JPS62138239A - Heat-resistant and conductive laminated tabular body - Google Patents

Heat-resistant and conductive laminated tabular body

Info

Publication number
JPS62138239A
JPS62138239A JP60277893A JP27789385A JPS62138239A JP S62138239 A JPS62138239 A JP S62138239A JP 60277893 A JP60277893 A JP 60277893A JP 27789385 A JP27789385 A JP 27789385A JP S62138239 A JPS62138239 A JP S62138239A
Authority
JP
Japan
Prior art keywords
fibers
heat
fiber
conductive
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60277893A
Other languages
Japanese (ja)
Other versions
JPH0453175B2 (en
Inventor
雅夫 高須
一平 加藤
石橋 康昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Paper Manufacturing Co Ltd
Original Assignee
Mishima Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Paper Manufacturing Co Ltd filed Critical Mishima Paper Manufacturing Co Ltd
Priority to JP60277893A priority Critical patent/JPS62138239A/en
Publication of JPS62138239A publication Critical patent/JPS62138239A/en
Publication of JPH0453175B2 publication Critical patent/JPH0453175B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は静電気障讐の防止、電磁波シールド用などに好
適な耐熱性、導電性積層板状体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat-resistant, electrically conductive laminate plate suitable for preventing static electricity, shielding electromagnetic waves, and the like.

さらに詳しくは薄手で4−性の繊維シートを基材とした
熱硬化性樹脂含皮7−トを導電層として有する耐熱性、
導電性積層板状体に関する。
More specifically, it is heat resistant and has a conductive layer made of a thermosetting resin coated with a thin 4-fiber sheet as a base material;
This invention relates to a conductive laminate plate.

〔従来技術〕[Prior art]

エレクトロニクス技術の進歩・に伴い電子機器へのプラ
スチックの利用が普及している。これらは絶縁体で帯電
しやf<、電子機器の静電気や電磁波による障害を起こ
しやすい。これらの防止対策、特に電磁波/−ルド対策
として、回路やi器の設計にシールド材を組込んだり、
回路等をシールド材によりハウジングすることが必須と
なっており、500〜100100Oの電磁波7−ルド
効呆(電界)が30〜40デシベル(dB )以上が一
般に要求される。従来、シールド材としてはプラスチッ
クlこ導電性を付与したもの、いわゆる4tIlt性プ
ラスチツクが用いら几一応の効果をあげている。これら
のうち災素繊維、金属繊維、金属被覆繊維等の導電繊維
がプラスチックζこ混入さ几でいるものは殆んど射出成
型法により製造されている。
With advances in electronics technology, the use of plastics in electronic devices has become widespread. These are insulators that are electrically charged and susceptible to interference due to static electricity and electromagnetic waves in electronic devices. Measures to prevent these, especially electromagnetic waves/radiation, include incorporating shielding materials into the design of circuits and i-devices,
It is essential to house circuits and the like with a shielding material, and an electromagnetic field effect (electric field) of 500 to 100,100 O of 30 to 40 decibels (dB) or more is generally required. Hitherto, as a shielding material, plastics imparted with electrical conductivity, so-called 4tIlt plastics, have been used and have been somewhat effective. Among these, most of those in which conductive fibers such as conductive fibers, metal fibers, and metal-coated fibers are mixed with plastic are manufactured by injection molding.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、射出成型法では、その製法上の制約、たとえば4
電繊維を溶融プラスチックに練込む工程で剪断力fこよ
り切断されやすいので、導電繊維どうしの電気的接触の
コントロールが容易でなく、所望のシールド効果を得る
ためには該繊維を多量に用いる必要があり、コストが高
くなり、また該繊維の多く、のものが比重が大きいため
に、シールド材の重量が重くなるので大塵の電磁波シー
ルド材などでは取扱い上問題があった。市場で使用のも
の一一例を示すとステンレス・スチール繊維を10jt
jt%(1,58容Itチ)混入した厚さ21t′IL
の6−ナイロン411111 板は、ステンレス・スチ
ール4z我維使用t(計算11m)250g/ゴで50
0〜100100Oにおけるシールド効果30〜406
であった。さらに射出成型に適するプ・ラスチックは通
常耐熱性が劣り、高温時の収縮が大きく、自己消炎性が
劣るなどの欠点があった。本発明はこれらの欠点を抄紙
法と熱硬化性樹脂を用いる加圧加熱成盤法を結合して用
いることにより解決を図ったものである。即ち抄紙法に
よれば長繊維の導wL繊維をその繊維長を保持したま\
良好な分散状態で抄造できるので電気的接点が射出成型
法Iこ比較して多(持てること、適切なバインダーを配
合することにより低坪量で導電性の繊維シート、即ち絶
対量として導電繊維量が少ない繊維シートを連続生産で
きること、耐熱性合成パルプのようなlIt熱性繊維を
任意に配合できること等の長所を有する。
Conventionally, the injection molding method has limitations on the manufacturing method, such as 4
In the process of kneading electrical fibers into molten plastic, they are easily cut due to the shearing force f, so it is difficult to control the electrical contact between electrical conductive fibers, and it is necessary to use a large amount of these fibers in order to obtain the desired shielding effect. However, since many of these fibers have a high specific gravity, the weight of the shielding material becomes heavy, which poses a problem in handling when used as an electromagnetic shielding material containing large amounts of dust. An example of what is used on the market is 10 tons of stainless steel fiber.
Thickness 21t'IL mixed with jt% (1,58 volume Itchi)
6-Nylon 411111 The plate is made of stainless steel 4x fiber (calculated 11m) 250g/g and 50
Shielding effect at 0-100100O 30-406
Met. Furthermore, plastics suitable for injection molding usually have disadvantages such as poor heat resistance, large shrinkage at high temperatures, and poor self-extinguishing properties. The present invention aims to solve these drawbacks by combining a papermaking method and a pressure-heating laminating method using a thermosetting resin. In other words, according to the paper-making method, long fibers are used to maintain their fiber length.
Since the paper can be made in a good dispersion state, electrical contacts can be made in large numbers compared to the injection molding method. By blending an appropriate binder, a conductive fiber sheet with a low basis weight can be produced, that is, the absolute amount of conductive fibers. It has advantages such as being able to continuously produce fiber sheets with a small amount of heat, and being able to optionally mix in IT fibers such as heat-resistant synthetic pulp.

本発明は抄紙した繊維シートを熱硬化性樹脂に含浸し、
さらに通常の熱硬化性樹脂含浸祇布に加熱加圧積層して
耐熱性と強度を補充し、耐熱性のある4戒性積層板状体
を提供することを可能にしたものである。
The present invention involves impregnating a paper-made fiber sheet with a thermosetting resin,
Furthermore, it is possible to add heat resistance and strength by laminating a conventional thermosetting resin-impregnated shingle under heat and pressure to provide a heat-resistant four-command laminated plate.

〔問題点を解決しようとする手段〕[Means to try to solve problems]

射出成型法による帳電注プラスチックにおいては、体積
固有抵抗から電磁波シールド効果を算出するSimon
  の式が知られでおり、体積固有抵抗が10°Ω・α
レベル以下であれば電磁波シールド効果30〜40デフ
ベル(dB)  ’1−Jf、出でき、実測値とよく一
致し、また実装可能であるとされている。
Simon calculates the electromagnetic shielding effect from the volume resistivity of injection molded plastics.
The formula is known, and the volume resistivity is 10°Ω・α
It is said that if it is below this level, an electromagnetic wave shielding effect of 30 to 40 defbels (dB)'1-Jf can be achieved, which agrees well with the actual measurement value and can be implemented.

