JPS62137499A - Breakwater for reserving low temperature liquefied gas - Google Patents

Breakwater for reserving low temperature liquefied gas

Info

Publication number
JPS62137499A
JPS62137499A JP27751985A JP27751985A JPS62137499A JP S62137499 A JPS62137499 A JP S62137499A JP 27751985 A JP27751985 A JP 27751985A JP 27751985 A JP27751985 A JP 27751985A JP S62137499 A JPS62137499 A JP S62137499A
Authority
JP
Japan
Prior art keywords
liquefied gas
concrete
dike
breakwater
obsidian
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27751985A
Other languages
Japanese (ja)
Other versions
JPH0456919B2 (en
Inventor
Hisao Fujimura
藤村 久夫
Masamichi Yasunaga
正道 安永
Toshio Ono
俊夫 大野
Yoshiyuki Oguma
小熊 嘉幸
Hitoshi Takeuchi
等 武内
Shiro Kikuchi
菊池 四郎
Mineo Moriya
守谷 峯雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Nichias Corp
Original Assignee
Kajima Corp
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Nichias Corp filed Critical Kajima Corp
Priority to JP27751985A priority Critical patent/JPS62137499A/en
Publication of JPS62137499A publication Critical patent/JPS62137499A/en
Publication of JPH0456919B2 publication Critical patent/JPH0456919B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/022Land-based bulk storage containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0678Concrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To get a breakwater low in evaporation amount of liquefied gas and high in its durability by arranging heat insulating material made of concrete using an obsidian foaming substance as its aggregate, on the inner side face of a breakwater and on the ground surface inside the breakwater. CONSTITUTION:Heat insulating material 3 made of concrete using an obsidian foaming substance as its aggregate is arranged on the inner side face of a breakwater 2, for reserving low temperature liquefied gas and on the ground surface inside the breakwater. And since a material meeting the qualifications on initial evaporation amount less than 15.0kg/m<2>, 180sec, thermal conductivity less than 0.12Kcal/m.hr. deg.C and compressive strength of 25kgf/cm<2> or more is used for this heat insulating material, the evaporation amount of liquefied gas can be restrained to an extremely low level and the durability of the breakwater can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はLNG、LPG 等の低温液化ガス貯槽の周
囲に設置する防液堤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid barrier installed around a storage tank for low-temperature liquefied gas such as LNG or LPG.

〔従来技術〕[Prior art]

低温液化ガスの地上設置型のタンクは、これと同容積を
有する防液堤の設置義務がある。
Ground-mounted tanks for low-temperature liquefied gas are required to have a dike with the same volume.

防液堤はタンク内の液化ガスが万一リークした際に、外
部に液が流出することを防止することを目的とする。ま
た防液堤内の断熱材は、液化ガスが万一リークした際、
地表面、防液堤面からの入熱による初期蒸発量を抑制す
ることを目的とする。
The purpose of the liquid barrier is to prevent liquid from flowing outside in the event that liquefied gas leaks inside the tank. In addition, the insulation inside the dike is designed to prevent liquefied gas from leaking in the event of a leak.
The purpose is to suppress the amount of initial evaporation due to heat input from the ground surface and dike surface.

この初期蒸発量は液化ガスが接触する物体の熱伝導率、
密度、比熱、表面温度等の条件により左右される。
This initial evaporation amount is determined by the thermal conductivity of the object that the liquefied gas comes into contact with,
It depends on conditions such as density, specific heat, and surface temperature.

従って防液堤の内側面および堤内の地表面には初期蒸発
量を抑制するために断熱材を敷設する必要があった。ま
た、同時にこの断熱材は次の条件を具えていなければな
らなかった。
Therefore, it was necessary to install heat insulating material on the inner surface of the dike and on the ground surface within the dike to suppress the initial amount of evaporation. At the same time, this insulation material had to meet the following conditions:

(D不燃性である。  1■断熱性能が優れている。(D) It is nonflammable. 1■ Excellent heat insulation performance.

(ル圧縮強度が高い。 ■吸水率が低い■耐候性がよい
。  ■耐久性がある。
(High compressive strength. ■Low water absorption. ■Good weather resistance. ■Durable.

■保守管理が容易である。■Easy to maintain and manage.

従来、これらの条件を満足する断熱材および施工法とし
ては次の2つの方法がとられていた。
Conventionally, the following two methods have been used as insulation materials and construction methods that satisfy these conditions.

すなわち、防液堤内側面および堤内土壌表面に打設した
均しコンクリート而にa泡ガラス(7777品名セロー
ム)ボードを接着モルタル等で接着し敷並べる方法、b
真珠岩系発泡体を骨材としたコンクリートを金網等を配
筋した型枠(3m角)を単位に打設する方法があった。
In other words, a method of gluing foam glass (7777 product name Cerome) boards with adhesive mortar etc. on the leveled concrete poured on the inner surface of the dike and the surface of the soil inside the dike, b.
There was a method of pouring concrete using nacreous foam aggregate in units of formwork (3m square) reinforced with wire mesh and the like.

