG. 3 is a partially enlarged cross-sectional view schematically showing another example of the metal structure. FIG. 5 is a diagram showing the relationship between the battery voltage at the end of 0.5 mAh discharge and the number of charge/discharge cycles when the batteries of Examples 1 to 4 and the battery of Comparative Example 1 are repeatedly charged and discharged. Figure 6 shows Example 5.
FIG. 3 is a graph showing the relationship between the battery voltage at the end of 0.5 mAh discharge and the number of charge/discharge cycles when the battery of Comparative Example 2 and the battery of Comparative Example 2 are repeatedly charged and discharged. FIG. 7 is a diagram showing the relationship between the battery voltage at the end of 0.5 mAh discharge and the number of charge/discharge cycles when the batteries of Examples 6 to 7 and the battery of Comparative Example 3 are repeatedly charged and discharged. Figure 8 shows the 0.0% difference when the battery of Example 8 and the battery of Comparative Example 4 were repeatedly charged and discharged.
It is a figure which shows the relationship between the battery voltage at the end of 25mAh discharge, and the number of charging/discharging cycles. 3... Negative electrode, 3a, 3c... Alkali metal plate, 3
b...Metal structure, 6...Positive electrode, 11...Aluminum, 12...Copper, 2)...Aluminum, 22...Gallium, 23...Copper dimension ω- Shinobu Figure 8 Number of charge/discharge cycles (times)

Claims (8)

【特許請求の範囲】[Claims] (1)正極、アルカリ金属イオン伝導性非水電解質およ
び負極を備えてなる非水電解質二次電池において、上記
負極がアルカリ金属と合金化する主金属Mに副金属M′
を合金化させずに分散させて形成した金属構造体にアル
カリ金属を電気化学的に合金化して構成されていること
を特徴とする非水電解質二次電池。
(1) In a nonaqueous electrolyte secondary battery comprising a positive electrode, an alkali metal ion conductive nonaqueous electrolyte, and a negative electrode, the negative electrode has a main metal M alloyed with the alkali metal and a submetal M'
A non-aqueous electrolyte secondary battery characterized in that it is constructed by electrochemically alloying an alkali metal with a metal structure formed by dispersing the metal without alloying it.
(2)副金属M′がアルカリ金属と合金化しない金属で
ある特許請求の範囲第1項記載の非水電解質二次電池。
(2) The non-aqueous electrolyte secondary battery according to claim 1, wherein the secondary metal M' is a metal that does not alloy with an alkali metal.
(3)副金属M′がアルカリ金属と合金化する金属であ
る特許請求の範囲第1項記載の非水電解質二次電池。
(3) The non-aqueous electrolyte secondary battery according to claim 1, wherein the secondary metal M' is a metal that alloys with an alkali metal.
(4)副金属M′がアルカリ金属と合金化する金属とア
ルカリ金属と合金化しない金属とからなる特許請求の範
囲第1項記載の非水電解質二次電池。
(4) The nonaqueous electrolyte secondary battery according to claim 1, wherein the submetal M' comprises a metal that alloys with an alkali metal and a metal that does not alloy with an alkali metal.
(5)主金属Mと副金属M′との割合が重量比で1:1
〜99:1である特許請求の範囲第1項、第2項、第3
項または第4項記載の非水電解質二次電池。
(5) The ratio of main metal M and sub metal M' is 1:1 by weight
~99:1 Claims 1, 2, and 3
4. The non-aqueous electrolyte secondary battery according to item 4.
(6)主金属Mがアルミニウム、ビスマス、アンチモン
、砒素、ホウ素、ガリウム、インジウム、ゲルマニウム
の単体またはそれらの合金より選ばれた少なくとも1種
で、副金属M′が銅、チタン、鉄、ニッケル、タンタル
、ジルコニウム、ステンレス鋼の単体またはそれらの合
金より選ばれた少なくとも1種である特許請求の範囲第
2項記載の非水電解質二次電池。
(6) The main metal M is at least one selected from aluminum, bismuth, antimony, arsenic, boron, gallium, indium, germanium or an alloy thereof, and the secondary metal M' is copper, titanium, iron, nickel, The nonaqueous electrolyte secondary battery according to claim 2, which is at least one selected from tantalum, zirconium, stainless steel, or an alloy thereof.
(7)主金属Mがアルミニウムで、副金属M′が銅、チ
タン、ニッケル、ビスマス、アンチモン、砒素、珪素、
ホウ素、インジウム、ガリウムまたはゲルマニウムより
選ばれた少なくとも1種である特許請求の範囲1項記載
の非水電解質二次電池。
(7) The main metal M is aluminum, and the secondary metal M' is copper, titanium, nickel, bismuth, antimony, arsenic, silicon,
The nonaqueous electrolyte secondary battery according to claim 1, which is at least one selected from boron, indium, gallium, and germanium.
(8)アルカリ金属がリチウムで、正極活物質が二硫化
チタンである特許請求の範囲第1項、第2項、第3項、
第4項、第5項、第6項または第7項記載の非水電解質
二次電池。
(8) Claims 1, 2, and 3, wherein the alkali metal is lithium and the positive electrode active material is titanium disulfide;
The nonaqueous electrolyte secondary battery according to item 4, 5, 6, or 7.
JP61156976A 1986-07-02 1986-07-02 Non-aqueous electrolyte secondary battery Expired - Lifetime JPH07114124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156976A JPH07114124B2 (en) 1986-07-02 1986-07-02 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156976A JPH07114124B2 (en) 1986-07-02 1986-07-02 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS6313264A true JPS6313264A (en) 1988-01-20
JPH07114124B2 JPH07114124B2 (en) 1995-12-06