Sfmonの式: iEa波シールド効果(IE界) f:周波数(MHz) 一:体積固有抵抗(Ω・cgL) t:厚さくα) しかしながら導電繊維を混合抄紙して得た繊維シートお
よび樹脂含浸シートのS E gi真値は実測値と著し
く異なるので、目的とする篭@aNシールド効果を得る
ζこは体積固有抵抗以外の指標が必要であることが判っ
た。不発明者は上記指標が児成品中の4’tjL繊維総
菫であることを実験により明かにし、従来の射出成型品
に比し極めで少ない導電繊維量で同等の電磁阪シールド
効果が得られることを見田し本発明Iこ到達した。
Sfmon formula: iEa wave shielding effect (IE field) f: Frequency (MHz) 1: Volume resistivity (Ω・cgL) t: Thickness α) However, fiber sheets and resin-impregnated sheets obtained by mixing and paper-making conductive fibers Since the true value of S E gi is significantly different from the actual measured value, it was found that an index other than volume resistivity is required to obtain the desired cage@aN shielding effect. Through experiments, the inventor revealed that the above indicator is the total amount of 4'tjL fibers in the finished product, and the same electromagnetic shielding effect can be obtained with an extremely small amount of conductive fiber compared to conventional injection molded products. With this in mind, we have arrived at the present invention.

本発明により、1または2以上の耐熱性4′一層を有す
る積層板状体において、該耐熱性導電層が導電繊維と耐
熱性合成パルプを含有する繊維シートを基材とし、該基
材に熱硬化性樹脂が含浸、結合されてなる樹脂含浸シー
トであり、かつ前記1つの耐熱性導電層中の導電繊維量
または前記2以性、導電性積層板状体が提供される。
According to the present invention, in a laminated plate-like body having one or more heat-resistant 4' layers, the heat-resistant conductive layer has a fiber sheet containing conductive fibers and heat-resistant synthetic pulp as a base material, and the base material is heated. A resin-impregnated sheet impregnated and bonded with a curable resin, and the amount of conductive fibers in the one heat-resistant conductive layer or the bi-conductive laminate is provided.

(導電繊維) 本発明において用いら几る導゛亀繊維とは、各種の金属
繊維又は炭素繊維やガラス繊維等の無機繊維の表面を金
属で被覆した金属被覆無機繊維、アクリル繊維などの合
成繊維の表面を金属で被覆した金属被覆無機繊維、炭素
繊維等が主なものであるが、これらの他にも体積固有抵
抗値が小さく耐熱性があるもの、たとえばポリアセチレ
ン等の有磯導TJL v!A維なども使用可BBである
。導電繊維の体積固有抵抗値としては10−3Ω・αレ
ベル以下のものが望ましい。
(Conductive fiber) The conductive fiber used in the present invention refers to various metal fibers or metal-coated inorganic fibers made by coating the surface of inorganic fibers such as carbon fibers and glass fibers with metal, and synthetic fibers such as acrylic fibers. The main ones are metal-coated inorganic fibers whose surfaces are coated with metal, carbon fibers, etc., but in addition to these, there are also materials with low volume resistivity and heat resistance, such as polyacetylene etc. BB can also be used with A fibers. It is desirable that the volume resistivity value of the conductive fibers is below the 10-3 Ω·α level.

金属繊維としては、スチール、@維、ステンレス・スチ
ールr裁、碓、アルミニウム繊維、シンチーウ繊;准、
wA繊維、vr鋼偵維等があるが表面が酸化されにくい
ステンレス・スチール繊維、アルミニウム繊維、ンンチ
ェウ識維等が扱いやすく望ましい。
Metal fibers include steel, @fiber, stainless steel r-cut, 碓, aluminum fiber, and shin-chiu fiber;
There are WA fibers, VR steel fibers, etc., but stainless steel fibers, aluminum fibers, non-oxidizing fibers, etc. are preferable because they are easy to handle.

これらの金属、繊維は一般に引抜き法等lこより種々の
直径のものが製造さαているが、本発明において用いる
には、直径が1〜50μm、好ましくは30μm以下で
、繊維長が1〜4Qxtm、好ましくは3〜25關のも
のがよい。
These metals and fibers are generally produced in various diameters by a pultrusion method, etc., but for use in the present invention, the diameter is 1 to 50 μm, preferably 30 μm or less, and the fiber length is 1 to 4Qxtm. , preferably 3 to 25 degrees.

炭素繊維やガラス繊維に金属を被覆した金属被覆無機繊
維、前記した金属被覆有機繊維を用いる場合にも、被覆
される金属はニッケル、銅、アルミニウム等の酸化さQ
lどくいものが望ましい。炭素、繊維としでは、約14
00℃以下の比較的低温で焼成されるもの力)ら、より
高温で焼成して得られる黒鉛質のものまで用いることが
できる。炭素繊維の形態としでは、繊維長1〜40」、
糸径5〜30μmの短槙維(チ璽ツプドファイバー)が
好ましい。この繊維の表面にニッケルや銅、アルミニウ
ム等の金属を電解メッキ、無電解メッキや真空蒸着等の
方法により0.2〜3.0μm程度の厚さ被覆したもの
を導IE繊維として用いることができる。ガラス繊維を
芯材とする場合には、切断長さ7〜10繕、直径10〜
15μm程度のガラスのチ璽ツブトストランドに、真空
蒸着や金属浴への浸漬等の方法によりニッケルや銅、ア
ルミニウム等の金属を3〜5μmの厚さ被覆した市販の
ものを用いることができる。有機繊維の場合にも同様の
手法で金属被覆さ几たちのを用いることができる。
Even when using metal-coated inorganic fibers such as carbon fibers or glass fibers coated with metal, or metal-coated organic fibers described above, the coated metal is oxidized Q such as nickel, copper, or aluminum.
Something very expensive is preferable. For carbon and fiber, about 14
From those fired at a relatively low temperature of 00° C. or lower, to graphitic materials fired at higher temperatures can be used. In terms of the form of carbon fiber, the fiber length is 1 to 40'',
Short fibers (chipped fibers) with a thread diameter of 5 to 30 μm are preferred. The surface of these fibers can be coated with metals such as nickel, copper, aluminum, etc. to a thickness of about 0.2 to 3.0 μm by electrolytic plating, electroless plating, vacuum deposition, etc., and can be used as conductive IE fibers. . When using glass fiber as the core material, the cutting length should be 7 to 10 mm, and the diameter should be 10 to 10 mm.
Commercially available products can be used, in which a glass chip strand of about 15 μm is coated with a metal such as nickel, copper, or aluminum to a thickness of 3 to 5 μm by vacuum deposition, immersion in a metal bath, or the like. In the case of organic fibers, metal-coated fibers can be used in a similar manner.

導電繊維は配合割合3〜70容量チの範囲で用いること
ができる。たとえば繊維の体積固有抵抗が低いステンレ
ス・スチール繊維(10’−’Ω・αレベル)は比較的
低配合割合でよく、炭素繊維(10−3Ω・αレベル)
は高配合開会が望ましい。
The conductive fibers can be used in a blending ratio of 3 to 70 volumes. For example, stainless steel fibers with low volume resistivity (10'-'Ω・α level) require a relatively low blending ratio, and carbon fibers (10-3Ω・α level)
A high compound opening is desirable.