しかし、aの方法は■泡ガラスポードの最大寸法が45
5mm X 606ffInで単位ボードの寸法が小さ
く敷設施工に多大の手間を要す。■上記のボード寸法で
は目地部の長さおよび表面積が大となり、この部分の断
熱性が劣るためにリーク時の蒸発ガス量が増加する。■
泡ガラスポードは強度が低いために保守管理時の落下物
4歩行等に対する耐衝撃性。
However, in method a, the maximum dimension of the foam glass pode is 45
The size of the unit board is small at 5mm x 606ffIn, and it takes a lot of effort to install it. ■With the above board dimensions, the length and surface area of the joints are large, and the insulation properties of these parts are poor, resulting in an increase in the amount of evaporated gas when leaks occur. ■
Foam glass pods have low strength, so they are resistant to impacts such as falling objects and walking during maintenance.

耐摩耗性が乏しい。■耐候性を高めるために表面保護材
を必要としコストの上昇、保守管理に手間がかかる。■
下地のコンクリートに植設したアンカーボルトで泡ガラ
スボードを固定する方法では太陽の熱で泡ガラスポード
が反り、断熱層に損傷を生じる。等の欠点があった。
Poor wear resistance. ■ Surface protection materials are required to improve weather resistance, which increases costs and requires time and effort for maintenance. ■
In the method of fixing foam glass boards with anchor bolts planted in the underlying concrete, the foam glass boards warp due to the heat of the sun, causing damage to the insulation layer. There were drawbacks such as.

また、bの方法は■熱伝導率が大きく、初期蒸発量も大
となり断熱性能が他の方法に比べ劣る。
Furthermore, in method b, (1) the thermal conductivity is high, the amount of initial evaporation is also large, and the heat insulation performance is inferior to other methods.

■吸水率が高く、吸水による断熱性能の低下が大きい。■It has a high water absorption rate, and the insulation performance decreases significantly due to water absorption.

■耐候性、耐水性を付与するためにエポキシ防水材を塗
布したり、ガラスクロスを敷込み補強する必要がありコ
ストが高くなる等の欠点があった・ 〔発明の目的〕 この発明は前記事情に鑑みなされたものである。
■In order to provide weather resistance and water resistance, it is necessary to apply an epoxy waterproofing material or to lay glass cloth for reinforcement, resulting in high costs. [Objective of the Invention] This invention was developed under the above circumstances. This was done in consideration of the

その目的は、液化ガスの初期蒸発量が少なく、同時に堤
内表面に配した断熱材の耐?#撃性、耐摩耗性、耐候性
の強度が優れた低温液化ガス貯槽の防液堤を提案するに
ある。
The purpose is to reduce the initial amount of evaporation of liquefied gas, and at the same time to increase the durability of the insulation material placed on the inner surface of the embankment. # To propose a liquid barrier for low-temperature liquefied gas storage tanks that has excellent impact resistance, abrasion resistance, and weather resistance.

〔発明の構成〕[Structure of the invention]

この発明は低温液化ガス貯槽の防液堤において、防液堤
内側面および堤内地表面に断熱材として黒曜石発泡体を
骨材とし下記条件 熱伝導率        0.12KcaM/m、hr
、 ’C以下圧縮強度        25kgf/c
J以上を満足することを特徴とする。
This invention uses obsidian foam as an aggregate as a heat insulating material on the inside surface of the dike and the ground surface inside the dike in a dike for a low-temperature liquefied gas storage tank, and the thermal conductivity is 0.12 KcaM/m, hr under the following conditions.
, 'C or less Compressive strength 25kgf/c
It is characterized by satisfying J or higher.

なお、この発明において初期蒸発量とは、黒曜石発泡体
を骨材とするコンクリート(断熱材)の400mm X
 400m X 50mmの試料を、保冷材(ウレタン
フオーム)でつくった底面が400+nmX400閤で
上面が開放した箱の底面に接着し、この箱内に所要量の
液体窒素を瞬時に投入し、180秒間蒸発量を24±2
℃、55±5%RHの雰囲気中で測定した値である。
In this invention, the initial evaporation amount is 400 mm
A 400m x 50mm sample was glued to the bottom of a box made of cold insulation material (urethane foam) with a 400+nm x 400mm bottom and an open top, and the required amount of liquid nitrogen was instantly poured into the box and allowed to evaporate for 180 seconds. The amount is 24±2
This is a value measured in an atmosphere of 55±5% RH.

初期蒸発量は極力低い値が好ましいが少なくとも15 
kg / rr?以下、at180秒でなければならな
い。これ以上の値では所望の蒸発抑制効果が得られない
The initial evaporation amount is preferably as low as possible, but at least 15
kg/rr? Below, it must be at 180 seconds. If the value exceeds this value, the desired evaporation suppressing effect cannot be obtained.

熱伝導率は0.12KcaQ/m、hr、 ’C平均温
度24.5±0.5以下であり、厚さ50mm程度の断
熱層となし下地層からの入熱による初期蒸発量の抑制機
能を発現する。圧縮強度は25kgf/cJ以上とする
ことにより、保守管理時の外力や歩行時の力による損傷
を防止できる。
Thermal conductivity is 0.12 KcaQ/m, hr, 'C average temperature 24.5 ± 0.5 or less, and it has a function of suppressing initial evaporation due to heat input from the base layer without a heat insulating layer of about 50 mm thickness. manifest. By setting the compressive strength to 25 kgf/cJ or more, damage caused by external force during maintenance or walking force can be prevented.

