JPS6213792B1 - - Google Patents

Info

Publication number
JPS6213792B1
JPS6213792B1 JP43019808A JP1980868A JPS6213792B1 JP S6213792 B1 JPS6213792 B1 JP S6213792B1 JP 43019808 A JP43019808 A JP 43019808A JP 1980868 A JP1980868 A JP 1980868A JP S6213792 B1 JPS6213792 B1 JP S6213792B1
Authority
JP
Japan
Prior art keywords
discharge lamp
power supply
supply member
container
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43019808A
Other languages
Japanese (ja)
Inventor
Tooru Taake
Do Furiieru Berutsusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV, Koninklijke Philips Electronics NV filed Critical Philips Gloeilampenfabrieken NV
Publication of JPS6213792B1 publication Critical patent/JPS6213792B1/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/88Joining of two substrates, where a substantial part of the joining material is present outside of the joint, leading to an outside joining of the joint

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明放電灯の構成例を一部切除して
示す正面図、第2図は同じくその容器と給電部材
との気密封着部の詳細構成の例を示す縦断面図、
第3図は同じくその気密封着部の他の構成例を示
す縦断面図、第4図は本発明放電灯の組立に使用
する給電部材と蓋体との組立体の例を示す縦断面
図、第5図は同じくその気密封着部を製作する製
造装置の例を示す縦断面図、第6図は本発明放電
灯の他の構成例を一部切除して示す正面図であ
る。
FIG. 1 is a partially cutaway front view showing an example of the configuration of the discharge lamp of the present invention, and FIG. 2 is a longitudinal cross-sectional view showing an example of the detailed configuration of the airtight sealing portion between the container and the power supply member.
FIG. 3 is a longitudinal sectional view showing another example of the structure of the airtight sealing part, and FIG. 4 is a longitudinal sectional view showing an example of the assembly of the power supply member and the lid body used in the assembly of the discharge lamp of the present invention. FIG. 5 is a longitudinal cross-sectional view showing an example of a manufacturing apparatus for manufacturing the hermetic sealing portion, and FIG. 6 is a partially cutaway front view showing another example of the configuration of the discharge lamp of the present invention.

【発明の詳細な説明】[Detailed description of the invention]