しかしながら本発明の効果は導電繊維が高濃度に配合さ
れた低坪量繊維シートを用いることにより達成されるの
で少なくとも3容量チ以上、好ましくは5容量チ以上、
更に好ましくは10容址−以上必要である。他万得ら几
た繊維シー鼾の体積固有抵抗が101Ω・αレベル以下
、好ましくは10−3Ω・αレベル以下となる量を配合
することが望ましく、この点からも3容!lk%以上が
要求される0また70容ik%以上配合しても電磁波シ
ールド効果が頭打ちとなること、および相対的に耐熱性
合成パルプなどの配合量が減少するので抄紙性が低下し
やすいからである。
However, since the effects of the present invention are achieved by using a low basis weight fiber sheet in which conductive fibers are blended at a high concentration, the capacity of the sheet is at least 3 or more, preferably 5 or more.
More preferably, 10 volumes or more are required. It is desirable to mix in an amount such that the volume resistivity of the fibers obtained is less than 101Ω・α level, preferably less than 10−3Ω・α level, and from this point of view, 3 volumes! Even if 0 or 70 volume ik% or more is blended, the electromagnetic shielding effect will reach a plateau, and the relative amount of heat-resistant synthetic pulp, etc., will decrease, so papermaking properties will tend to deteriorate. It is.

(耐熱性合成パルプ) 本願発明lこいつ合成パルプとは化学的合成によって作
られた高分子物質を原料とするパルプをいい、またパル
プ、とは抄紙機を用いて紙、湿式不織布を作ることがで
きるように搦み合い性をもたせた繊維状物をいう。搦み
合い性を持たせる手段として製紙用パルプに似せて繊維
表面にフィルプリルを形成させたもの(たとえば特公昭
59−24205号)が好適であるが、このような繊維
形状lこ限定されるものではなく抄紙を目的として作ら
れた上記繊維状物であればよい。本発明に用いる耐熱性
合成パルプとしては、いわゆるエンジニアリングプラス
チックから作られた合成パルプが好適であり、次のもの
を例示できる。ポリ(m −7x ニレンイソフタルア
ミド)やポリ(p−フェニレンテレ7タルアミド〕など
の芳香族系ポリアミドのパルプ、芳香族系ポリアミドイ
ミド系パルプ、ナイロン−6やナイロン−66などの脂
肪族系ポリアミドのパルプ、ポリエチレンテレフタレー
トで代表されるポリエステル系パルプ、ポリカーボネー
ト樹脂からなるパルプ等である。上記例示した耐熱性合
成パルプは紙料中に97〜30容tSを配合して用いる
ことが好ましい。30容量チ以下では繊維シートの地合
が不良となり4域性が不均一となりやすい。なお、該合
成パルプの一部を耐熱性合成樹脂f)hらなるテ目ツプ
ドファイバーやクラフトパルプなどの製紙用パルプlこ
代替して用いることは目的iこより差支えない。繊維シ
ート中の該合成パルプは樹脂き浸工程、積層工程を経た
後もその繊維形態を失わないので、本発明積層板状体の
強化繊維として機能する〇 本発明においては繊維シートを坪量3o〜200I/ゴ
、好ましくは40〜100.p/ゴの低坪量で抄紙する
。後述するように低坪量で導電繊維を高率配合した′a
維ンシーを用いることにより本発明の効果が達成される
からである。抄紙技術と該効果の点から40〜801/
ゴが一層好ましい。
(Heat-resistant synthetic pulp) This invention synthetic pulp refers to pulp made from a polymer material made by chemical synthesis, and pulp can be used to make paper or wet nonwoven fabric using a paper machine. It refers to a fibrous material that has a kneading property that allows it to form. As a means of imparting a pulsating property, it is preferable to use fibers in which fill prills are formed on the surface of the fibers to imitate papermaking pulp (for example, Japanese Patent Publication No. 59-24205), but such fiber shapes are limited. Instead, the above-mentioned fibrous material made for the purpose of paper making may be used. As the heat-resistant synthetic pulp used in the present invention, synthetic pulp made from so-called engineering plastics is suitable, and the following can be exemplified. Aromatic polyamide pulp such as poly(m-7x nylene isophthalamide) and poly(p-phenylene tele-7 thalamide), aromatic polyamideimide pulp, and aliphatic polyamide pulp such as nylon-6 and nylon-66. pulp, polyester pulp typified by polyethylene terephthalate, pulp made of polycarbonate resin, etc.The above-mentioned heat-resistant synthetic pulp is preferably used by blending 97 to 30 volumes tS into the paper stock. In the following, the formation of the fiber sheet tends to be poor and the four-zone property becomes uneven.In addition, a part of the synthetic pulp is made of heat-resistant synthetic resin f) h for paper manufacturing such as threaded fibers and kraft pulp. It may be used in place of pulp for any purpose. The synthetic pulp in the fiber sheet does not lose its fiber form even after the resin impregnation process and the lamination process, so it functions as the reinforcing fiber of the laminated plate of the present invention. In the present invention, the fiber sheet has a basis weight of 30 ~200 I/g, preferably 40-100. Paper is made with a low basis weight of p/go. 'a', which has a low basis weight and a high proportion of conductive fibers, as described below.
This is because the effects of the present invention can be achieved by using fibers. 40 to 801/ in terms of papermaking technology and effects
Go is more preferred.

このような低坪量で抄紙するためにポリビニルアルコー
ルなどの繊維状バインダーや熱接着性複合繊維を導電繊
維、合成パルプの混合物に添加して用いることが好まし
く、特に熱接着性複合繊維が好適である。熱接着性複合
繊維とは1本の繊維の中に低融点成分と高融点成分を配
してなる複合d!、維であって熱接着に寄与しうるもの
をいう。高融点成分は前記耐熱性合成パルプと同様に耐
熱性樹脂からなるものが望ましいが、低融点成分、高融
点成分ともに熱可塑性樹脂からなる熱可塑性複合繊維が
入手容易であり本発明に用いつる。熱可塑性複合繊維1
下榎合礒維という)は一般に複合紡糸法等によって製造
されるものである。1例として特公昭48−15684
号に開示されるものが挙げられる。低融点成分としでは
低蓄度ポリエチレン、エチレン酢酸ビニル共ム曾体、ポ
リビニルアルコール等、高融黒成分としてはポリプロピ
レン、ポリエステル等が知られている。複合繊維の形態
は、高融点成分を芯とし、低融点成分を鞘とした同心状
の或いは偏心状の構造や芯部分が繊維の表面lこ露出し
たものの他、低融点成分と高融点成分が連続的で変則的
に複合しているものでもよく、高融点成分が溶融Tる以
前の温度で、低融点成分が、繊維シートの配合原料中で
他の紙料を相互に結合できるように複合繊維の外部に溶
出可能な形態であれば特に制限されない。ま7s 、複
合繊維は、抄紙工程中の脱落を防止し、且つ均一な配合
を可能とするため繊維長が2〜401程度のものが望ま
しく、特に好ましくは3〜15xmのものであり、単繊
度は1〜30デニール、好ましくは1.5〜8デニール
のものである。複合繊維を用いる場合ζこは他の紙料混
合物lこ対して30重量%以下、好ましくは5〜30重
量%の割合で配合する。5重量−以下では抄紙および抄
紙後の加工上、前記繊維シートの補強効果が小さく、3
0重量%を超えると完成品の耐熱性に間′!JAを生ず
る。特に望ましい配合割合は10〜20ii%である。
In order to make paper with such a low basis weight, it is preferable to add a fibrous binder such as polyvinyl alcohol or heat-adhesive conjugate fibers to a mixture of conductive fibers and synthetic pulp, and heat-adhesive conjugate fibers are particularly suitable. be. Heat-adhesive composite fiber is a composite d! made of a single fiber containing a low melting point component and a high melting point component. , refers to fibers that can contribute to thermal adhesion. The high melting point component is preferably made of a heat resistant resin like the heat resistant synthetic pulp, but thermoplastic composite fibers made of thermoplastic resins for both the low melting point component and the high melting point component are easily available and can be used in the present invention. Thermoplastic composite fiber 1
(referred to as Shimoenoki fiber) is generally produced by a composite spinning method. As an example, Special Public Interest Publication No. 48-15684
Examples include those disclosed in No. Low-melting point components include low-accumulation polyethylene, ethylene-vinyl acetate copolymers, polyvinyl alcohol, and high-melting black components include polypropylene, polyester, and the like. Composite fibers have a concentric or eccentric structure with a high melting point component as a core and a low melting point component as a sheath, or a structure in which the core portion is exposed on the surface of the fiber, or a composite fiber with a low melting point component and a high melting point component as a sheath. It may be continuous and irregularly composite, and the composite may be such that the low melting point component can mutually bond other paper materials in the blended raw material of the fiber sheet at a temperature before the high melting point component melts. There is no particular restriction as long as it is in a form that can be eluted to the outside of the fibers. In order to prevent the composite fiber from falling off during the paper-making process and to enable uniform blending, it is desirable that the fiber length is about 2 to 40 cm, particularly preferably 3 to 15 x m, and the fiber length is preferably 3 to 15 x m. has a denier of 1 to 30 denier, preferably 1.5 to 8 denier. When composite fibers are used, the amount of ζ is not more than 30% by weight, preferably 5 to 30% by weight, based on the other paper stock mixtures. If the weight is less than 5, the reinforcing effect of the fiber sheet will be small in terms of paper making and post-paper processing.
If it exceeds 0% by weight, the heat resistance of the finished product will deteriorate! Causes JA. A particularly desirable blending ratio is 10 to 20ii%.