骨材は黒曜石発泡体でなくてはならない。例えば黒曜石
発泡体の代りに真珠岩発泡体を用いたものは、初期蒸発
量および熱伝導率が劣り、黒曜石並の熱特性を得がたい
。仮に真珠岩発泡体骨材の姓を増加して初期蒸発量熱伝
導率を本願の発泡体を骨材とするコンクリート(以下黒
曜石コンクリートという)と同等となしても、圧縮強度
、吸水性、耐候性、耐久性が劣り、かつ表面処理や保守
管理に手間がかかりコスト高となり好ましくない。
The aggregate must be obsidian foam. For example, when perlite foam is used instead of obsidian foam, the initial evaporation amount and thermal conductivity are inferior, and it is difficult to obtain thermal properties comparable to obsidian. Even if the initial evaporation rate and thermal conductivity of the pearlite foam aggregate were made to be the same as that of the foam-based concrete of the present application (hereinafter referred to as obsidian concrete), the compressive strength, water absorption, and weather resistance would be lower. It is undesirable because it has poor hardness and durability, and requires time and effort in surface treatment and maintenance, resulting in high cost.

また泡ガラスを用いて本願並の初期蒸発量および熱伝導
率を満足する断熱材をつくっても、圧縮強度等の強度が
劣り損傷を受は易く、耐久性、施工性も劣り好ましくな
い。
Furthermore, even if a heat insulating material is made using foam glass that satisfies the initial evaporation amount and thermal conductivity of the present application, it is not preferable because it has poor compressive strength and other strengths, is easily damaged, and has poor durability and workability.

〔実施例〕 以下実施例を挙げて説明する。〔Example〕 This will be explained below with reference to examples.

図は防液堤の施工状態を示すもので、1は低温液化ガス
のタンク(図示せず)を設置した土壌であり、2はその
周囲をとりまいて構築した防液堤である。この防液堤2
の内側面には黒曜石コンクリートの板状の断熱材3 (
1,5mXL3mX50mm (厚さ))が敷並べてあ
り、目地には目地材4が詰込まれている。なお、図面で
5は堤2の基体に植設したアンカーボルトであり、6は
断熱板に形成されたアンカーボルト部の孔埋材である。
The figure shows the construction status of the dike. 1 is the soil on which a low-temperature liquefied gas tank (not shown) is installed, and 2 is the dike constructed around it. This dike 2
Obsidian concrete plate-shaped insulation material 3 (
1.5mXL3mX50mm (thickness)) are laid out side by side, and the joints are filled with joint material 4. In the drawings, numeral 5 indicates an anchor bolt installed in the base of the embankment 2, and numeral 6 indicates a hole filling material for the anchor bolt portion formed in the heat insulating plate.

防液堤2の内側の土壌1には均しコンクリート7を打設
し、その上に溶接金物8を配筋し、型枠を組立て3mX
 6mX50mm (厚さ)を単位にして黒曜石コンク
リ−1−を打設して断熱材3の層が形成されている。ま
た、目地には目地材4が詰込まれている。
Place leveled concrete 7 on the soil 1 inside the dike 2, place welding hardware 8 on top of it, and assemble the formwork to form a 3mX
A layer of heat insulating material 3 is formed by pouring obsidian concrete 1 in units of 6 m x 50 mm (thickness). Moreover, a joint material 4 is packed in the joints.

この防液堤2の断熱材3の黒曜石コンクリートの組成は
下表のものを用いた。
The composition of the obsidian concrete used as the heat insulating material 3 of this liquid barrier 2 was as shown in the table below.

第1表 ※第1表で用いた黒曜石骨材は第2表に示す物性値であ
った。なお、参考例として従来の断熱材に骨材として用
いた真珠岩発泡体の同一測定条件下の物性値を併記する
Table 1 *The obsidian aggregate used in Table 1 had the physical properties shown in Table 2. As a reference example, the physical property values of a pearlite foam used as an aggregate in a conventional heat insulating material under the same measurement conditions are also listed.

実施例の黒曜石コンクリートは50IIII+の厚さの
板となし、 その初期蒸5I!量は4.20kg/イ1
80秒であった。また、その物性は第3表のごとくであ
った。
The obsidian concrete of the example is made of a plate with a thickness of 50III+, and its initial steaming is 5I! The amount is 4.20kg/1
It was 80 seconds. Further, its physical properties were as shown in Table 3.

なお第3表には比較例として従来の真珠岩発泡体を骨材
とした真珠岩コンクリートおよび泡ガラス(セローム)
の物性値も記載した。
Table 3 shows comparative examples of pearlite concrete using conventional pearlite foam as aggregate and foam glass (CEROM).
The physical property values are also listed.

第1表に示した組成のほか、例えば第4表の組成の思1
1fd石コンクリートも本願の防液堤の断熱材として/
IT−適である。
In addition to the compositions shown in Table 1, for example, the compositions shown in Table 4
1fd stone concrete can also be used as insulation material for the liquid dike in this application.
IT-suitable.

第4表 この黒曜石コンクリートの物性は下記の通りであった。Table 4 The physical properties of this obsidian concrete were as follows.