Family

ID=15639445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156976A Expired - Lifetime JPH07114124B2 (en) 1986-07-02 1986-07-02 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH07114124B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285865A (en) * 1987-05-18 1988-11-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
EP0690520A1 (en) 1994-05-30 1996-01-03 Canon Kabushiki Kaisha Rechargeable batteries
EP0693792A1 (en) 1994-07-19 1996-01-24 Canon Kabushiki Kaisha Rechargeable batteries having a specific anode and process for the production of them
US5658689A (en) * 1995-09-06 1997-08-19 Canon Kabushiki Kaisha Rechargeable lithium battery having a specific electrolyte
US5698339A (en) * 1994-10-21 1997-12-16 Canon Kabushiki Kaisha Anode with an anode active material-retaining body having a number of pores distributed therein, a rechargeable battery, provided with said anode, and the process for the production of said anode
US5728482A (en) * 1995-12-22 1998-03-17 Canon Kabushiki Kaisha Secondary battery and method for manufacturing the same
US5998063A (en) * 1994-12-02 1999-12-07 Canon Kabushiki Kaisha Lithium secondary cell
WO2000014817A1 (en) * 1998-09-08 2000-03-16 Sumitomo Metal Industries, Ltd. Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
US6051340A (en) * 1994-05-30 2000-04-18 Canon Kabushiki Kaisha Rechargeable lithium battery
US6063142A (en) * 1994-12-01 2000-05-16 Canon Kabushiki Kaisha Process for producing a rechargeable lithium battery having an improved anode coated by a film containing a specific metal oxide material
US6203944B1 (en) 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
US6255017B1 (en) 1998-07-10 2001-07-03 3M Innovative Properties Co. Electrode material and compositions including same
WO2001073872A1 (en) * 2000-03-28 2001-10-04 Sanyo Electric Co., Ltd. Rechargeable battery
US6428933B1 (en) 1999-04-01 2002-08-06 3M Innovative Properties Company Lithium ion batteries with improved resistance to sustained self-heating
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7258950B2 (en) 2000-09-20 2007-08-21 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2016029652A (en) * 2014-07-16 2016-03-03 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. Metal lithium electrode plate
WO2021171736A1 (en) * 2020-02-26 2021-09-02 Fdk株式会社 Solid‑state battery manufacturing method and solid-state battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124357A (en) * 1983-12-08 1985-07-03 Matsushita Electric Ind Co Ltd Negative electrode of nonaqueous electrolyte secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124357A (en) * 1983-12-08 1985-07-03 Matsushita Electric Ind Co Ltd Negative electrode of nonaqueous electrolyte secondary battery