たゾし比較的高坪量の繊維シートの場合には複合繊維の
配合を要しない場合もある。
In the case of a fiber sheet with a relatively high basis weight, it may not be necessary to incorporate composite fibers.

(繊維シート) 本発明の1つの構成要素である繊維シートは次のように
して製造される。導電繊維と耐熱性合成パルプおよび必
要により複合繊維を予め水、温水等に投入、攪拌して離
解しておき、こnらを混合する。混合紙料は十分に攪拌
して均一なものとして抄紙工程に送る。抄紙においては
、通常の製紙技術において用いら几る、すき綱部、圧搾
部、乾燥部等からなる抄紙機を用いることができる。複
合繊維を配合した場合には湿紙を、乾燥部で複合繊維の
低融点成分の融点以上で、同高融点成分の融点より低い
温度で加熱乾燥して、低融点成分のみを溶融して紙料が
相互に接着された繊維シートを抄造する。抄造lこあた
っては導電繊維その他の紙料配合を決定するとともに抄
造される繊維シートの米坪量を30〜200g/m’の
範囲で選択する。繊維シートは必要によりさらにスーパ
ーカレンダーなどで加熱加圧し繊維シートの通気度をコ
ントロールする。
(Fiber Sheet) A fiber sheet, which is one component of the present invention, is manufactured as follows. The conductive fibers, heat-resistant synthetic pulp, and if necessary composite fibers are placed in water, hot water, etc. in advance, stirred, and disintegrated, and then mixed. The mixed paper stock is sufficiently stirred to make it homogeneous and sent to the paper making process. In papermaking, a papermaking machine consisting of a plow section, a pressing section, a drying section, etc., which are not used in normal papermaking technology, can be used. When compounded with composite fibers, the wet paper is heated and dried in a drying section at a temperature higher than the melting point of the low melting point components of the composite fibers and lower than the melting point of the high melting components, melting only the low melting point components and producing paper. A fiber sheet is produced in which the materials are bonded to each other. For paper making, the combination of conductive fibers and other paper materials is determined, and the basis weight of the fiber sheet to be made is selected within the range of 30 to 200 g/m'. If necessary, the fiber sheet is further heated and pressurized using a super calendar to control the air permeability of the fiber sheet.

(熱硬化性樹脂) 繊維シートの樹脂含浸1こ用いる熱硬化性樹脂としては
、エポキシ樹脂、不飽和ポリエステル樹脂、メラミン樹
脂、尿素樹脂、ジアリルフタレート樹脂、フェノール樹
脂等、通常高圧′lR層板の製造lこおいて、液状で基
材に含浸できるものが用いられる。また上記樹脂含浸シ
ートが積層される熱硬化性樹脂含浸紙布の基材としては
通常高圧積層板の基材として用いられている各種の有機
質紙布、無機質紙布を常法により液状熱硬化性樹脂液に
含浸させ予備硬化したものを用いることができる。
(Thermosetting resin) Thermosetting resins used for resin impregnation of fiber sheets include epoxy resins, unsaturated polyester resins, melamine resins, urea resins, diallyl phthalate resins, phenolic resins, etc. In the manufacturing process, a liquid that can be impregnated into a substrate is used. In addition, as a base material for the thermosetting resin-impregnated paper cloth on which the resin-impregnated sheet is laminated, various organic and inorganic paper cloths that are usually used as the base material for high-pressure laminates are prepared using a liquid thermosetting method. It is possible to use a material that has been impregnated with a resin liquid and precured.

(本発明の完成品の構造) 本発明の完成品は1または2以上の耐熱性感成層を有す
る高圧積層板状体であって第1図〜第5図に例示した断
面構造を有する。lは導電性樹脂含浸シート(導′亀層
)、2は樹脂含浸紙布である。
(Structure of the finished product of the present invention) The finished product of the present invention is a high-pressure laminate plate having one or more heat-resistant sensitive layers, and has the cross-sectional structure illustrated in FIGS. 1 to 5. 1 is a conductive resin-impregnated sheet (conductive layer), and 2 is a resin-impregnated paper cloth.

図示したように積層の態様は任意であるが、本発明の目
的を達成するためには導1層中の導電繊維総量が積層板
状体の平方米あたり25〜200Iでなけnばならない
。25J以下では30dB以上のシールド効果が得られ
ず、また200.@以上を必要としない力)らである。
As shown, the lamination mode is arbitrary, but in order to achieve the object of the present invention, the total amount of conductive fibers in one conductive layer must be 25 to 200 I per square meter of the laminated plate. If it is less than 25J, a shielding effect of 30dB or more cannot be obtained, and if it is less than 200J. It is a force that does not require more than @).

好適には30〜150〔実験例1〕 紙料として次のものを用いた。耐熱性合成ノくルブトシ
テ、KEVLAR■−29(7’−’jl’a裏、平均
繊維長4°寵、アラミド繊維、比ji1.4)、以下ケ
プ2−という。導電繊維として、辰素繊維(クレカ■チ
ョップ02 o a S s呉羽化学工業製、平均繊維
長3朋、直径12.5μIn 、比重1.6)、以下O
F’という。ニッケル#dE炭素繊維(クレカ■チョッ
プ0106T、呉羽化学工業製、平均繊維長6朋、比J
i3.s ) s以下Ni−0Fという。ステンレス・
スチール繊維(プラ/ズメット■、ブランズクイック社
製、平均繊維長6d1、直径8μm1比賞7.8)、以
下SUSという。ニッケル被覆アクリル繊維(メタック
ス■、高瀬染工澁、平均繊維長3mx、直径14μm1
比A、 2.7 ) 、以下N 1−ANという。以上
°、4橿の導′F!を繊維を選定した。複合繊維として
NBF■−E〔大和紡裏、第1成分エチレン酢ビ共重合
体(融点96〜100℃)と第2成分ポリプロピレン(
融点165〜170℃)からなり第1成分が鞘で第2成
分が芯の鞘芯屋、繊維長5ut、繊度2デニール、比重
1.2、以下NBFという。〕を用いた。
Suitably 30 to 150 [Experimental Example 1] The following paper stock was used. Heat-resistant synthetic fabric, KEVLAR ■-29 (7'-'jl'a lining, average fiber length 4°, aramid fiber, ratio ji1.4), hereinafter referred to as Kep-2-. As the conductive fiber, cinnabar fiber (Kureka Chop 02 o a SS manufactured by Kureha Chemical Industry, average fiber length 3 mm, diameter 12.5 μIn, specific gravity 1.6), hereinafter O
It's called F'. Nickel #dE carbon fiber (Creca Chop 0106T, manufactured by Kureha Chemical Industry, average fiber length 6 mm, ratio J
i3. s) Hereafter referred to as Ni-0F. stainless·
Steel fiber (Plastic/Zumet ■, manufactured by Brands Quick Co., Ltd., average fiber length 6 d1, diameter 8 μm, ratio 7.8), hereinafter referred to as SUS. Nickel-coated acrylic fiber (METAX ■, Takase Senko Shimbun, average fiber length 3mx, diameter 14μm1
ratio A, 2.7), hereinafter referred to as N 1-AN. That's it for the 4th direction! The fibers were selected. As a composite fiber, NBF■-E [Daiwabo lining, first component ethylene vinyl acetate copolymer (melting point 96-100℃) and second component polypropylene (
The fiber length is 5 ut, the fineness is 2 denier, the specific gravity is 1.2, and is hereinafter referred to as NBF. ] was used.