初期蒸発jIi   4.72kg/rr? at18
0秒熱伝導率   0.117KcaQ/m、hr、℃
圧縮強度   45瞳f/cnf また、骨材/セメント比を7−0(vot)となした黒
曜石コンクリートも本願の防液堤用の断熱コンクリート
として用い好適である。
Initial evaporation jIi 4.72kg/rr? at18
0 second thermal conductivity 0.117KcaQ/m, hr, °C
Compressive strength: 45 pupils f/cnf Obsidian concrete with an aggregate/cement ratio of 7-0 (vot) is also suitable for use as the insulating concrete for the dike of the present application.

〔作用および発明の効果〕[Action and effect of the invention]

この発明は以上の構成からなる。この防液堤の内側面お
よび内部地表面に配した黒曜石コンクリートからなる断
熱材コンクリートは、初期蒸発量および熱伝導率を低い
値に保ち得ると同時に圧縮強度等の強度が高く損傷を受
は難く、従来の真珠岩コンクリート、泡ガラス等の断熱
材に比べ、熱特性および強度が優れ、同時に充分な耐水
性、耐候性を備えている。
This invention consists of the above configuration. The insulating concrete made of obsidian concrete placed on the inner surface and internal ground surface of this dike can keep the initial evaporation amount and thermal conductivity to low values, and has high compressive strength and other strengths and is difficult to damage. Compared to conventional heat insulating materials such as pearlite concrete and foam glass, it has superior thermal properties and strength, and at the same time has sufficient water resistance and weather resistance.

この防液堤の地表面には黒曜石コンクリートを(6mX
3m)の目地スパン寸法となし施工し得るために、目地
部長さおよび目地面積の割合が低く、目地部分による蒸
発量の増大を防止でき、施工のコストも低減できる。ま
た、耐水性、耐候性が優れているので表面保護材の塗布
が不要となる。
The ground surface of this dike is covered with obsidian concrete (6m x
Since it can be constructed without a joint span dimension of 3 m), the ratio of the joint length and joint area is low, preventing an increase in the amount of evaporation due to the joint part, and reducing construction costs. In addition, it has excellent water resistance and weather resistance, so there is no need to apply a surface protection material.

以上の通り、この防液堤は、内部に敷設した断熱コンク
リートが断熱材として熱特性が優れ、同時に充分な強度
、耐久性を備えている。また断熱材の施工コストが安く
、保守管理に要するコストも低い。
As mentioned above, the insulating concrete laid inside this dike has excellent thermal properties as a heat insulating material, and at the same time has sufficient strength and durability. Furthermore, the construction cost of the insulation material is low, and the cost required for maintenance and management is also low.

【図面の簡単な説明】[Brief explanation of drawings]