本発明は、緻密焼結した透光性アルミナ製の容
器をもつて放電空間を構成したガス放電灯に関す
るものである。 一般に、ガス放電灯の灯管管壁は、放電灯自体
の寿命が尽きるまでその動作温度における放電媒
質ガスの化学作用に耐える材質の材料によつて構
成しなければならず、例えば、動作温度が700〜
1500℃の高圧ナトリウム放電灯のように、動作温
度が高く、しかも、放電媒質ガスが侵食性の組成
を有している場合には、普通の硝子や石英硝子の
ような材料は使用し得ない。事実、それらの材料
は、動作中に甚しく侵食されてかなり変色し、放
電発光の透過を阻害するのみならず、その侵食に
よつて放電灯容器の機械的な耐久性が低下したた
めに放電灯が破裂する危険性が増大する。このよ
うな欠点をできるだけ除去するために、放電灯容
器に緻密焼結した透光性アルミナを使用すること
が知られているが、このアルミナとは、少なくと
も95重量%の酸化アルミナからなつており、窯業
技術に慣用の手段で成形した主成分の酸化アルミ
ニウムと仮の結着剤との混合物を極度の高温で焼
結したものと解されたい。 このアルミナは、高圧ナトリウム蒸気放電灯の
みならず、高圧水銀蒸気放電灯、特に、沃素や沃
化物を放電空間に含有する高圧水銀蒸気放電灯に
使用すれば有利であり、事実、この材料は、この
種の放電灯に従来多用されていた石英硝子よりも
かかるガス雰囲気の侵食作用に対して強い耐性を
有している。 上述のような放電灯容器に気密封着すべき電極
や給電部材としては、例えばタングステン、モリ
ブデンあるいはニオビウム等の少数の金属材料の
みが考えられ、特に、ニオビウムは、その膨張係
数が緻密焼結アルミナの膨張係数とよく一致して
いるので、放電灯容器を貫通させる給電部材とし
て使用するに極めて好適である。 しかしながら、給電部材として好適な金属材料
を選択した場合においても、特にニオビウムを使
用する場合には、気密封着部の製作は依然として
極めて困難な作業である。その主な理由は、アル
ミナの融点が1925℃以上と極めて高く、しかも、
アルミナには普通の硝子や石英硝子のような軟化
温度域がないからである。したがつて、かかる問
題を有する気密封着部については、従来、種々の
構造のものが考えられていた。 気密封着部に関する従来の改良手段の一つに、
中空管状の給電部材の使用があり、事実、中空管
状の給電部材は、膨張係数の少々の相違は容易に
補償し得る程度の可撓性を有しているが、かかる
管状体を放電灯容器に直接封着することが困難で
あるために、従来の構造においては、この種の管
状体を気密封着した透光性緻密焼結アルミナの栓
体をあらかじめ用意しておき、その栓体を同じ材
料からなる放電灯容器に気密に封着する間接封着
を行なつていた。 また、他の従来構造においては、緻密焼結アル
ミナからなる蓋体を上述した栓体の替わりに使用
し、その蓋体を放電灯容器の開口端の外側に気密
に封着するようにしていた。 さらに他の従来構造においては、同様に管状の
給電部材に肉厚が比較的薄い大径の鍔を一体に設
け、その薄肉の鍔を放電灯容器の開口の内側に直
接封着しており、かかる構造の気密封着部は、勿
論、極めて大きい可撓性を有している。なお、こ
の気密封着部を変形して、上述の鍔を、容器開口
の内側ではなく、その外側に封着したものもあつ
た。 しかして、上述した従来構造は、そのほとんど
が気密封着部の構成部品の相互間に接着硝子を使
用しており、その理由は、接着硝子を使用しなけ
れば、気密封着部を構成することが本質的に不可
能であるからである。気密封着部構成部品の相互
間に使用すべき封着材すなわち接着硝子は、例え
ば、後述する英国特許第1019821号明細書にも記
載されているように、基本的には酸化アルミニウ
ム、酸化カルシウムおよび酸化マグネシウムの結
合体からなる硝子様材料すなわち硝子形成材料で
あつて、かかる接着硝子を使用しなければ、各構
成部品相互間の気密封着が得られず、例えば、膨
張係数の相違に基づいて給電部材と封着用構成要
素との壁面間の封着部にガス漏洩が生じ、さらに
は、給電部材の金属と封着部材のアルミナとの間
における後述するようなアルミナの焼結による気
密封着を達成することも不可能となる。 しかしながら、上述した従来構造の気密封着部
においては、かかる接着硝子が放電灯の製造時に
も動作時にも極度の高温と侵食性のガス雰囲気と
に曝される構造になつていたので、接着硝子の組
成には、無論、厳しい条件が課せられていた。 また、上述した従来構造の気密封着部を有する
ガス放電灯は、実用上十分に満足な性能が得られ
はするが、気密封着部の製作が困難であるがため
に、製品の完成直後におけるガス漏れによる不良
率がいずれの構造についても極めて高い、という
問題があつた。すなわち、上述した従来構造にお
いては、給電部材を、栓体あるいは蓋体のいずれ
か一方のみを用いて放電灯容器に封着していたが
ために、それらの封着用構成要素と放電灯容器と
の間の封着硝子が存在すべき間隔を比較的狭くせ
ざるを得ず、しかも、かかる構造では、使用する
接着硝子の膨張係数を、いずれの製品において
も、また、個々の製品におけるいずれの個所にお
いても、つねに同一にすることが困難である、と
いう事実が主因となつて十分な信頼性が得られ
ず、その結果として、亀裂を起こす可能性のある
歪みが気密封着部に生じやすい、という問題があ
つた。 本発明の目的は、上述した従来構造の気密封着
部における問題を解決し、使用中は勿論、製造時
においてもガス漏れを生ずることがなく、しか
も、製造容易な構造の気密封着部により給電部材
を放電灯容器に封着した焼結アルミナ容器放電灯
を提供することにある。 すなわち、本発明は、少なくとも給電部材封着
部分を円筒形にして放電空間を構成する透光性緻
密焼結アルミナ製の放電灯容器に少なくとも1個
の給電部材を気密に封着した放電灯において、透
光性緻密焼結アルミナからなる栓体を前記円筒形
の部分に配置して前記放電灯容器に気密に焼結さ
せるとともに、前記栓体に開口を設けてその開口
中に800℃より高く、かつ透光性緻密焼結アルミ
ナおよび前記給電部材を構成する金属の融点より
低い融点を有する接着硝子により前記給電部材を
気密に封着し、さらに、前記結電部材を貫通させ
る開口を有するとともに前記放電灯容器の円筒形
の部分およびその円筒形の部分に配置した前記栓
体を支える透光性緻密焼結アルミナ製の蓋体を、
800℃より高く、かつ、透光性緻密焼結アルミナ
および前記給電部材を構成する金属の融点より低
い融点を有する接着硝子により前記放電灯容器、
前記栓体および前記給電部材に気密に封着したこ
とを特徴とするものである。 前述したように、透光性緻密焼結アルミナ製の
放電灯管体中に栓体を封着する構造は従来知られ
ており、その従来構造においては透光性緻密焼結
アルミナ製の放電灯管体にその栓体を接着硝子あ
るいは低融点の磁器材料により封着することも知
られている。しかしながら、かかる従来構造は、
使用する接着材料の膨張係数がつねに同一である
とは限らない、という事実が主因となつて、十分
な信頼性が得られず、その結果として、亀裂を起
す可能性のある歪みが気密封着部に生じやすい、
という欠点があつた。さらに、上述した従来の構
造では、放電灯容器の内側で容器と栓体とが接す
る隅の部分に接着材料の環状の溜りが生じ、その
溜りの接着材料がガス放電灯の動作中に高い動作
温度で侵食性のガス雰囲気に曝され、その結果と
して、放電灯容器の変色が頻発するだけではな
く、その溜りの部分で接着材料に亀裂が生じ、そ
の亀裂が栓体と容器との間にある接着材料にまで
及ぶことが屡々起る、という欠点があつた。 これに対して、本発明による構造では、栓体を
放電灯容器に焼結によつて封着させるのであるか
ら、上述したような欠点は生じない。一般に、凝
集して結合した金属材料を加熱して焼結させる
と、溶融することなく、金属粉が形成される。す
なわち、焼結とは、金属もしくは金属酸化物の微
粒子の集合を溶融温度以下の温度で加熱してそれ
らの微粒子を相互に溶接し、塊にすることを意味
する。したがつて、上述したように、緻密焼結し
た透光性の多結晶酸化アルミニウムすなわちアル
ミナよりなる接着材料を同じ材料からなる放電灯
容器内で焼結させると、焼結前においては、その
接着材料における微粒子の密度が放電灯容器の器
壁における微粒子の密度よりわずかに高かつたの
に対し、焼結中においては、放電灯容器の器壁の
方が接着材料よりも急速に収縮するので、かかる
焼結によつて気密封着が達成されることになる。 本発明による構造では、放電灯容器とのその開
口端に嵌装した栓体との相互間は、上述したよう
に、同質アルミナの焼結により接着硝子を用いる
ことなく確実に気密封着してあり、かかる状態の
容器端部における栓体の開口に、図面につき詳細
に後述するようにして同質アルミナ製の蓋体の中
央開口に給電部材をあらかじめ嵌装し、その蓋体
の両面に接着硝子形成材料の環体を重ねて嵌装し
た状態の給電部材を嵌装し、栓体と蓋体とを圧着
した状態で加熱して接着硝子形成材料を溶融させ
ることにより、栓体と給電部材との間隙には栓体
の外側から溶融した接着硝子を浸透させ、同時に
蓋体と給電部材との間隙並びに蓋体と栓体および
容器端面との間隙にも溶融した接着硝子を浸透さ
せる。したがつて、まず、給電部材の嵌装部分に
おける表面には、栓体と蓋体とに連続して接する
長い円筒形状の接着硝子の薄層が形成され、しか
も、その薄層は、溶融した接着硝子が栓体の外側
から浸透して形成されたのであるから、その薄層
の端部が容器内の放電空間に露出して侵食性ガス
雰囲気に高温で曝されるおそれがなく、したがつ
て、給電部材に沿つて接着硝子の長い薄層によつ
て安全確実に気密封着が行なわれ、放電灯の動作
により接着硝子に亀裂が生じてガス漏れを起すお
それは確実に除去される。しかも、給電部材に沿
つたかかる長い接着硝子の薄層により、蓋体と栓
体および容器端面との間隙を埋めた接着硝子の薄
層も、放電空間内の侵食性ガス雰囲気から遠く距
つているのであるから、蓋体と栓体および容器端
面との間においても極めて安全確実に気密封着が
行なわれ、結局、本発明放電灯においては、その
製造時においては勿論のこと、放電灯の動作によ
つても接着硝子の亀裂によりガス漏れを生ずるお
それが従来に比して格段に減少し、したがつて、
極めて信頼性の高い気密封着が得られる。なお、
要すれば、放電灯容器の外側で給電部材と蓋体と
が接する隅の部分に接着硝子の環状の溜りを設け
ることができ、かかる接着硝子の溜りは本発明に
よる全体構造の外側に設けられるので、その溜り
の接着硝子が実際に放電空間内の侵食性ガス雰囲
気に侵されることはない。 本発明放電灯は、動作温度が700℃を超えるよ
うに負荷されることが屡々あるので、各部分を封
着する接着硝子は800℃以上の融点を有していな
ければならず、特に、少なくとも1種類のアルカ
リ金属、水銀および少なくとも1種類の稀ガスを
含むガス雰囲気の放電空間で高圧ガス放電を行な
わせる場合にはかかる高温となる。したがつて、
かかる接着硝子を使用する本発明は、アルカリ金
属としてナトリウムを含み、稀ガスとしてキセノ
ンを含むいわゆる高圧ナトリウム蒸気放電灯に適
用すれば特に好適である。 本発明放電灯においては、従来構造の放電灯に
おけると同様に、給電部材の少なくとも栓体およ
び蓋体に気密封着する部分を金属ニオビウムによ
つて構成するのが好適である。 本発明放電灯の特に好適な構成例においては、
放電灯容器の円筒形部分の端面から蓋体を突出さ
せて、その円筒形部分と蓋体とが接する隅の部分
に接着硝子の環状の溜りを設け、その結果とし
て、一層信頼性の高い気密封着が得られるように
してある。 本発明放電灯においても、低圧ナトリウム蒸気
放電灯におけると同様に、真空に排気し、もしく
は、例えばアルゴン等の不活性ガスを充填した外
管を使用して、実際にガス放電が行なわれる放電
空間を構成する放電灯容器をその外管の内部に配
置することができる。なお、この外管は、低圧ナ
トリウム蒸気放電灯におけると同様に、熱絶縁体
の役をする。放電空間とは反対側の端部に開口を
有する管状体をもつて給電部材を構成した本発明
放電灯の特に好適なこの種の構成例においては、
その給電部材の開口端部に緩挿した棒状支持体を
外管に固定してあり、外管に固定した棒状支持体
が放電灯容器に固定した給電部材の開口端部に緩
挿してあるが故に、気密封着部や給電部材を破損
させるような力を給電端部に加えることなく、放
電灯容器が放電灯動作時の高温に応じて容易に伸
長し得るようにしてある。なお、かかる構造にす
ると、給電部材と棒状支持体とを互いに緩挿した
結果として、その相互間に必要な電気的接続が得
られないことがあるので、本発明放電灯の好適な
構成例においては、可撓導線の一端を給電部材に
接続するとともに、その他端を外管の例えばつま
みの部分に設けた電極導線に接続してある。 以下に図面を参照して実施例につき本発明を詳
細に説明する。 第1図に示す本発明放電灯の構成例において、
1は放電空間2を構成する放電灯容器であり、そ
の放電空間2内においては、例えばナトリウム蒸
気、水銀蒸気およびキセノンなどの稀ガスよりな
る雰囲気中でガス放電を行なわせる。放電灯容器
1は緻密焼結した透光性のアルミナにより構成
し、中でもタングステンコイルを備えて周知の態
様に構成した放電電極3および4を放電空間2の
両端部に配置して、それらの電極3および4をニ
オビウム管よりなる給電部材5および6にそれぞ
れ取付ける。7および8は、同様に緻密焼結した
透光性のアルミナよりなる2個の栓体であり、そ
れらの栓体7,8を焼結により放電灯容器1に封
着する。9および10は、同様に緻密焼結した透
光性のアルミナよりなる2個の蓋体であり、それ
らの蓋体9および10を放電灯容器1並びに栓体
7および8の双方にそれぞれ封着する。かかる構
成の放電管1を例えば硬質硝子よりなる外管11
内に収容し、その外管11にはつまみ12を設
け、放電電極4および3に対してそれぞれ同様に
給電部材の役をする2本の支持導線13および1
4をそのつまみ12に封着する。15および16
は、放電電極3および4を支持導線14および1
3にそれぞれ接続する2本の帯状接続部材であ
る。なお、支持導線14には保護用の石英硝子管
17を被せてある。18および19は、外管11
内の真空を保持するための2個のゲツタ環であ
る。 つぎに、第2図に示す放電灯容器1と給電部材
6との気密封着部の詳細な構成の例においては、
第1図に示したガス放電灯1の上端部の構造を拡
大して示してあり、第1図に示したのと同一の部
分には同一記号を付してある。太い黒線20は、
透光性緻密焼結アルミナよりなる栓体7が同一材
料よりなる放電灯容器1に焼結されていることを
示すものである。21は接着硝子であり、この接
着硝子によつて、図に示すように、給電部材6が
蓋体9と栓体7との双方に封着されており、この
接着硝子21は、蓋体9と放電灯容器1の端面お
よび栓体7との間にも配置されている。このよう
に、封着するに好適な個所に長い寸法の接着硝子
層が設けてあるので、極めて優れた気密封着を行
なうことができる。放電空間内において給電部材
6と栓体7とが接する隅の部分には、放電空間の
侵食性ガス雰囲気に侵される可能性のある接着硝
子が本質的に存在せず、また、放電空間の外で接
する隅の部分には接着硝子の環状の溜りができる
が、放電空間の外では侵食性ガス雰囲気によつて
侵されるおそれは全くない。放電電極3のうち、
実際に給電部材6に取付ける部分は例えばモリブ
デンからなる部品22であり、この部品22は、
多くはニオビウムからなる給電部材6の管状開口
内に、例えばチタニウムを用いて周知の態様で取
付けられ、その末端を棒状にしてタングステン棒
23に連結する。24はタングステンコイルであ
り、このタングステンコイル24は、上述した部
品22の棒状末端とタングステン棒とに巻付けて
あり、要すれば、電子を放射し易い物質で被覆す
る。 第3図に示す気密封着部の他の構成例は、上述
した第2図示の例におけると同一の構成要素から
なつており、それらの構成には第2図におけると
同一の記号を付してある。この第3図示の構成例
においては、蓋体9が放電灯容器1より大きい直
径を有しており、その結果として、蓋体9と容器
1とが接する外側の隅の部分に接着硝子の環状の
溜り28が形成されるので、さらに確実容易な気
密封着が保証される。 本発明放電灯を製造するにあたつては、まず、
容器1に栓体7および8を取り付け、それらの栓
体7,8には給電部材を取付けるべき開口を設け
ておく。以上の製造工程はつぎのように実施する
のが好適である。すなわち、第4図に示すよう
に、部品22,23,24からなる放電電極を取
付けた管状の給電部材6を蓋体9の開口部に挿入
した組立体をあらかじめ製作しておき、その蓋体
9の上下両面には硝子様材料すなわち硝子形成材
料の環体25および26をそれぞれ配置する。な
お、この硝子形成材料は、例えば前述した英国特
許第1019821号明細書に記載されているような組
成の混合物である。27は、例えばモリブデンか
らなる細い帯条体もしくは線状体であり、この帯
条体もしくは線状体27は、給電部材6に取付け
て、給電部材6が蓋体9の開口から抜け落ちるの
を防ぐとともに、放電電極を容器1内の正しい位
置に確実に導く役をさせるものである。かかる組
立体を図示のように製作したのち、管状の給電部
材6を栓体7の開口に挿入するようにしてその組
立体を栓体7の上に取付け、かかる状態で加熱し
て硝子形成材料25,26を溶融させると、溶け
た硝子形成材料が給電部材6と蓋体9および栓体
7の双方との間隙に浸透してそれらの相互間を気
密に封着すると同時に、第2図に示したように、
蓋体9と栓体7および容器1の端面との間にも浸