紙料の調整はまづケブラーを水中にて2%濃度で20分
間f%解し、次いで導電繊維を加え20分間離解した。
To prepare the paper stock, first Kevlar was dissolved in water at a concentration of 2% f% for 20 minutes, and then conductive fibers were added and disintegrated for 20 minutes.

これに複合繊維NBFを加え更に5分間離解した。分散
剤としてPAM■(fR鉄化学工業製、ポリアクリルア
ミド)を、また消泡剤としてトリミン■DF1’30(
ミヨシ油脂製)を加え紙料とした〇 各導tpA維を50重庭チ、ケプラー35重激鵞、NB
F15重量%を配合した紙料をテストマシンにより坪j
150.li’/ゴ、10011/ゴ、を目標にし、て
抄紙し++−100℃で乾燥した後、更に150℃、1
0#/dtで1分間熱プレス、繊維シートとした。この
a維シートをそれぞれ15ciX15αの寸法に採り、
2yrtt厚のアクリル板に両面粘着テープで固定し、
その側面に4尾塗料を塗ってシールド効果測定用試料と
した。測定器は■アドバ/テストllI!TR1730
1プラスチックシールド材評価装置を用いた。体積固有
抵抗は日本ゴム協会法5RI82301に準拠して面方
向比抵抗を測定し、こ几を体積固有抵抗値としp、であ
られした。その結果を第1表に示した。表中、坪量10
01/rrt以上のものは50.!il/m’、100
.@/m’の繊維シートを重ねて用いたものである。
Composite fiber NBF was added to this and disintegrated for further 5 minutes. PAM (manufactured by fR Tetsu Kagaku Kogyo, polyacrylamide) was used as a dispersant, and Trimin DF1'30 (manufactured by fR Tetsu Kagaku Kogyo) was used as an antifoaming agent.
(manufactured by Miyoshi Oils and Fats) was added to make paper stock. 50 layers of each conductive tpA fiber, 35 layers of Kepler, NB
A paper stock containing 15% by weight of F was tested by a test machine.
150. Aiming at li'/go and 10011/go, paper was made and dried at ++-100°C, then further heated at 150°C for 1
It was heat pressed at 0#/dt for 1 minute to form a fiber sheet. Each of these a-fiber sheets was taken to a size of 15ci x 15α,
Fix it to a 2yrtt thick acrylic board with double-sided adhesive tape,
A 4-tail paint was applied to the side surface of the sample to measure the shielding effect. The measuring device is Adv/TestllI! TR1730
1. A plastic shielding material evaluation device was used. The volume resistivity was determined by measuring the specific resistance in the planar direction in accordance with Japan Rubber Association method 5RI82301, and using this value as the volume resistivity value, p. The results are shown in Table 1. In the table, basis weight 10
01/rrt or more is 50. ! il/m', 100
.. It is made by stacking fiber sheets of @/m'.

第1表 第1表によnば体積固有抵抗が10′″2ないし10−
3Ω・ロレペルのものであっても繊維シート坪量が小さ
い場合、即ち導tffl維量が少ない場合には1000
 MHz  において30dB以上ノシールド効果が得
られない。即ち10−2Ω・αレベル以下の体積固有抵
抗は本発明の必要条件ではあるが十分条件ではなく、一
定収上の導電繊維量が存在しなければならない。第1表
力)らその数値を拾うとSO8:50.9(シールド効
果35dB)、Ni −OF : 1251 (推定)
、C!F’:150,9(推定)、N1−AN: 75
1となる。導電繊維量の増加はその配合割合をふやした
り、低坪量の繊維シートを2以上使用したり、°坪量を
大きくすることなどlこよって得ることができる。また
第1表によれば坪量の大小は体積固有抵抗の大小に殆ど
影響しないが、坪量が大きくなるとシールド効果は着実
Iこ上昇することが判る。
Table 1 According to Table 1, the volume resistivity is 10'''2 to 10-
Even if it is a 3Ω・Lorepel product, if the basis weight of the fiber sheet is small, that is, if the amount of conductive tffl fiber is small, 1000
No shielding effect can be obtained at 30 dB or more at MHz. That is, a volume resistivity of 10<-2 >[Omega].alpha. level or less is a necessary condition for the present invention, but not a sufficient condition, and a certain amount of conductive fibers must be present. Picking up the values from 1st surface force), SO8: 50.9 (shielding effect 35 dB), Ni -OF: 1251 (estimate)
, C! F': 150.9 (estimated), N1-AN: 75
It becomes 1. The amount of conductive fibers can be increased by increasing the blending ratio, using two or more fiber sheets with low basis weight, increasing the basis weight, etc. Further, according to Table 1, the magnitude of basis weight has little effect on the magnitude of volume resistivity, but it is understood that as the basis weight increases, the shielding effect steadily increases.

〔実験例2〕 導電繊維の高濃度配合の必要性を知るためおよび導tf
a維総量の下限を求めるために、実験例1で最良の結果
を得たSUSを用いて次の実験を行った0 NBFの配合を一定とし8USの配合割合を変えて次の
3種の紙料を調製した。部は重量部である。SUB 1
0. NBF 15、ケプラー75各部のもの、5U8
20、NBF 15、ケプ−)−65各部のもの、5U
S50、NBF 15、ケプラー35各部のもの。
[Experimental example 2] To understand the necessity of high concentration blending of conductive fibers and conductive tf
In order to find the lower limit of the total amount of a-fibers, the following experiment was conducted using SUS, which obtained the best results in Experimental Example 1.The following three types of paper were prepared by keeping the blending ratio of 0NBF constant and changing the blending ratio of 8US. A sample was prepared. Parts are parts by weight. SUB1
0. NBF 15, Kepler 75 parts, 5U8
20, NBF 15, Kepu-)-65 parts, 5U
S50, NBF 15, Kepler 35 parts.

実験例1の製造法に従って米坪量50I/ゴ、1001
7/ゴ、tso、F/ゴ、zoom/ゴを目標に抄紙し
、スーパーカレンダー掛けをして繊維シートを抄造した
。そして体積固有抵抗およびシールド効果を測定し第2
表および第6図に示した。
According to the manufacturing method of Experimental Example 1, the basis weight is 50 I/g, 1001
Paper was made with the targets of 7/go, tso, F/go, and zoom/go, and was subjected to super calendaring to produce a fiber sheet. Then, the volume resistivity and shielding effect were measured and the second
It is shown in the table and FIG.