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285865A (en) * 1987-05-18 1988-11-22 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
EP0690520A1 (en) 1994-05-30 1996-01-03 Canon Kabushiki Kaisha Rechargeable batteries
US6596432B2 (en) 1994-05-30 2003-07-22 Canon Kabushiki Kaisha Rechargeable batteries
US6051340A (en) * 1994-05-30 2000-04-18 Canon Kabushiki Kaisha Rechargeable lithium battery
US5641591A (en) * 1994-07-19 1997-06-24 Canon Kabushiki Kaisha Rechargeable batteries having a specific anode and process for the production of them
EP0693792A1 (en) 1994-07-19 1996-01-24 Canon Kabushiki Kaisha Rechargeable batteries having a specific anode and process for the production of them
US5698339A (en) * 1994-10-21 1997-12-16 Canon Kabushiki Kaisha Anode with an anode active material-retaining body having a number of pores distributed therein, a rechargeable battery, provided with said anode, and the process for the production of said anode
US6063142A (en) * 1994-12-01 2000-05-16 Canon Kabushiki Kaisha Process for producing a rechargeable lithium battery having an improved anode coated by a film containing a specific metal oxide material
US5998063A (en) * 1994-12-02 1999-12-07 Canon Kabushiki Kaisha Lithium secondary cell
US5658689A (en) * 1995-09-06 1997-08-19 Canon Kabushiki Kaisha Rechargeable lithium battery having a specific electrolyte
US5728482A (en) * 1995-12-22 1998-03-17 Canon Kabushiki Kaisha Secondary battery and method for manufacturing the same
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6203944B1 (en) 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
US6436578B2 (en) 1998-03-26 2002-08-20 3M Innovative Properties Company Electrode compositions with high coulombic efficiencies
US6255017B1 (en) 1998-07-10 2001-07-03 3M Innovative Properties Co. Electrode material and compositions including same
WO2000014817A1 (en) * 1998-09-08 2000-03-16 Sumitomo Metal Industries, Ltd. Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
US6835496B1 (en) 1998-09-08 2004-12-28 Sumitomo Metal Industries, Ltd. Negative electrode material for a non-aqueous electrolyte secondary battery and processes for its manufacture
KR100366978B1 (en) * 1998-09-08 2003-01-09 마츠시타 덴끼 산교 가부시키가이샤 Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
US6881518B2 (en) 1998-09-08 2005-04-19 Sumitomo Metal Industries, Ltd. Process for manufacture of negative electrode material for a non-aqueous electrolyte secondary battery
US7183018B2 (en) 1998-09-18 2007-02-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
EP2219253A2 (en) 1998-09-18 2010-08-18 Canon Kabushiki Kaisha Electrode material
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7534528B2 (en) 1998-09-18 2009-05-19 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6428933B1 (en) 1999-04-01 2002-08-06 3M Innovative Properties Company Lithium ion batteries with improved resistance to sustained self-heating
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
US7316717B2 (en) 2000-03-28 2008-01-08 Sanyo Electric Co., Ltd. Method of manufacturing an electrode active material particle for a rechargeable battery
WO2001073872A1 (en) * 2000-03-28 2001-10-04 Sanyo Electric Co., Ltd. Rechargeable battery
US7655273B2 (en) 2000-03-28 2010-02-02 Sanyo Electric Co., Ltd. Method of manufacturing an electrode active material particle for a rechargeable battery
US7258950B2 (en) 2000-09-20 2007-08-21 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2016029652A (en) * 2014-07-16 2016-03-03 輝能科技股▲分▼有限公司Prologium Technology Co., Ltd. Metal lithium electrode plate
US9755228B2 (en) 2014-07-16 2017-09-05 Prologium Holding Inc. Lithium metal electrode
WO2021171736A1 (en) * 2020-02-26 2021-09-02 Fdk株式会社 Solid‑state battery manufacturing method and solid-state battery

Also Published As

Publication number Publication date
JPH07114124B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
JPS6313264A (en) Nonaqueous electrolyte secondary battery
JP4270109B2 (en) battery
JPH06342673A (en) Lithium secondary battery
JP3197779B2 (en) Lithium battery
JPH0630246B2 (en) Button type lithium organic secondary battery
JPH10308207A (en) Non-aqueous electrolyte secondary battery
US20030068558A1 (en) Non-aqueous electrolyte secondary cell
JP2012529747A (en) Thin film alloy electrode
JPS6166369A (en) Lithium secondary battery
JPH0724219B2 (en) Lithium secondary battery
JPH01124969A (en) Lithium secondary battery
JP2005317447A (en) Battery
JPH08321301A (en) Lithium secondary battery
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same
JPS6220246A (en) Nonaqueous electrolyte secondary battery
JPH0582128A (en) Lithium secondary battery
JPS62119865A (en) Lithium secondary cell
JPS6220248A (en) Nonaqueous electrolyte secondary battery
JP2580235B2 (en) Negative electrode for non-aqueous secondary battery and its manufacturing method
JPS62119866A (en) Lithium secondary cell
JPH02278658A (en) Secondary battery
JPH09259868A (en) Nonaqueous electrolyte secondary battery
JPS6166370A (en) Lithium secondary battery
JPS6174258A (en) Lithium organic secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term