透してそれらの相互間に接着硝子層を形成する。 つぎに、本発明放電灯の製造にあたつてその気
密封着を行なう装置の例を第5図に示す。この封
着装置は、パツキング31を介して基台に取付け
た鐘状硝子30からなつており、その鐘状硝子3
0には、上端に開口を有する管状中子32を収容
してある。その管状中子32の内部に水で冷却し
得るようにした金属台36を配置し、その冷却水
を導管37から供給して管38から排出し得るよ
うにする。金属台36を囲むようにしてその金属
台36に取付けた石英硝子の套管39の周縁で4
本のタングステン棒40を支え、それらのタング
ステン棒40の上端で黒鉛からなる円筒体41を
支える。さらに、その黒鉛円筒体41を囲むよう
にして鐘状硝子30の外側に高周波加熱用コイル
42を配置する。 上述の封着装置による透光性緻密焼結アルミナ
製放電灯容器43の気密封着部の製作はつぎのよ
うにして行なう。すなわち、まず、容器43の上
下両端に、あらかじめ栓体44および45を焼結
によりそれぞれ封着させ、第4図に示した組立体
を上端に載せたものを出発材料として、その全体
を金属台36上に置く。つぎに、管状中子32を
装着し、続いて、ピン35、中間部材33および
スプリング34を取付ける。ついで、鐘状硝子3
0を被せると、ピン35が第4図示の組立体を容
器43の上端、すなわち、栓体44に押し着け
る。このようにして全部を装着した後に、導管3
7から冷却水を供給するとともに、鐘状硝子30
および放電灯容器43の内部全体に例えばアルゴ
ンなどの不活性ガスを充満させる。ついで、高周
波加熱用コイル42により黒鉛円筒体41を加熱
して硝子形成材料の環体48を溶融させ、蓋体4
9および給電部材50を容器43および栓体44
に気密に封着させる。ついで、冷却の後、鐘状硝
子30および管状中子32を取り除いて、上端を
気密封着した放電灯容器43を取り出す。 放電灯容器43の下端の気密封着部も上述した
と同様にして製作するのであるが、その最終気密
封着の前に、放電灯容器内に必要量の水銀を収容
させる。なお、水銀の導入は不活性ガス中で行な
う必要はないが、アルカリ金属を導入する場合に
は不活性ガス中で行なう必要があり、その操作は
つぎのようにして行なう。すなわち、下端を気密
封着した放電灯容器を金属台36上に装着し、つ
いで、管状中子32を装着したのち、導管46を
介して不活性ガス、例えばアルゴンを導入する。
なお、その際、排気口47は閉じておく。不活性
ガスが管状中子32中に充満すると、放電灯容器
43も確実にその不活性ガスで満たされ、余分な
不活性ガスは管状中32の上端から流出する。つ
いで、必要量のアルカリ金属、例えばナトリウム
を放電灯容器43の上端開口部から容器43内に
挿入し、しかる後に、第4図示の組立体を容器4
3の上端開口に取付ける。なお、その際、不活性
ガスは継続して導入しておく。ついで、圧着用部
材33,34,35および鐘状硝子30を順次に
装着したのち、導管46を閉じて、排気管47を
介し、鐘状硝子30内全体を真空に排気する。し
かる後に、放電灯の完成時に必要な稀ガス、例え
ばキセノンを導管46から供給し、ついで、高周
波加熱を行なつて容器43の上端開口を、前述し
たと全く同様に気密に封着する。 つぎに、第6図に示す本発明放電灯の他の構成
例は、第1図に示した構成例とほとんど同じであ
るが、放電灯容器63の上部管状給電部材60に
支持棒61を嵌合させて外管頂点内部の突起62
により同軸に支持してある。この支持棒61は管
状給電部材60に緩挿してあるので、放電灯の動
作中に放電灯容器63が高温に加熱されても、容
器63は、支持棒61と管状給電部材60との相
互滑動により、自由に上方に膨張することができ
る。なお、上部給電部材に対する電流の供給は、
一端をその給電部材60に接続し、他端をつまみ
65に封着した支持導線66に接続した可撓導線
64を介して行なう。 少なくとも給電部材封着部分を円筒形にして放
電空間を構成する透光性緻密焼結アルミナ製の放
電灯容器に少なくとも1個の給電部材を気密に封
着した放電灯において、透光性緻密焼結アルミナ
からなる栓体を前記円筒形の部分に配置して前記
放電灯容器に気密に焼結させるとともに、前記栓
体に開口を設けてその開口中に、800℃より高
く、かつ、透光性緻密焼結アルミナおよび前記給
電部材を構成する金属の融点より低い融点を有す
る接着硝子により前記給電部材を気密に封着し、
さらに、前記給電部材を貫通させる開口を有する
とともに前記放電灯容器の円筒形の部分およびそ
の円筒形の部分に配置した前記栓体を支える透光
性緻密焼結アルミナ製の蓋体を、800℃より高
く、かつ、透光性緻密焼結アルミナおよび前記給
電部材を構成する金属の融点より低い融点を有す
る接着硝子により前記放電灯容器、前記栓体およ
び前記給電部材に気密に封着したことを特徴とす
る焼結アルミナ容器放電灯。
The present invention relates to a gas discharge lamp in which a discharge space is constituted by a container made of densely sintered translucent alumina. In general, the tube wall of a gas discharge lamp must be constructed of a material that can withstand the chemical action of the discharge medium gas at its operating temperature until the end of the lamp's lifetime, e.g. 700~
Materials such as ordinary glass or quartz glass cannot be used when the operating temperature is high and the discharge medium gas has an aggressive composition, such as in high-pressure sodium discharge lamps at 1500°C. . In fact, these materials are severely eroded and discolored during operation, which not only obstructs the transmission of discharge luminescence, but also reduces the mechanical durability of the discharge lamp vessel due to the erosion, making it difficult to use discharge lamps. Increased risk of rupture. In order to eliminate these drawbacks as much as possible, it is known to use densely sintered translucent alumina in the discharge lamp vessel, but this alumina is made of at least 95% by weight alumina oxide. , is understood to be a mixture of the main component aluminum oxide and a temporary binder, shaped by means customary in ceramic technology, and sintered at extremely high temperatures. This alumina is advantageous for use not only in high-pressure sodium vapor discharge lamps, but also in high-pressure mercury vapor discharge lamps, especially those containing iodine or iodide in the discharge space; in fact, this material It has stronger resistance to the corrosive action of the gas atmosphere than quartz glass, which has conventionally been widely used in this type of discharge lamp. Only a few metal materials, such as tungsten, molybdenum, or niobium, can be used as the electrodes and power supply members to be hermetically sealed in the discharge lamp vessel as described above. Since the coefficient of expansion closely matches that of , it is extremely suitable for use as a power supply member that penetrates the discharge lamp container. However, even when a suitable metal material is selected for the power supply member, the fabrication of the hermetic seal remains an extremely difficult task, especially when using niobium. The main reason for this is that the melting point of alumina is extremely high, over 1925℃, and
This is because alumina does not have the same softening temperature range as ordinary glass or quartz glass. Therefore, various structures have been considered for airtight sealing parts having this problem. One of the conventional methods of improving the hermetic seal is
Although there is use of hollow tubular feed members, and in fact hollow tubular feed members are flexible enough to easily compensate for slight differences in expansion coefficients, such tubular bodies can be used in discharge lamp vessels. Because it is difficult to directly seal this type of tubular body, in the conventional structure, a translucent dense sintered alumina plug is prepared in advance and the plug is hermetically sealed with this type of tubular body. Indirect sealing was used to airtightly seal the lamp to a discharge lamp container made of the same material. In other conventional structures, a lid made of dense sintered alumina is used in place of the above-mentioned plug, and the lid is hermetically sealed to the outside of the open end of the discharge lamp container. . Furthermore, in another conventional structure, a large diameter collar with a relatively thin wall thickness is similarly provided integrally with a tubular power supply member, and the thin collar is directly sealed inside the opening of the discharge lamp container. Of course, the hermetic seal of such a structure has extremely high flexibility. In some cases, this hermetic sealing part was modified so that the above-mentioned flange was sealed on the outside of the container opening instead of on the inside. However, in most of the conventional structures described above, adhesive glass is used between the components of the hermetic sealing part, and the reason is that if the adhesive glass is not used, the hermetic sealing part cannot be constructed. This is because it is essentially impossible. The sealing material, that is, the adhesive glass that should be used between the components of the hermetic sealing part is basically made of aluminum oxide or calcium oxide, as described in British Patent No. 1019821, which will be mentioned later. A glass-like material or glass-forming material consisting of a combination of bonding glass and magnesium oxide, and without the use of such an adhesive glass, it is impossible to obtain an airtight seal between the components, e.g. due to differences in expansion coefficients. Gas leakage occurs at the sealing portion between the wall surfaces of the power supply member and the sealing component, and furthermore, gas leakage occurs between the metal of the power supply member and the alumina of the sealing member due to sintering of alumina as described below. It will also be impossible to achieve this goal. However, in the hermetic sealing part of the conventional structure described above, the adhesive glass is exposed to extremely high temperatures and corrosive gas atmosphere both during manufacturing and operation of the discharge lamp. Of course, strict conditions were imposed on the composition. In addition, although gas discharge lamps with the above-mentioned conventional hermetic sealing structure can achieve sufficiently satisfactory performance in practical use, it is