第  2  表 第2表1cよnば坪!57.81/rrt、5US50
重量%即ちSUB量が平方米あたり28.9 /で10
00 MHz  でのシールド効果30 dBを示して
いる。また配合率が高くなるほど体積固有抵抗は低下す
る。坪量が増加すると導電繊維量が増加しシールド効果
は上る。
Table 2 Table 2 Table 1c Yo nba tsubo! 57.81/rrt, 5US50
Weight % or SUB amount is 28.9 / 10 per square meter
It shows a shielding effect of 30 dB at 00 MHz. Further, the higher the blending ratio, the lower the volume resistivity. As the basis weight increases, the amount of conductive fibers increases and the shielding effect increases.

第6図は第2表のSUS配合率、坪量、SUB使用量と
の関係を模式的にグラフ化したものである。この図より
SO8使用量が20 fi/rrtのシールド効果は5
US20重ikチ配合の坪量100g/ゴ繊維シートの
方が10重鷺チ配合の坪量zoog/ゴ繊維シートより
も高く、またSUS総童25p/m’で50重量s配合
の坪、i50.@/m’繊維’/  ) Q) シー 
A/ド効果ハSU S If’a kt 4017/m
’で20重t%配会の坪yjk2009/rrt繊維シ
ートよりもや\高いことが判る。この傾向はSO8の配
合率が高い同志の比較、第6図の50+!5−50重盆
チ以下の領域では、少ないSUB使用使用人きなシール
ド効果を得るためにはSO8を高濃度tこ起句、て低坪
量たとえば100.p/ゴ以下で抄紙すわば良いことが
判る。以上のことがら本発明における最低導電繊維量は
たとえば坪量4og/rrtの繊維シートlこSO8を
60重jft%以上(18容jt%以上)配合し平方米
あたり最低25yとすることができる。
FIG. 6 is a schematic graph showing the relationship between the SUS blending ratio, basis weight, and amount of SUB used in Table 2. From this figure, the shielding effect when SO8 consumption is 20 fi/rrt is 5
The basis weight of the US 20 weight ik chi blended 100g/go fiber sheet is higher than the 10 weight ikchi blended tsubo/go fiber sheet, and the SUS total weight 25 p/m' and 50 weight s blended tsubo, i50 .. @/m'fiber'/ ) Q) Sea
A/do effect HA SU S If'a kt 4017/m
It can be seen that it is slightly higher than the tsubo yjk2009/rrt fiber sheet with a 20 wt% content. This tendency is shown in Figure 6, when comparing similar products with high SO8 content, 50+! In the area below 5-50 lbs., less SUB use is required to obtain a shielding effect with a high concentration of SO8, and a low basis weight, for example 100. It turns out that it is good to make paper at p/go or less. Based on the above, the minimum amount of conductive fibers in the present invention can be, for example, at least 25 y per square meter by blending 1 fiber sheet with a basis weight of 4 og/rrt and 60 wt% or more (18 volume jt% or more) of SO8.

〔実験例3〕 SUE/ケプラー/NBFの割合を30155/15各
重t%(6,4/65.8/27.8各容量%)とし実
験例1と同様にして坪m6(1/ゴ、100g/ゴ、1
30.!i+/ゴを目標にして繊維シートを作った。樹
脂含浸はフェノール樹脂(大日本イ/キ化学製、電気絶
縁積〕慢板用樹脂、ブライオーフェン■5030)を用
いた。樹脂含浸シートを110℃で2時間風乾した後、
150℃、101c(1/adで30分間硬化させた。
[Experimental Example 3] The ratio of SUE/Kepler/NBF was set to 30155/15 (6, 4/65.8/27.8 volume %), and the same procedure as in Experimental Example 1 was carried out to obtain tsubo m6 (1/g). , 100g/go, 1
30. ! A fiber sheet was made with i+/go as the goal. For resin impregnation, phenol resin (Dainippon I/Ki Kagaku Co., Ltd., electrical insulation product, resin for long plates, Bleiofen ■5030) was used. After air-drying the resin-impregnated sheet at 110°C for 2 hours,
Cured at 150° C., 101c (1/ad) for 30 minutes.

第3表に繊維シートの、第4表に樹脂含浸シートの主な
る物性を示した0通気度はl5O29651979(E
)に準拠し巻紙通気度測定機を用いた。
Table 3 shows the main physical properties of the fiber sheet, and Table 4 shows the main physical properties of the resin-impregnated sheet.
), a wrapping paper air permeability measuring device was used.

第3表 この試験結果から繊維シート坪[132g/ピ、(8U
S総量a9.6g)の樹脂含浸シートで500〜100
0 MHz  における7−ルド効未40〜34 dB
が得られ7こ。SO8の配合率が比較的小さいのでSU
S総:政はや\多いという結果を示した。しかし繊維シ
ートの7−ルド効果が樹脂含浸によって妨げられないこ
とが判った。またシールド効果の実測値と計算値は50
0 MHz  では差が小さいがs 1000MIIz
  では大差があることが判る。なお本発明に用いる導
電繊維、合成パルプはいづれも弾力性があるので抄紙し
たg、紙を前記条件で加熱加圧して密度をあげて供託試
料としたが、第3表に示すとおり通気度が低いものとな
っている。通気度により樹脂含浸量をコントロールでき
るので加熱加圧条件は任意であり、抄  、紙径の原紙
もそのま\繊維シートとして樹脂含浸に用いることがで
きる〇 〔実施例1〕 耐熱性合成パルプおよび導電繊維として実験例1と同様
にそれぞれケプ2−及びSUSを用いた。
Table 3 From this test result, the fiber sheet tsubo [132g/pi, (8U
500 to 100 for a resin-impregnated sheet with a total amount of S of 9.6 g)
7-wavelength effect at 0 MHz: 40-34 dB
I got 7. Since the blending ratio of SO8 is relatively small, SU
General S: The result showed that there were a lot of political parties. However, it has been found that the 7-fold effect of the fiber sheet is not hindered by resin impregnation. Also, the actual measured value and calculated value of the shielding effect are 50
The difference is small at 0 MHz, but at s 1000 MIIz
It turns out that there is a big difference. The conductive fibers and synthetic pulp used in the present invention are both elastic, so the paper was heated and pressed under the above conditions to increase the density and use it as a deposit sample, but as shown in Table 3, the air permeability was It is low. Since the amount of resin impregnation can be controlled depending on the air permeability, the heating and pressurizing conditions can be set arbitrarily, and base paper of any paper size or paper diameter can be used as it is for resin impregnation as a fiber sheet〇 [Example 1] Heat-resistant synthetic pulp and Similar to Experimental Example 1, Kep 2- and SUS were used as conductive fibers, respectively.

ケブラー30gを離解機を用いて31の水中に分散しシ
ートマシンで抄紙し坪量52.79/ゴの耐熱性シート
を作った。他方、ケブラーとSUSを30/70重量部
(70/30容量部)の割合で混合した紙料30gを前
記と同様にして抄紙し坪量73.91/ゴの導電性繊維
シートを作った。次に前記耐熱性シートおよび導電性繊
維シートのそイtぞれにエポキシ樹脂(大日本色材製)
を主剤(L−2626(LV)R)と硬化剤(L−26
26CLV)H)0:)割合f 10 / 3 jt 
量m (!:して含浸し、こnをテストプレス磯で積層
した。
30 g of Kevlar was dispersed in 31 water using a disintegrator, and paper was made using a sheet machine to produce a heat-resistant sheet with a basis weight of 52.79/g. On the other hand, 30 g of a paper stock prepared by mixing Kevlar and SUS in a ratio of 30/70 parts by weight (70/30 parts by volume) was made in the same manner as described above to produce a conductive fiber sheet with a basis weight of 73.91/g. Next, apply epoxy resin (manufactured by Dainippon Shikizai) to each of the heat-resistant sheet and conductive fiber sheet.
The base resin (L-2626(LV)R) and the curing agent (L-26
26CLV) H) 0:) ratio f 10 / 3 jt
It was impregnated with an amount m (!:) and laminated using a test press.