図面は防液堤の施工状態の一部断面で示す斜視図である
。 1・・・土壌、    2・・・防液堤、  3・・・
断熱材、4・・・ロ地材、シーリング材、  5・・・
アンカーボルト、6・・・アンカーボルト礼埋材、  
7・・均しコンクリ−h、8・・・溶接金訓。 手続補正書 11師61年 2月26日 11亜60年特願第 277519号 2、 発明の名称 低温液化ガス貯槽の防液堤 3、 補正をする者 事件との関係   特許出願人 住  所 (137)  Iπ島建設株式会社 ニチアス株式会社 氏  名 、代理人 ・、 補正命令の日付   自発補正 明     細     書 ■、 発明の名称 低温液化ガス貯槽の防液堤 2、特許請求の範囲 0)低温液化ガス貯槽の防液堤において、防液堤内側面
および堤内地表面に断熱材として黒曜石発泡体を骨材と
し下記条件を満足するコンクリート層が配してあること
を特徴とする低温液化ガス貯槽の防液堤。 熱伝導’J         O,12KcaQ/m、
hr、’c以下圧縮強度        25kgf/
car以上3、発明の詳細な説明 〔産業上の利用分野〕 この発明はLNG、LPG 等の低温液化ガス貯槽の周
囲に設置する防液堤に関する。 〔従来技術〕 低温液化ガスの地上設置型のタンクは、これと同容積を
有する防液堤の設置義務がある。 防液堤はタンク内の液化ガスが万一リークした際に、外
部に液が流出することを防止することを目的とする。ま
た防液堤内の断熱材は、液化ガスが万一リークした際、
地表面、防液堤面からの入熱による初期蒸発量を抑制す
ることを目的とする4この初期蒸発量は液化ガスが接触
する物体の熱伝導率、密度、比熱、表面温度等の条件に
より左右される。 従って防液堤の内側面および堤内の地表面には初期蒸発
量を抑制するために断熱材を敷設する必要があった。ま
た、同時にこの断熱材は次の条件を具えていなければな
らなかった。 ■不燃性である。  ■断熱性能が優れている。 ■圧縮強度が高い。 ■吸水率が低い ■耐候性がよい。  ■耐久性がある。 ■保守管理が容易である。 従来、これらの条件を満足する断熱材および施工法とし
ては次の2つの方法がとられていた。 すなわち、防液堤内側面および堤内土壌表面に打設した
均しコンクリート面にa泡ガラス(商品名セローム)ボ
ードを接着モルタル等で接着し敷、1にべろ方法、b真
珠岩系発泡体を骨材としたコンクリートを金網等を配筋
した型枠(3m角)を単位に打設する方法があった。 しかし、aの方法は■泡ガラスポードの最大寸法が45
5mmX606mmで単位ボードの寸法が小さく敷設施
工に多大の手間を要す。■上記のボード寸法では11地
部の長さおよび表面積が犬となり、この部分のWr熱性
が劣るためにリーク時の蒸発ガス量が増加する。■泡ガ
ラスポードは強度が低いために保守管理時の落下物、歩
行等に対する耐衝撃性、耐摩耗性が乏しい。(分耐候性
を高めるために表面保護材を必要としコストの上昇、保
守管理に手間がかかる。■下地のコンクリートに植設し
たアンカーボルトで泡ガラスボードを固定する方法では
太陽の熱で泡ガラスポードが反り、断熱層に損傷を生じ
る。等の欠点があった。 また、bの方法は■熱伝導率が大きく、初期蒸発量も大
となり断熱性能が他の方法に比へ劣る。 ■吸水率がKS < 、吸水による断熱性能の低下が大
きい。■耐候性、耐水性を付与するためにエポキシ防水
材を塗布したり、ガラスクロスを敷込み補強する必要が
ありコストが高くなる等の欠点があった・ 〔発明の目的〕 この発明は前記事情に鑑みなされたものである。 その目的は、液化ガスの初期蒸発量が少なく、同時に堤
内表面に配した断熱材の耐衝撃性、耐摩耗性、耐候性の
強度が優れた低温液化ガス貯槽の防液堤を提案するにあ
る。 〔発明の構成〕 この発明は低温液化ガス貯槽の防液堤において、防液堤
内側面および堤内地表面に断熱材として黒曜石発泡体を
骨材とし下記条件 熱伝導率        0.12KcaQ/m、hr
、’c以下圧縮強度        25kgf/−以
上を満足することを特徴とする。 なお、この発明において初期蒸発量とは、黒曜石発泡体
を骨材とするコンクリート(断熱材)の400mm X
 400nn X 50nvnの試料を、保冷材(ウレ
タンフオーム)でつくった底面が400mmX400m
mで」二面が開放した箱の底面に接着し、この箱内に所
要量の液体窒素を瞬時に投入し、180秒間蒸発量を2
4±2°C755±5%RHの雰囲気中で測定した値で
ある。 初期蒸発はは極力低い値が好ましいが少なくとも15k
g/m、 180sec、以下でなければならない。 これ以上の値では所望の蒸発抑制効果が得られない。熱
伝導率は0.12KcaQ/m、hr、 ’C平均温度
24.5±0.5以下であり、厚さ50nyn程度の断
熱層となし下地層からの入熱による初期蒸発量の抑制機
能を発現する。圧縮強度は25kgf/cJ以上とする
ことにより、保守管理時の外力や歩行時の力による損傷
を防止できる。 骨材は黒曜石発泡体でなくてはならない。例えば黒曜石
発泡体の代りに真珠岩発泡体を用いたものは、初期蒸発
量および熱伝導率が劣り、黒曜石並の熱特性を得がたい
。仮に真珠岩発泡体骨材の軟を増加して初期蒸発量熱伝
導率を本願の発泡体を骨材とするコンクリート(以下黒
曜石コンクリートという)と同等となしても、圧縮強度
、吸水性、耐候性、耐久性が劣り、かつ表面処理や保守
管理に手間がかかりニス1〜高となり好ましくない。 また泡ガラスを用いて本願並の初期蒸発量および熱伝導
率を満足する断熱材をつくっても、圧縮強度等の強度が
劣り損傷を受は易く、耐久性、施工性も劣り好ましくな
い。 〔実施例〕 以下実施例を挙げて説明する。 図は防液堤の施工状態を示すもので、1は低温液化ガス
のタンク(図示せず)を設置した土壌であり、2はその
周囲をとりまいて構築した防液堤である。この防液堤2
の内側面には黒曜石コンクリートの板状の断熱材3 (
1,5n+X1.3mX50mm (厚さ))が敷並べ
てあり、目地には目地材4が詰込まれている。なお、図
面で5は堤2の基体に植設したアンカーボルトであり、
6は断熱板に形成されたアンカーボルト部の孔埋材であ
る。 防液堤2の内側の土壌1には均しコンクリート7を打設
し、その上に溶接金物8を配筋し、型枠を、■立て3m
X 6mX50mm (厚さ)をm位にして黒曜石コン
クリートを打設して断熱材3の層が形成されている。ま
た、目地には目地材4が詰込まれている。 この防液堤2の断熱材3の黒曜石コンクリートの組成は
下表のものを用いた。 第1表 ※第1表で用いた黒曜石骨材は第2表に示す物性値であ
った。なお、参考例として従来の断熱材に骨相として用
いた真珠岩発泡体の同一71+q定条件下の物性値をf
)P記する。 実施例の黒曜石コンクリートは50mmの厚さの板とな
し、 その初期蒸発量は4.20kg/rn’ 180
秒であった。また、その物性は第3表のごとくであった
。 なお第3表には比較例として従来の真珠岩発泡体を骨材
とした真珠岩コンクリートおよび泡ガラス(セローム)
の物性値も記載した。 第3表 第1表に示した組成のほか、例えば第4表の組成の黒曜
石コンクリートも本願の防液堤の断熱材として好適であ
る。 第4表 この黒曜石コンクリートの物性は下記の通りであった。 初期蒸発量  4.72kg/ rd at180秒熱
伝導率   0.117KcaIl/m、hr、 ’C
圧縮強度   45 kgf/cJ また。骨材/セメント比を7.0(Vol)となした黒
曜石コンクリートも本願の防液堤用の断熱コンクリート
として用い好適である。 〔作用および発明の効果〕 この発明は以上の構成からなる。この防液堤の内側面お
よび内部地表面に配した黒曜石コンクリートからなる断
熱材コンクリートは、初期蒸発量および熱伝導率を低い
値に保ち得ると同時に圧縮強度等の強度が高く損傷を受
は難く、従来の真珠岩コンクリート、泡ガラス等の断熱
材に比べ、熱特性および強ノαが優れ、同時に充分な耐
水性、耐候性を備えている。 この防液堤の地表面には具曜石コンクリートを(6mX
3m)の目地スパン寸法となし施工し得るために5目地
部長さおよび目地面積の割合が低く、目地部分による蒸
発量の増大を防止でき、施工のコストも低減できる。ま
た、耐水性、耐候性が俟tしているので表面保護材の塗
布が不要となる。 以」二の通り、この防液堤は、内部に敷設した断熱コン
クリ−1−が断熱材として熱特性が優れ、同時に充分な
強度、耐久性を備えている。また断熱材の施工コストが
安く、保守管踵に要するコストも低い。 4、 図面の簡I11な説明 図面は防液堤の施工状態の一部断面で示す斜視図である
。 1・・・土壌、    2・・・防液堤、   3・・
・断熱材、4・目地材、シーリング材、 5・・・アン
カーボルト、6・・・アンカーボルト孔埋材、  7・
・・均しコンクリート、8・・・溶接金網。
The drawing is a partially sectional perspective view of the construction state of the dike. 1...Soil, 2...Dike, 3...
Insulation material, 4... Base material, sealing material, 5...
Anchor bolt, 6... Anchor bolt burial material,
7. Leveling concrete h, 8. Welding metal training. Procedural Amendment 11 February 26, 1961 Patent Application No. 277519 2, Title of invention: Liquid barrier for low-temperature liquefied gas storage tank 3, Relationship with the person making the amendment Patent applicant address (137 ) Iπ Island Construction Co., Ltd. NICHIAS Co., Ltd. Name, Agent, Date of amendment order Spontaneous amendment details, Name of invention Liquid barrier dike 2 for low temperature liquefied gas storage tank, Claims 0) Low temperature liquefied gas storage tank A liquid barrier for a low-temperature liquefied gas storage tank, characterized in that a concrete layer that uses obsidian foam as aggregate and satisfies the following conditions as a heat insulating material is arranged on the inner surface of the liquid barrier and the ground surface within the bank as a heat insulating material. . Heat conduction 'J O, 12KcaQ/m,
hr, 'c or less Compressive strength 25kgf/
3. Detailed Description of the Invention [Field of Industrial Application] This invention relates to a liquid barrier installed around a storage tank for low-temperature liquefied gas such as LNG or LPG. [Prior Art] Ground-mounted tanks for low-temperature liquefied gas are required to have a dike with the same volume. The purpose of the liquid barrier is to prevent liquid from flowing outside in the event that liquefied gas leaks inside the tank. In addition, the insulation inside the dike is designed to prevent liquefied gas from leaking in the event of a leak.
The purpose is to suppress the initial amount of evaporation due to heat input from the ground surface and the surface of the dike.4 This initial amount of evaporation depends on conditions such as the thermal conductivity, density, specific heat, and surface temperature of the object with which the liquefied gas comes into contact. Depends on it. Therefore, it was necessary to install heat insulating material on the inner surface of the dike and on the ground surface within the dike to suppress the initial amount of evaporation. At the same time, this insulation material had to meet the following conditions: ■It is nonflammable. ■Excellent insulation performance. ■High compressive strength. ■Low water absorption ■Good weather resistance. ■Durable. ■Easy to maintain and manage. Conventionally, the following two methods have been used as insulation materials and construction methods that satisfy these conditions. In other words, a foam glass (trade name: CEROHM) board was glued and laid with adhesive mortar on the leveled concrete surface cast on the inner surface of the dike and the soil surface within the dike, 1) the tongue method, and b pearlite foam as bones. There was a method of pouring concrete as a material into formwork (3m square) with reinforcements such as wire mesh. However, in method a, the maximum dimension of the foam glass pode is 45