difficult to manufacture the hermetic sealing part, so it is difficult to manufacture the gas discharge lamp immediately after the product is completed. The problem was that the defective rate due to gas leakage was extremely high for both structures. That is, in the conventional structure described above, since the power supply member was sealed to the discharge lamp container using only one of the plug body and the lid body, it was difficult to connect these sealing components and the discharge lamp vessel. In addition, in such a structure, the expansion coefficient of the adhesive glass used cannot be adjusted to the same extent in any product or in any individual product. Sufficient reliability is not achieved mainly due to the fact that it is difficult to ensure that the parts are always the same, and as a result, the hermetic seal is susceptible to distortions that can cause cracks. There was a problem. An object of the present invention is to solve the above-mentioned problems with the conventional structure of the airtight sealing part, to prevent gas leakage not only during use but also during manufacturing, and to provide an airtight sealing part with an easy-to-manufacture structure. An object of the present invention is to provide a sintered alumina container discharge lamp in which a power supply member is sealed to a discharge lamp container. That is, the present invention provides a discharge lamp in which at least one power supply member is hermetically sealed in a discharge lamp container made of translucent dense sintered alumina, which has at least a cylindrical power supply member sealed portion and constitutes a discharge space. A plug body made of translucent dense sintered alumina is placed in the cylindrical portion and sintered to the discharge lamp vessel in an airtight manner, and an opening is provided in the plug body and the temperature inside the opening is heated to a temperature higher than 800°C. , and the power supply member is hermetically sealed with translucent dense sintered alumina and adhesive glass having a melting point lower than the melting point of the metal constituting the power supply member, and further has an opening that penetrates the power connection member. A cylindrical portion of the discharge lamp container and a lid made of translucent dense sintered alumina that supports the plug disposed in the cylindrical portion;
The discharge lamp vessel is made of adhesive glass having a melting point higher than 800°C and lower than the melting point of the translucent dense sintered alumina and the metal constituting the power supply member.
The present invention is characterized in that the plug body and the power supply member are hermetically sealed. As mentioned above, a structure in which a plug is sealed in a discharge lamp tube body made of translucent dense sintered alumina is known, and in this conventional structure, a discharge lamp made of translucent dense sintered alumina It is also known to seal the plug to the tube with adhesive glass or a low melting point porcelain material. However, such conventional structure
This is mainly due to the fact that the coefficient of expansion of the adhesive materials used is not always the same, resulting in insufficient reliability and, as a result, distortions that can lead to cracking in hermetic seals. tend to occur in the
There was a drawback. Furthermore, in the conventional structure described above, an annular pool of adhesive material is formed inside the discharge lamp container at the corner where the container and the stopper come into contact, and the adhesive material in the pool is highly active during operation of the gas discharge lamp. Exposure to an aggressive gas atmosphere at high temperatures results in not only frequent discoloration of the discharge lamp vessel, but also cracks in the adhesive material at the pool, which cracks between the stopper and the vessel. The disadvantage is that this often extends to certain adhesive materials. On the other hand, in the structure according to the present invention, the plug body is sealed to the discharge lamp container by sintering, so the above-mentioned drawbacks do not occur. Generally, when agglomerated and bonded metal materials are heated and sintered, metal powder is formed without melting. That is, sintering means heating a collection of fine particles of metal or metal oxide at a temperature below the melting temperature to weld the fine particles together and form a lump. Therefore, as mentioned above, when an adhesive material made of densely sintered translucent polycrystalline aluminum oxide, that is, alumina, is sintered in a discharge lamp container made of the same material, the adhesion is weak before sintering. The density of particles in the material was slightly higher than the density of particles in the wall of the discharge lamp vessel, but during sintering, the wall of the discharge lamp vessel shrinks more rapidly than the adhesive material. By such sintering, a hermetic seal will be achieved. In the structure according to the present invention, the discharge lamp container and the plug fitted to the open end of the discharge lamp container are reliably hermetically sealed by sintering homogeneous alumina without using adhesive glass, as described above. In this state, a power supply member is fitted into the center opening of a lid made of homogeneous alumina in the opening of the stopper at the end of the container as described in detail later in the drawings, and adhesive glass is attached to both sides of the lid. The ring bodies of the forming material are overlapped and the power feeding member is fitted, and the stopper and the lid are crimped together and heated to melt the adhesive glass forming material, so that the stopper and the power feeding member are bonded together. The molten adhesive glass is infiltrated into the gap from the outside of the stopper, and at the same time, the molten adhesive glass is also infiltrated into the gap between the cover and the power supply member, as well as the gap between the cover and the stopper and the end surface of the container. Therefore, first, a thin layer of long cylindrical adhesive glass is formed on the surface of the fitted portion of the power supply member, and is in continuous contact with the stopper and the lid. Since the adhesive glass was formed by penetrating from the outside of the plug, there was no risk that the end of the thin layer would be exposed to the discharge space inside the container and exposed to the corrosive gas atmosphere at high temperatures. Thus, a long thin layer of adhesive glass along the power supply member provides a safe and reliable hermetic seal, and the risk of gas leakage due to cracking of the adhesive glass due to operation of the discharge lamp is reliably eliminated. Moreover, because of the long thin layer of adhesive glass that stretches along the power supply member, the thin layer of adhesive glass that fills the gaps between the lid, the plug, and the end of the container is also far away from the corrosive gas atmosphere in the discharge space. Therefore, an extremely safe and reliable airtight seal is achieved between the lid, the stopper, and the end surface of the container, and as a result, in the discharge lamp of the present invention, not only during manufacturing but also during operation of the discharge lamp. The risk of gas leakage due to cracks in the bonded glass is greatly reduced compared to conventional methods.
An extremely reliable hermetic seal is obtained. In addition,