硬化条沖はそ几ぞれを温度100’Q、圧力0.5 k
g/ crdで30分間予備硬化した後重ね合わせ)同
温度で10 #/crIt60分間処理し硬化させた。
Each of the hardened rows is heated at a temperature of 100'Q and a pressure of 0.5 k.
After pre-curing for 30 minutes at 10 g/crd and then stacking), the samples were cured at the same temperature for 60 minutes at 10#/crIt.

得らnた2層の本発明横層板は坪量430.1.9/ゴ
厚さ360μm、密度0.836、SUB使用量51.
7,9/77!″であった0このもの一体積固有抵抗は
1.7X10−”Ω・儂、電磁波シールド効果は500
MHz テ38dB 、 1000MHz テ34dB
であった。
The obtained two-layer horizontal laminate of the present invention had a basis weight of 430.1.9 mm, a thickness of 360 μm, a density of 0.836, and a SUB usage amount of 51.9 mm.
7,9/77! The volume resistivity of this thing was 1.7X10-''Ω・I, and the electromagnetic shielding effect was 500.
MHz: 38dB, 1000MHz: 34dB
Met.

〔実施例2〕 実施例1で作ったけ熱性シート2枚の間lこ、同じ〈実
施例1で作った導′1侃性1’l維シート1枚が介在す
る形の3層宿造の槓l口板を前記エポキシ銅脂2用いて
作った。得られた本発明積層板は坪量648、Og /
 1rts厚さ543/Am、fi度1.19であった
。なお樹脂含浸量は470g/ゴであった。
[Example 2] A three-layer structure with one conductive 1'l fiber sheet made in Example 1 was placed between the two heat-resistant sheets made in Example 1. A hammer lug plate was made using the epoxy copper resin 2 described above. The obtained laminate of the present invention has a basis weight of 648, Og/
The 1rts thickness was 543/Am, and the fi degree was 1.19. Note that the amount of resin impregnated was 470 g/g.

この積層板の体積固有抵抗1.4X10−”Ω・a1電
磁波シールド効果500 MHz  で40dB。
The volume resistivity of this laminate is 1.4 x 10-''Ω・a1.The electromagnetic shielding effect is 40 dB at 500 MHz.

1000 MHz  で33 dBであった。この積層
板の耐熱性を知るために180℃の熱風乾燥中心に24
時間放置した後の縦横および厚さ方向の寸法変化を測定
したところいずれも1%以下であった。
It was 33 dB at 1000 MHz. In order to know the heat resistance of this laminate, it was dried in hot air at 180℃ for 24 hours.
When the dimensional changes in the longitudinal, lateral and thickness directions after being left for a period of time were measured, they were all less than 1%.

また熱処理前後の体積固有抵抗、電磁波シールド効果は
変化が見られなかった。
Furthermore, no change was observed in the volume resistivity and electromagnetic shielding effect before and after heat treatment.

〔実施例3〕 実施例1で作った耐熱上シート3枚の間に、同じく実施
例1で作った導電性繊維シートか1枚づつ計2枚が介在
する5層倦:造の横層板を前記エポキシ樹脂を用いて作
りた。得ら几た本発明、成層板の坪fitl 91 B
g/rye、厚さ970 ttm 、密度2.06、S
O8使用jt1o3.41/rrtsであった。
[Example 3] A 5-layer horizontal laminate board in which two conductive fiber sheets also made in Example 1 were interposed between three heat-resistant top sheets made in Example 1. was made using the above epoxy resin. The obtained and refined present invention, laminated board fitl 91 B
g/rye, thickness 970 ttm, density 2.06, S
O8 usage jt1o3.41/rrts.

また体積固有抵抗3.59 X 10−”Ω・α、電磁
波シールド効果は500 MHz  で49 dB以上
、1000 MHz で38 dBを示した0〔実施例
4〕 実験例1に準じてケブラーのみからなる耐熱性シート坪
Ji 45.5 !! / rIfs導電性愼維シ繊維
(ケプ、y−/5US30/70重量部(70/30容
1部)坪i66.8.@/m’を作った。それぞれにフ
ェノール樹脂(大日本インキ化学製、プライオー7エン
■5030)を含浸し、105°atこて2時間乾燥し
フェノール樹脂含浸シートを得た。こわらを重ね150
℃、10/Cf/crllで30分間処理し坪!272
.7,9/m’、厚さ29s、iμm、密度0.914
、SUS使用童46.81/rrt、フェノール樹脂含
浸1−160.4.F/m’の本発明積層板を得た。こ
の積層板は体積固有抵抗5.1X10−”Ω・α、電磁
波シールド効果500 MHz  で38 dB。
In addition, the volume resistivity was 3.59 x 10-''Ω・α, and the electromagnetic shielding effect was 49 dB or more at 500 MHz and 38 dB at 1000 MHz.0 [Example 4] Consisting of Experimental Example 1, it was made only of Kevlar. Heat-resistant sheet Ji 45.5!! / rIfs conductive fiber fiber (kep, y-/5 US30/70 parts by weight (70/30 volume 1 part) Tsubo i 66.8.@/m' was prepared. Each was impregnated with phenol resin (Dainippon Ink Chemical Co., Ltd., Ply-O 7 En 5030) and dried with a trowel at 105° for 2 hours to obtain a phenol resin-impregnated sheet.
℃, treated for 30 minutes at 10/Cf/crll! 272
.. 7,9/m', thickness 29s, iμm, density 0.914
, SUS used 46.81/rrt, phenolic resin impregnated 1-160.4. A laminate of the present invention having a diameter of F/m' was obtained. This laminate has a volume resistivity of 5.1X10-''Ω・α and an electromagnetic shielding effect of 38 dB at 500 MHz.

1000 MHz  で35 dBを示した。またこれ
を180°Cで24時間熱風乾燥器中心放置したところ
寸法変化は1チ以下であった。
It showed 35 dB at 1000 MHz. When this was left in the center of a hot air dryer at 180°C for 24 hours, the dimensional change was less than 1 inch.