The size of the unit board is small at 5 mm x 606 mm, and it takes a lot of effort to install it. ■With the above board dimensions, the length and surface area of the base 11 are too large, and the Wr heat resistance of this part is poor, so the amount of evaporative gas when leaking increases. ■ Foam glass pods have low strength, so they have poor impact resistance and abrasion resistance against falling objects during maintenance, walking, etc. (Surface protection materials are required to increase weather resistance, which increases costs and requires time and effort to maintain.) ■With the method of fixing foam glass boards with anchor bolts planted in the underlying concrete, the foam glass boards are exposed to the heat of the sun. There were disadvantages such as warping and damage to the insulation layer.In addition, method b has a large thermal conductivity and a large amount of initial evaporation, making the insulation performance inferior to other methods.Water absorption rate However, KS <, the insulation performance decreases significantly due to water absorption.■ Disadvantages include high cost as it is necessary to apply epoxy waterproofing material to provide weather resistance and water resistance, and to reinforce it by laying glass cloth. [Purpose of the Invention] This invention was made in view of the above circumstances.The purpose is to reduce the initial evaporation amount of liquefied gas, and at the same time improve the impact resistance and abrasion resistance of the heat insulating material placed on the inner surface of the embankment. The purpose of the present invention is to propose a dike for a low-temperature liquefied gas storage tank that has excellent weather resistance. Thermal conductivity is 0.12KcaQ/m, hr using obsidian foam as the material and the following conditions:
, 'c or less, and compressive strength of 25 kgf/- or more. In this invention, the initial evaporation amount is 400 mm
A sample of 400nm x 50nvn was made of cold insulation material (urethane foam) with a bottom surface of 400mm x 400m.
Attach it to the bottom of a box with two open sides, and instantly pour the required amount of liquid nitrogen into the box to reduce the amount of evaporation by 2 for 180 seconds.
This is a value measured in an atmosphere of 4±2°C and 755±5% RH. The initial evaporation value is preferably as low as possible, but at least 15k.
g/m, 180 sec, or less. If the value exceeds this value, the desired evaporation suppressing effect cannot be obtained. Thermal conductivity is 0.12 KcaQ/m, hr, 'C average temperature 24.5 ± 0.5 or less, and it has a function of suppressing initial evaporation due to heat input from the base layer without a heat insulating layer of about 50 nyn thickness. manifest. By setting the compressive strength to 25 kgf/cJ or more, damage caused by external force during maintenance or walking force can be prevented. The aggregate must be obsidian foam. For example, when perlite foam is used instead of obsidian foam, the initial evaporation amount and thermal conductivity are inferior, and it is difficult to obtain thermal properties comparable to obsidian. Even if the softness of the pearlite foam aggregate is increased and the initial evaporation thermal conductivity is made to be the same as that of the foam-based concrete of the present application (hereinafter referred to as obsidian concrete), the compressive strength, water absorption, and weather resistance will be lower. The quality and durability are poor, and surface treatment and maintenance are time-consuming and the varnish is 1 to 1 high, which is not preferable. Furthermore, even if a heat insulating material is made using foam glass that satisfies the initial evaporation amount and thermal conductivity of the present application, it is not preferable because it has poor compressive strength and other strengths, is easily damaged, and has poor durability and workability. [Example] Examples will be described below. The figure shows the construction status of the dike. 1 is the soil on which a low-temperature liquefied gas tank (not shown) is installed, and 2 is the dike constructed around it. This dike 2
Obsidian concrete plate-shaped insulation material 3 (
1.5n+X1.3mX50mm (thickness)) are laid out side by side, and the joints are filled with joint material 4. In addition, in the drawing, 5 is an anchor bolt installed in the base of embankment 2,
6 is a hole filling material for an anchor bolt portion formed on a heat insulating plate. Leveled concrete 7 is placed on the soil 1 inside the dike 2, welding hardware 8 is placed on top of it, and the formwork is set up to a height of 3 m.
A layer of heat insulating material 3 is formed by pouring obsidian concrete with a size of 6 m x 50 mm (thickness). Moreover, a joint material 4 is packed in the joints. The composition of the obsidian concrete used as the heat insulating material 3 of this liquid barrier 2 was as shown in the table below. Table 1 *The obsidian aggregate used in Table 1 had the physical properties shown in Table 2. As a reference example, the physical property values of pearlite foam used as bone phase in a conventional heat insulating material under the same 71+q constant conditions are f.
) Write P. The obsidian concrete of the example was made into a plate with a thickness of 50 mm, and its initial evaporation amount was 4.20 kg/rn' 180
It was seconds. Further, its physical properties were as shown in Table 3. Table 3 shows comparative examples of pearlite concrete using conventional pearlite foam as aggregate and foam glass (CEROM).
The physical property values are also listed. In addition to the compositions shown in Table 3 and Table 1, for example, obsidian concrete having the composition shown in Table 4 is also suitable as a heat insulating material for the dike of the present application. Table 4 The physical properties of this obsidian concrete were as follows. Initial evaporation amount 4.72kg/rd at 180 seconds Thermal conductivity 0.117Kcal/m, hr, 'C
Compressive strength: 45 kgf/cJ. Obsidian concrete with an aggregate/cement ratio of 7.0 (Vol) is also suitable for use as the insulating concrete for the dike of the present application. [Operation and Effects of the Invention] This invention consists of the above configuration. The insulating concrete made of obsidian concrete placed on the inner surface and internal ground surface of this dike can keep the initial evaporation amount and thermal conductivity to low values, and has high compressive strength and other strengths and is difficult to damage. Compared to conventional heat insulating materials such as pearlite concrete and foam glass, it has superior thermal properties and strength, and at the same time has sufficient water resistance and weather resistance. The ground surface of this dike is covered with stone concrete (6m x
Since it can be constructed without a joint span dimension of 3 m), the ratio of joint length and joint area is low, preventing an increase in the amount of evaporation due to the joint, and reducing construction costs. Furthermore, since it has excellent water resistance and weather resistance, there is no need to apply a surface protection material. As described in Section 2 below, the insulating concrete 1 laid inside this dike has excellent thermal properties as a heat insulating material, and at the same time has sufficient strength and durability. In addition, the construction cost of the insulation material is low, and the cost required for maintenance pipe heels is also low. 4. Simplified explanation of the drawings The drawings are perspective views showing a partially sectional view of the construction state of the dike. 1...Soil, 2...Dike, 3...
・Insulation material, 4. Joint material, sealing material, 5. Anchor bolt, 6. Anchor bolt hole filling material, 7.
...Leveled concrete, 8...Welded wire mesh.