If necessary, an annular pool of adhesive glass can be provided on the outside of the discharge lamp vessel at the corner portion where the power supply member and the lid come into contact, and such a pool of adhesive glass is provided on the outside of the overall structure according to the present invention. Therefore, the adhesive glass in the pool is not actually attacked by the corrosive gas atmosphere in the discharge space. Since the discharge lamp of the present invention is often subjected to operating temperatures exceeding 700°C, the adhesive glass that seals each part must have a melting point of 800°C or higher, and in particular, at least Such a high temperature occurs when high-pressure gas discharge is performed in a discharge space in a gas atmosphere containing one type of alkali metal, mercury, and at least one type of rare gas. Therefore,
The present invention, which uses such adhesive glass, is particularly suitable when applied to so-called high-pressure sodium vapor discharge lamps that contain sodium as an alkali metal and xenon as a rare gas. In the discharge lamp of the present invention, it is preferable that at least the portion of the power supply member that is hermetically sealed to the stopper and the lid be made of metal niobium, as in the conventional discharge lamp. In a particularly preferred configuration example of the discharge lamp of the present invention,
The lid protrudes from the end face of the cylindrical part of the discharge lamp vessel, and an annular pool of adhesive glass is provided at the corner where the cylindrical part and the lid meet, resulting in a more reliable air conditioner. It is designed to provide a hermetic seal. In the discharge lamp of the present invention, as in the low-pressure sodium vapor discharge lamp, an outer tube is evacuated or filled with an inert gas such as argon, and the discharge space in which gas discharge is actually performed is used. A discharge lamp vessel constituting the lamp can be placed inside the outer bulb. Note that this outer bulb serves as a thermal insulator, similar to that in low-pressure sodium vapor discharge lamps. In a particularly preferred example of this kind of configuration of the discharge lamp of the present invention, the power supply member is constituted by a tubular body having an opening at the end opposite to the discharge space.
A rod-shaped support body loosely inserted into the open end of the power supply member is fixed to the outer tube, and a rod-shaped support body fixed to the outer tube is loosely inserted into the open end of the power supply member fixed to the discharge lamp container. Therefore, the discharge lamp container can be easily expanded in response to the high temperature during operation of the discharge lamp without applying a force to the power supply end that would damage the hermetic seal or the power supply member. Note that with such a structure, as a result of loosely inserting the power supply member and the rod-shaped support into each other, it may not be possible to obtain the necessary electrical connection between them. One end of the flexible conducting wire is connected to the power supply member, and the other end is connected to an electrode conducting wire provided at, for example, a knob portion of the outer tube. The invention will be explained in detail below by way of example embodiments with reference to the drawings. In the configuration example of the discharge lamp of the present invention shown in FIG.
Reference numeral 1 denotes a discharge lamp container constituting a discharge space 2, in which gas discharge is performed in an atmosphere containing, for example, sodium vapor, mercury vapor, and rare gas such as xenon. The discharge lamp vessel 1 is made of densely sintered translucent alumina, and discharge electrodes 3 and 4, which are equipped with tungsten coils and configured in a well-known manner, are arranged at both ends of the discharge space 2. 3 and 4 are respectively attached to power supply members 5 and 6 made of niobium tubes. Reference numerals 7 and 8 denote two plugs made of transparent alumina which are similarly densely sintered, and these plugs 7 and 8 are sealed to the discharge lamp container 1 by sintering. Reference numerals 9 and 10 denote two lids made of densely sintered translucent alumina, and these lids 9 and 10 are sealed to both the discharge lamp container 1 and the plugs 7 and 8, respectively. do. The discharge tube 1 having such a structure is made of, for example, an outer tube 11 made of hard glass.
The outer tube 11 is provided with a knob 12, and two support conductors 13 and 1 are housed in the inner tube, and the outer tube 11 is provided with a knob 12.
4 to the knob 12. 15 and 16
The supporting conductors 14 and 1 support the discharge electrodes 3 and 4.
These are two strip-shaped connecting members that are connected to 3, respectively. Note that the support conductor 14 is covered with a quartz glass tube 17 for protection. 18 and 19 are the outer tube 11
There are two getter rings to maintain the vacuum inside. Next, in an example of the detailed configuration of the hermetic sealing portion between the discharge lamp container 1 and the power supply member 6 shown in FIG.
The structure of the upper end of the gas discharge lamp 1 shown in FIG. 1 is shown in an enlarged scale, and the same parts as shown in FIG. 1 are given the same symbols. The thick black line 20 is
This shows that the plug body 7 made of translucent dense sintered alumina is sintered to the discharge lamp vessel 1 made of the same material. Reference numeral 21 denotes adhesive glass, and as shown in the figure, the power supply member 6 is sealed to both the lid 9 and the stopper 7. It is also arranged between the end surface of the discharge lamp container 1 and the plug body 7. In this way, since the long adhesive glass layer is provided at a location suitable for sealing, extremely excellent hermetic sealing can be achieved. There is essentially no adhesive glass in the corner portion where the power supply member 6 and the stopper 7 contact each other in the discharge space, which could be corroded by the corrosive gas atmosphere in the discharge space, and there is no adhesive glass outside the discharge space. Although an annular pool of adhesive glass is formed at the corner portion where the adhesive glass contacts, there is no risk of it being attacked by the corrosive gas atmosphere outside the discharge space. Among the discharge electrodes 3,
The part that is actually attached to the power supply member 6 is a part 22 made of, for example, molybdenum, and this part 22 is made of, for example, molybdenum.
It is mounted in a known manner using, for example, titanium, within the tubular opening of the power supply member 6, which is mostly made of niobium, and is connected to a tungsten rod 23 in the form of a rod at its end. Reference numeral 24 denotes a tungsten coil, which is wound around the rod-shaped end of the above-mentioned component 22 and the tungsten rod, and is coated with a substance that easily emits electrons, if necessary. The other configuration example of the airtight sealing part shown in FIG. 3 is composed of the same components as in the example shown in the second diagram described above, and these configurations are denoted by the same symbols as in FIG. 2. There is. In the configuration example shown in the third figure, the lid 9 has a larger diameter than the discharge lamp container 1, and as a result, a ring of adhesive glass is formed at the outer corner where the lid 9 and the container 1 touch. Since the reservoir 28 is formed, a more reliable and easy airtight seal is ensured. In manufacturing the discharge lamp of the present invention, first,