〔発明の効果〕〔Effect of the invention〕

以上lこ説明したように本発明は厚さの薄い熱硬化性樹
脂含浸シート中に導電繊維を高濃度lこ含有せしめた導
電層を積層板状体中lこlまたは2以上設けることによ
り導電繊維の総量を減少することが可能となった。前記
したようIこ従来ステンレス・スチール繊維を10重量
%(1,58容量%)混入した厚さ2 mの6−ナイロ
ン便脂板はステンレス・スチール繊維使用麓(計算値)
250g/m’で500〜100100Oにおけるシー
ルド効果30〜40 dBを得ていた。これlこ対し本
発明は200 fi/rrt以下、経済性、製造の容易
性を考慮すると35〜150.p/ゴの導電繊維を用い
ることにより同等以上のシールド効果を得たものである
。これによりシールド材のコストおよび重量のてい減が
達成されるが、同時に材料として耐熱性合成パルプと熱
硬化性樹脂を用いた力)らシールド材の耐熱化も併せて
実現できたものである。
As explained above, the present invention provides conductivity by providing one or more conductive layers in a laminated plate-like body, each containing one or more conductive fibers at a high concentration in a thin thermosetting resin-impregnated sheet. It became possible to reduce the total amount of fibers. As mentioned above, a 2 m thick 6-nylon fecal plate containing 10% by weight (1,58% by volume) of stainless steel fibers was prepared using stainless steel fibers (calculated value).
A shielding effect of 30 to 40 dB at 500 to 100,100 O was obtained at 250 g/m'. On the other hand, the present invention has a rate of 200 fi/rrt or less, which is 35 to 150 fi/rrt considering economic efficiency and ease of manufacture. By using conductive fibers of P/G, a shielding effect equal to or better than that obtained can be obtained. This reduced the cost and weight of the shielding material, but at the same time made the shielding material more heat resistant due to the use of heat-resistant synthetic pulp and thermosetting resin as materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明の耐熱性、導電性積層板状体の
断面構造の例示であり、1は導電性樹脂含浸シート、2
は樹脂含浸紙布を示す。第6図は1000 MHz  
までの周波数(MHz)領域におけるステンレス・スチ
ール繊維(SUSと略称)の使用量、繊維シート坪量、
SUS配合率と電磁波シールド効果(銃界〕との関係を
あられすグラフである。
1 to 5 are illustrations of the cross-sectional structure of the heat-resistant, conductive laminate of the present invention, in which 1 is a conductive resin-impregnated sheet, 2
indicates resin-impregnated paper fabric. Figure 6 is 1000 MHz
The amount of stainless steel fiber (abbreviated as SUS) used in the frequency (MHz) range up to, the basis weight of the fiber sheet,
This is a graph showing the relationship between SUS compounding ratio and electromagnetic shielding effect (gun field).

Claims (1)

【特許請求の範囲】[Claims] (1)1または2以上の耐熱性導電層を有する積層板状
体において、該耐熱性導電層が導電繊維と耐熱性合成パ
ルプを含有する繊維シートを基材とし、該基材に熱硬化
性樹脂が含浸、結合されてなる樹脂含浸シートであり、
かつ前記1つの耐熱性導電層中の導電繊維量または前記
2以上の耐熱性導電層中の導電繊維総量が平方米あたり
25ないし200g/m^2であって電磁波シールド効
果を示すことを特徴とする耐熱性、導伝性積層板状体。
(1) In a laminate plate having one or more heat-resistant conductive layers, the heat-resistant conductive layer has a base material of a fiber sheet containing conductive fibers and heat-resistant synthetic pulp, and the base material has a thermosetting material. A resin-impregnated sheet made of resin impregnated and bonded,
and the amount of conductive fibers in the one heat-resistant conductive layer or the total amount of conductive fibers in the two or more heat-resistant conductive layers is 25 to 200 g/m^2 per square meter, and exhibits an electromagnetic shielding effect. Heat-resistant, conductive laminate plate.
JP60277893A 1985-12-12 1985-12-12 Heat-resistant and conductive laminated tabular body Granted JPS62138239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60277893A JPS62138239A (en) 1985-12-12 1985-12-12 Heat-resistant and conductive laminated tabular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60277893A JPS62138239A (en) 1985-12-12 1985-12-12 Heat-resistant and conductive laminated tabular body

Publications (2)

Publication Number Publication Date
JPS62138239A true JPS62138239A (en) 1987-06-22
JPH0453175B2 JPH0453175B2 (en) 1992-08-25

Family

ID=17589753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60277893A Granted JPS62138239A (en) 1985-12-12 1985-12-12 Heat-resistant and conductive laminated tabular body

Country Status (1)

Country Link
JP (1) JPS62138239A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278259A (en) * 1991-07-29 1994-10-04 Aica Kogyo Co Ltd Electrically conductive decorative laminated sheet
JP2004247720A (en) * 2003-01-22 2004-09-02 Toray Ind Inc Wave absorber
JP2011144473A (en) * 2010-01-14 2011-07-28 Mitsubishi Plastics Inc Carbon fiber/thermoplastic resin composite material, method for producing the same and electric field-shielding material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125685A (en) * 1979-03-22 1980-09-27 Dainippon Printing Co Ltd Manufacture of color solid image taking element board
JPS5946609A (en) * 1982-09-10 1984-03-16 Fuji Photo Film Co Ltd Production of multicolor optical filter
JPS6039601A (en) * 1983-08-13 1985-03-01 Fuji Photo Film Co Ltd Production of color solid-state image pickup element
JPS6067903A (en) * 1983-09-22 1985-04-18 Fuji Photo Film Co Ltd Manufacture of colored resin film of microcolor filter
JPS6214602A (en) * 1985-07-12 1987-01-23 Stanley Electric Co Ltd Preparation of color filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125685A (en) * 1979-03-22 1980-09-27 Dainippon Printing Co Ltd Manufacture of color solid image taking element board
JPS5946609A (en) * 1982-09-10 1984-03-16 Fuji Photo Film Co Ltd Production of multicolor optical filter
JPS6039601A (en) * 1983-08-13 1985-03-01 Fuji Photo Film Co Ltd Production of color solid-state image pickup element
JPS6067903A (en) * 1983-09-22 1985-04-18 Fuji Photo Film Co Ltd Manufacture of colored resin film of microcolor filter
JPS6214602A (en) * 1985-07-12 1987-01-23 Stanley Electric Co Ltd Preparation of color filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278259A (en) * 1991-07-29 1994-10-04 Aica Kogyo Co Ltd Electrically conductive decorative laminated sheet
JP2004247720A (en) * 2003-01-22 2004-09-02 Toray Ind Inc Wave absorber
JP2011144473A (en) * 2010-01-14 2011-07-28 Mitsubishi Plastics Inc Carbon fiber/thermoplastic resin composite material, method for producing the same and electric field-shielding material

Also Published As

Publication number Publication date
JPH0453175B2 (en) 1992-08-25

Similar Documents

Publication Publication Date Title
KR900004771B1 (en) Compositions convertible to reinforced conductive components
US4882089A (en) Compositions convertible to reinforced conductive components and articles incorporating same
US4983456A (en) Compositions convertible to reinforced conductive components and articles incorporating same
CN106928660B (en) Composite material containing filler, sheet and circuit substrate containing sheet
CA2455053C (en) Sheet material and its use in circuit boards
US7459044B2 (en) Sheet material especially useful for circuit boards
EP1420949B1 (en) Solid sheet material especially useful for circuit boards
US4578308A (en) Laminated board lined with thermally and electrically conductive material
JPS62138239A (en) Heat-resistant and conductive laminated tabular body
JP2020133048A (en) Carbon fiber sheet material, compact, method for producing carbon fiber sheet material and method for producing compact
JPS63294610A (en) Conductive molding plate and its manufacture
JPS6088199A (en) Composite paper
US20040132372A1 (en) Solid sheet material especially useful for circuit boards
JPS6011351A (en) Thermoplastic resin impregnated fiber laminate
JPS6030340B2 (en) Prepreg manufacturing method
JPH0681708B2 (en) Method of manufacturing electromagnetic wave shield sheet
JPS5968990A (en) Printed circuit board
JPS5921774B2 (en) Manufacturing method of cyanate resin laminate
KR950014108B1 (en) Conductive plastic flat type material manufactural method
JPH0679722A (en) Glass cloth, resin-impregnated medium and wiring substrate
JPH02160998A (en) Raw material for electrical insulation laminate
JPH01139850A (en) Sheet for molding conductive material
JP2002212337A (en) Reinforcing fiber substrate, composite dielectric substance and method for producing the same
JPS6013537A (en) Glass cloth for laminated board and electrical laminated board using said cloth
JPH0681273A (en) Glass cloth, resin impregnated substrate and wiring board