Claims (1)

【特許請求の範囲】[Claims] (1)低温液化ガス貯槽の防液堤において、防液堤内側
面および堤内地表面に断熱材として黒曜石発泡体を骨材
とし下記条件を満足するコンクリート層が配してあるこ
とを特徴とする低温液化ガス貯槽の防液堤。 初期蒸発量(液体窒素蒸発量として)15.0kg/m
^2以下、 at180秒熱伝導率0.12Kcal/m.hr.℃
以下 圧縮強度25kgf/cm^2以上
(1) A low-temperature levee for a low-temperature liquefied gas storage tank, characterized in that a concrete layer is placed on the inner surface of the levee and on the ground surface inside the levee as a heat insulator, using obsidian foam as aggregate and satisfying the following conditions. Liquid dike for liquefied gas storage tank. Initial evaporation amount (as liquid nitrogen evaporation amount) 15.0kg/m
^2 or less, at 180 seconds thermal conductivity 0.12 Kcal/m. hr. ℃
Compressive strength below 25kgf/cm^2 or more
JP27751985A 1985-12-10 1985-12-10 Breakwater for reserving low temperature liquefied gas Granted JPS62137499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27751985A JPS62137499A (en) 1985-12-10 1985-12-10 Breakwater for reserving low temperature liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27751985A JPS62137499A (en) 1985-12-10 1985-12-10 Breakwater for reserving low temperature liquefied gas