The plugs 7 and 8 are attached to the container 1, and openings to which the power supply member is to be attached are provided in the plugs 7 and 8. The above manufacturing process is preferably carried out as follows. That is, as shown in FIG. 4, an assembly is prepared in advance in which a tubular power supply member 6 to which a discharge electrode is attached, which is made up of parts 22, 23, and 24, is inserted into an opening of a lid 9, and the assembly is inserted into the opening of the lid 9. Ring bodies 25 and 26 made of glass-like material, that is, glass-forming material are disposed on the upper and lower surfaces of 9, respectively. Note that this glass-forming material is a mixture having a composition as described, for example, in the aforementioned British Patent No. 1019821. 27 is a thin strip or linear body made of, for example, molybdenum, and this strip or linear body 27 is attached to the power supply member 6 to prevent the power supply member 6 from falling out from the opening of the lid body 9. It also serves to reliably guide the discharge electrode to the correct position within the container 1. After manufacturing such an assembly as shown in the figure, the assembly is mounted on the plug body 7 by inserting the tubular power supply member 6 into the opening of the plug body 7, and heated in this state to melt the glass-forming material. When 25 and 26 are melted, the melted glass-forming material penetrates into the gap between the power supply member 6 and both the lid body 9 and the stopper body 7 and airtightly seals them together, as shown in FIG. As shown,
It also penetrates between the lid 9, the stopper 7, and the end surface of the container 1, forming an adhesive glass layer therebetween. Next, FIG. 5 shows an example of an apparatus for hermetically sealing the discharge lamp of the present invention in manufacturing it. This sealing device consists of a bell-shaped glass 30 attached to a base via a packing 31.
0 houses a tubular core 32 having an opening at its upper end. A metal base 36 which can be cooled with water is arranged inside the tubular core 32, and the cooling water can be supplied through a conduit 37 and discharged through a conduit 38. 4 at the periphery of the quartz glass sleeve 39 attached to the metal base 36 so as to surround the metal base 36.
A book of tungsten rods 40 is supported, and a cylindrical body 41 made of graphite is supported at the upper end of the tungsten rods 40. Further, a high-frequency heating coil 42 is arranged outside the bell-shaped glass 30 so as to surround the graphite cylinder 41. The hermetic sealing portion of the light-transmitting dense sintered alumina discharge lamp vessel 43 is manufactured using the above-described sealing device as follows. That is, first, the plugs 44 and 45 are sealed in advance by sintering to both the upper and lower ends of the container 43, and the assembly shown in FIG. Place it on 36. Next, the tubular core 32 is installed, followed by the pin 35, intermediate member 33, and spring 34. Next, bell-shaped glass 3
0, the pin 35 presses the fourth illustrated assembly against the upper end of the container 43, ie, the stopper 44. After installing everything in this way, conduit 3
In addition to supplying cooling water from 7, bell-shaped glass 30
Then, the entire interior of the discharge lamp vessel 43 is filled with an inert gas such as argon. Next, the graphite cylindrical body 41 is heated by the high-frequency heating coil 42 to melt the ring body 48 of the glass-forming material, and the lid body 4 is heated.
9 and the power supply member 50 into the container 43 and the stopper 44
Seal airtightly. After cooling, the bell-shaped glass 30 and the tubular core 32 are removed, and the discharge lamp container 43 whose upper end is hermetically sealed is taken out. The hermetic sealing portion at the lower end of the discharge lamp vessel 43 is also manufactured in the same manner as described above, but before the final hermetic sealing, a required amount of mercury is accommodated in the discharge lamp vessel. Although it is not necessary to introduce mercury in an inert gas, it is necessary to introduce an alkali metal in an inert gas, and the operation is carried out as follows. That is, a discharge lamp container whose lower end is hermetically sealed is mounted on a metal base 36, and then, after the tubular core 32 is mounted, an inert gas such as argon is introduced through a conduit 46.
Note that, at this time, the exhaust port 47 is kept closed. When the inert gas fills the tubular core 32, it is ensured that the discharge lamp vessel 43 is also filled with the inert gas, and excess inert gas flows out from the upper end of the tubular core 32. Next, a required amount of alkali metal, such as sodium, is inserted into the discharge lamp container 43 through the upper opening thereof, and then the assembly shown in the fourth figure is inserted into the container 4.
Attach to the top opening of 3. In this case, the inert gas is continuously introduced. Next, after the crimping members 33, 34, 35 and the bell-shaped glass 30 are sequentially attached, the conduit 46 is closed and the entire inside of the bell-shaped glass 30 is evacuated through the exhaust pipe 47. Thereafter, a rare gas such as xenon, which is necessary when the discharge lamp is completed, is supplied from the conduit 46, and then high-frequency heating is performed to seal the upper end opening of the container 43 hermetically in exactly the same manner as described above. Next, another configuration example of the discharge lamp of the present invention shown in FIG. 6 is almost the same as the configuration example shown in FIG. The projection 62 inside the apex of the outer tube
It is coaxially supported by Since the support rod 61 is loosely inserted into the tubular power supply member 60, even if the discharge lamp container 63 is heated to a high temperature during operation of the discharge lamp, the container 63 will not slide between the support rod 61 and the tubular power supply member 60. This allows it to expand freely upwards. In addition, the current supply to the upper power supply member is as follows:
This is done via a flexible conductive wire 64 which has one end connected to the power supply member 60 and the other end connected to a support conductive wire 66 sealed to the knob 65 . In a discharge lamp in which at least one power supply member is hermetically sealed in a discharge lamp container made of translucent dense sintered alumina which forms a discharge space with at least the sealed part of the power supply member being cylindrical, A plug made of consolidated alumina is arranged in the cylindrical portion and sintered to the discharge lamp container in an airtight manner, and an opening is provided in the plug, and a temperature higher than 800° C. and a light transmitting temperature are provided in the opening. the power supply member is hermetically sealed with adhesive glass having a melting point lower than the melting point of the metal constituting the power supply member and dense sintered alumina;
Furthermore, a lid body made of translucent dense sintered alumina having an opening that penetrates the power supply member and supporting a cylindrical portion of the discharge lamp container and the plug body disposed in the cylindrical portion is heated to 800°C. The discharge lamp container, the plug body, and the power supply member are hermetically sealed with an adhesive glass having a melting point higher than that of the translucent dense sintered alumina and a melting point lower than that of the metal constituting the power supply member. Characteristic sintered alumina container discharge lamp.

【特許請求の範囲】[Claims]

1 少なくとも給電部材封着部分を円筒形にして
放電空間を構成する透光性緻密焼結アルミナ製の
放電灯容器に少なくとも1個の給電部材を気密に
封着した放電灯において、透光性緻密焼結アルミ
ナからなる栓体を前記円筒形の部分に配置して前
記放電灯容器に気密に焼結させるとともに、前記
栓体に開口を設けてその開口中に、800℃より高
く、かつ、透光性緻密焼結アルミナおよび前記給
電部材を構成する金属の融点より低い融点を有す
る接着硝子により前記給電部材を気密に封着し、
さらに、前記給電部材を貫通させる開口を有する
とともに前記放電灯容器の円筒形の部分およびそ
の円筒形の部分に配置した前記栓体を支える透光
性緻密焼結アルミナ製の蓋体を、800℃より高
く、かつ、透光性緻密焼結アルミナおよび前記給
電部材を構成する金属の融点より低い融点を有す
る接着硝子により前記放電灯容器、前記栓体およ
び前記給電部材に気密に封着したことを特徴とす
る焼結アルミナ容器放電灯。
1. In a discharge lamp in which at least one power supply member is hermetically sealed in a discharge lamp container made of translucent dense sintered alumina with at least the sealed part of the power supply member being cylindrical and constituting a discharge space, A plug made of sintered alumina is arranged in the cylindrical part and sintered to the discharge lamp vessel in an airtight manner, and an opening is provided in the plug, and a temperature higher than 800°C and transparent is provided in the plug. the power supply member is hermetically sealed with optical dense sintered alumina and adhesive glass having a melting point lower than the melting point of the metal constituting the power supply member;
Furthermore, a cover made of translucent dense sintered alumina having an opening that penetrates the power supply member and supporting the cylindrical portion of the discharge lamp container and the plug disposed in the cylindrical portion is heated to 800°C. The discharge lamp container, the plug body, and the power supply member are hermetically sealed with an adhesive glass having a melting point higher than that of transparent dense sintered alumina and a melting point lower than that of the metal constituting the power supply member. Characteristic sintered alumina container discharge lamp.

JP43019808A 1967-03-31 1968-03-28 Pending JPS6213792B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL676704681A NL154865B (en) 1967-03-31 1967-03-31 ELECTRIC GAS DISCHARGE LAMP WITH A COVER OF TIGHTLY INSERTED ALUMINUM OXIDE AND METHOD FOR MANUFACTURING SUCH GAS DISCHARGE LAMP.

Publications (1)

Publication Number Publication Date
JPS6213792B1 true JPS6213792B1 (en) 1987-03-28

Family

ID=19799727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43019808A Pending JPS6213792B1 (en) 1967-03-31 1968-03-28

Country Status (12)

Country Link
US (2) US3609437A (en)
JP (1) JPS6213792B1 (en)
AT (1) AT279734B (en)
BE (1) BE713016A (en)
CH (1) CH483117A (en)
DK (1) DK139050B (en)
ES (1) ES352137A1 (en)
FR (1) FR1557527A (en)
GB (1) GB1205871A (en)
NL (1) NL154865B (en)
NO (1) NO124400B (en)
SE (1) SE333607B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3895248A (en) * 1969-03-11 1975-07-15 Philips Corp Gas discharge device with glow discharge igniting structure
NL7003667A (en) * 1970-03-14 1971-09-16
JPS4893180A (en) * 1972-03-08 1973-12-03
US3967871A (en) * 1972-06-23 1976-07-06 Egyesult Izzolampa Es Villamossagi Resvenytarsasag Process for manufacturing tubeless vacuum electric discharge lamps
US3845343A (en) * 1973-05-02 1974-10-29 Gen Electric Inside bulb coating for ultraviolet lamp
US3855494A (en) * 1973-08-29 1974-12-17 Westinghouse Electric Corp Ceramic arc lamp construction
US3866280A (en) * 1973-12-26 1975-02-18 Gte Sylvania Inc Method of manufacturing high pressure sodium arc discharge lamp
US3996487A (en) * 1975-05-14 1976-12-07 Westinghouse Electric Corporation Ceramic discharge lamp with reduced heat drain
US4034252A (en) * 1975-12-15 1977-07-05 General Electric Company Ceramic lamp seal and control of sealing frit distribution
US3992642A (en) * 1975-12-15 1976-11-16 Mcvey Charles I Ceramic envelope plug and lead wire and seal
NL183092C (en) * 1976-08-05 1988-07-18 Philips Nv GAS DISCHARGE LAMP.
NL7612120A (en) * 1976-11-02 1978-05-05 Philips Nv ELECTRIC GAS DISCHARGE LAMP.
HU174714B (en) * 1977-01-06 1980-03-28 Egyesuelt Izzolampa Electric discharge tube
NL181764C (en) * 1977-04-15 1987-10-16 Philips Nv HIGH PRESSURE METAL VAPOR DISCHARGE LAMP.
NL178108C (en) * 1978-04-10 1986-10-16 Philips Nv ELECTRIC GAS DISCHARGE LAMP.
JPS53166577U (en) * 1978-04-27 1978-12-27
US4281274A (en) * 1979-08-01 1981-07-28 General Electric Co. Discharge lamp having vitreous shield
HU178880B (en) * 1980-06-20 1982-07-28 Egyesuelt Izzolampa Sodium discharge lamp with aluminium oxide discharge tube and process for the production thereof
JPS5739116A (en) * 1980-08-18 1982-03-04 Matsushita Electric Ind Co Ltd Jig for heat treatment
US4382205A (en) * 1980-09-02 1983-05-03 General Electric Company Metal vapor arc lamp having thermal link diminishable in heat conduction
GB2105904B (en) * 1981-09-04 1985-10-23 Emi Plc Thorn High pressure discharge lamps
NL8200783A (en) * 1982-02-26 1983-09-16 Philips Nv HIGH PRESSURE DISCHARGE LAMP.
US4988318A (en) * 1983-03-10 1991-01-29 Gte Products Corporation Unsaturated vapor high pressure sodium lamp arc tube fabrication process
CA1241365A (en) * 1983-03-10 1988-08-30 John A. Scholz Unsaturated vapor high pressure sodium lamp arc tube fabrication process
US5026311A (en) * 1983-03-10 1991-06-25 Gte Products Corporation Arc tube fabrication process
CA1246136A (en) * 1983-03-10 1988-12-06 Philip J. White Arc tube fabrication process
EP0187401A1 (en) * 1984-12-18 1986-07-16 Koninklijke Philips Electronics N.V. High-pressure discharge lamp
US4868457A (en) * 1985-01-14 1989-09-19 General Electric Company Ceramic lamp end closure and inlead structure
HU196531B (en) * 1986-09-29 1988-11-28 Philips Nv High-pressure discharge lamp with wire-suspended discharge tube
US4774431A (en) * 1986-09-29 1988-09-27 North American Philips Lighting Corp. Arc tube wire support
US4702717A (en) * 1987-01-30 1987-10-27 Gte Products Corporation Method of making electric lamp with internal conductive reflector
US4804889A (en) * 1987-12-18 1989-02-14 Gte Products Corporation Electrode feedthrough assembly for arc discharge lamp
US5198722A (en) * 1990-10-31 1993-03-30 North American Philips Corporation High-pressure discharge lamp with end seal evaporation barrier
DE4037721C2 (en) * 1990-11-27 2003-02-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Process for producing a high pressure sodium lamp and device suitable therefor
US20020117965A1 (en) * 2001-02-23 2002-08-29 Osram Sylvania Inc. High buffer gas pressure ceramic arc tube and method and apparatus for making same
US6641449B2 (en) * 2001-04-24 2003-11-04 Osram Sylvania Inc. High pressure lamp bulb and method of induction sealing
GB2383486B (en) * 2001-12-19 2005-02-16 Microwave Solutions Ltd Detector device
US6976372B2 (en) * 2002-10-31 2005-12-20 Corning Incorporated Sealing lighting device component assembly with solder glass preform by using induction heating
US7040121B2 (en) * 2002-10-31 2006-05-09 Corning Incorporated Sealing lighting device component assembly with solder glass preform by using infrared radiation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1257964B (en) * 1965-03-11 1968-01-04 Patra Patent Treuhand Electric lamp, in particular alkali metal vapor discharge lamp, with a vessel made of transparent aluminum oxide
US3363134A (en) * 1965-12-08 1968-01-09 Gen Electric Arc discharge lamp having polycrystalline ceramic arc tube
US3453477A (en) * 1967-02-16 1969-07-01 Gen Electric Alumina-ceramic sodium vapor lamp

Also Published As

Publication number Publication date
NL154865B (en) 1977-10-17
AT279734B (en) 1970-03-10
DE1639086A1 (en) 1970-05-27
DE1639086B2 (en) 1975-10-23
DK139050B (en) 1978-12-04
US3609437A (en) 1971-09-28
BE713016A (en) 1968-09-30
NL6704681A (en) 1968-10-01
US3726582A (en) 1973-04-10
FR1557527A (en) 1969-02-14
GB1205871A (en) 1970-09-23
DK139050C (en) 1979-05-14
NO124400B (en) 1972-04-10
SE333607B (en) 1971-03-22
CH483117A (en) 1969-12-15
ES352137A1 (en) 1970-04-16

Similar Documents

Publication Publication Date Title
JPS6213792B1 (en)
US3363134A (en) Arc discharge lamp having polycrystalline ceramic arc tube
US5075587A (en) High-pressure metal vapor discharge lamp, and method of its manufacture
US4011480A (en) Electric discharge lamp
JPH0594945U (en) High pressure discharge lamp
US4160930A (en) Electric discharge lamp with annular current conductor
JP5331477B2 (en) Ceramic bulb and its manufacturing method
KR20030019167A (en) High pressure discharge lamp and method for producing the same
JPS641897B2 (en)
US4277715A (en) Electric gas discharge lamp
US4721886A (en) High-pressure discharge lamp with precision end seal structure
EP0220813B1 (en) Method for sealing the discharge tubes of metal halide high pressure discharge lamps
JPS62283543A (en) Metallic vapor discharge lamp
GB1577982A (en) Gas discharge tubes
EP0204303A2 (en) High temperature tapered inlead for ceramic discharge lamps
JP4022302B2 (en) Metal halide discharge lamp and lighting device
US2080914A (en) Gaseous electric discharge lamp
US2020724A (en) Gaseous electric discharge lamp device
US5208509A (en) Arc tube for high pressure metal vapor discharge lamp
US4295075A (en) Arc discharge lamp having ceramic arc tube
JPH09274890A (en) Ceramic discharge lamp
US5188554A (en) Method for isolating arc lamp lead-in from frit seal
EP0341749B1 (en) Improved arc tube for high pressure metal vapor discharge lamp, lamp including same, and method
JP4273380B2 (en) Metal vapor discharge lamp
JPH05334997A (en) Metallic vapor electric discharge lamp