Publications (2)

Publication Number Publication Date
JPS62137499A true JPS62137499A (en) 1987-06-20
JPH0456919B2 JPH0456919B2 (en) 1992-09-09

Family

ID=17584723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27751985A Granted JPS62137499A (en) 1985-12-10 1985-12-10 Breakwater for reserving low temperature liquefied gas

Country Status (1)

Country Link
JP (1) JPS62137499A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337168A (en) * 1989-07-05 1991-02-18 Kajima Corp Heat insulating concrete for dike of low temperature liquefied gas tank
JP2014114861A (en) * 2012-12-10 2014-06-26 Taisei Corp Insulation structure of low temperature storage tank
JP2016153694A (en) * 2016-03-15 2016-08-25 大成建設株式会社 Heat insulation structure of low-temperature storage tank

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086707A (en) * 1973-12-04 1975-07-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086707A (en) * 1973-12-04 1975-07-12

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337168A (en) * 1989-07-05 1991-02-18 Kajima Corp Heat insulating concrete for dike of low temperature liquefied gas tank
JP2014114861A (en) * 2012-12-10 2014-06-26 Taisei Corp Insulation structure of low temperature storage tank
JP2016153694A (en) * 2016-03-15 2016-08-25 大成建設株式会社 Heat insulation structure of low-temperature storage tank

Also Published As

Publication number Publication date
JPH0456919B2 (en) 1992-09-09

Similar Documents

Publication Publication Date Title
US4464082A (en) Chilled gas pipeline installation and method
CN105178126B (en) A kind of Permafrost Area transition band combining structure and construction method
US11111977B2 (en) Equipment platform
JPS62137499A (en) Breakwater for reserving low temperature liquefied gas
CA1174063A (en) Ice island construction
US6976809B1 (en) Method of preventing frost heave stress concentrations in chilled buried pipelines
JPS59154213A (en) Soil covering work
CN108049542A (en) The super flat wear-resisting load bearing heat preserving cold chain storehouse level ground of anticracking of large area
CN115341596A (en) Implementation method for bilateral additional construction of slope-shaped independent foundation
JP3201348U (en) A lightweight soil containing foamed synthetic resin particles, a lightweight sandbag filled with this lightweight soil, and a set for manufacturing lightweight soil
US2997071A (en) Pipe systems
JP2561959B2 (en) Insulating concrete for liquid bank of low temperature liquefied gas storage tank
RU2802766C1 (en) Multilayer mat for device of road embanking and method for its manufacture
Raphael Crustal disturbances in the Lake Mead area
Ivanov Use of granulated foam glass ceramics in the bases of transport facilities in the Arctic
RU63374U1 (en) CURVE PIPE ON THE ROAD WITH A PUCCHIST BASE
JP4078092B2 (en) Liquid breakwater for cryogenic liquid storage tank
CN1076234A (en) Prevent the method for frost crack of irrigation ditch with rigid facing
RU2317367C1 (en) Culvert for motor road built on heaving base
CN209585115U (en) A kind of structure on the genuine basis of the defeated coal of frozen soil layer
CN211922579U (en) Foundation cement maintenance is with covering heat preservation device
NO134878B (en)
JPS63210308A (en) Formation of ground using expanded styrol
RU69883U1 (en) SLOPE PART OF EARTH STRUCTURE ON ETERNAL FROZEN
JP3103862B2 (en) Widening civil engineering method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees