JPH0337168A - Heat insulating concrete for dike of low temperature liquefied gas tank - Google Patents

Heat insulating concrete for dike of low temperature liquefied gas tank

Info

Publication number
JPH0337168A
JPH0337168A JP17342489A JP17342489A JPH0337168A JP H0337168 A JPH0337168 A JP H0337168A JP 17342489 A JP17342489 A JP 17342489A JP 17342489 A JP17342489 A JP 17342489A JP H0337168 A JPH0337168 A JP H0337168A
Authority
JP
Japan
Prior art keywords
pearlite
concrete
insulating concrete
aggregate
dike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17342489A
Other languages
Japanese (ja)
Other versions
JP2561959B2 (en
Inventor
Norio Konishi
小西 范男
Yukiharu Kondo
近藤 幸春
Yujiro Tazawa
田沢 雄二郎
Katsumasa Kawamoto
河本 克正
Hiroshi Kitai
北井 博
Mamoru Sakumoto
作本 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Netsu Kogyo Kk
Kajima Corp
Original Assignee
Daiki Netsu Kogyo Kk
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Netsu Kogyo Kk, Kajima Corp filed Critical Daiki Netsu Kogyo Kk
Priority to JP1173424A priority Critical patent/JP2561959B2/en
Publication of JPH0337168A publication Critical patent/JPH0337168A/en
Application granted granted Critical
Publication of JP2561959B2 publication Critical patent/JP2561959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase durability and reduce dispersion of quality by using a mixture of foamed granular material of obsidian-system as a main component and pearlite- system as a subordinate component as aggregate, reinforcing with glass fiber and specifying initial evaporating speed, thermal conductivity and compression strength. CONSTITUTION:Ground surface in a dike 4, floor surface below fundamental slab 2 of a high floor type tank supporting a low temperature tank 1 and the surface of exposed fundamental piles 3 are covered with heat insulating concrete 5. An aggregate containing obsidian-system pearlite as a main component and pearlite-system pearlite as a subordinate component is used to said concrete 5 having increased water retentivity, preventing of separation of mixed water, increased fluidity and increased uniformity of the composition for the sake of addition of the latter. Furthermore, excellent thermal properties, strength and durability of the former are able to be exhibited without deterioration in the aggregate. The concrete 5 is fixed to have <=50X10<-3>t<-0.5>cm/sec initial evaporation speed [at 23 deg.C atmospheric temperature, using liquefied nitrogen and t=time elapsed (sec)], <=0.13Kcal/m.hr. deg.C thermal conductivity and >=25kgf/cm<2> compression strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はLNG、LPG等の低温液化ガス貯槽の周囲
に設置する防液堤用の断熱コンクリートに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat insulating concrete for a liquid dike installed around a storage tank for low temperature liquefied gas such as LNG or LPG.

〔従 来 技 術〕[Traditional technique]

低温液化ガス貯槽は万一の流出、漏洩事故に備え、その
周囲には防液堤の設置が義務づけられている。液化ガス
が防液堤内に流出したなら、接液した構造体は急激に冷
却され崩壊の危険性が生じたり、それらからの入熱でガ
ス化が促進され、火災や爆発等の2次災害を招く恐れが
ある。従って、■防液堤内の地表面および基礎スラブ下
の床面に液化ガスの蒸発、拡散を抑制するための断熱材
層を設けたり、■基礎杭の周りに液化ガスによる熱衝撃
および低温脆化の緩衝等を目的とする断熱材層が設けら
れる。これらの断熱材層は次の条件を備えていなければ
ならない。
Low-temperature liquefied gas storage tanks are required to have a liquid barrier built around them in case of an accident or leakage. If liquefied gas leaks into the dike, structures in contact with the liquid may cool down rapidly, creating a risk of collapse, or the heat input from them may accelerate gasification, leading to secondary disasters such as fires and explosions. There is a risk of inviting Therefore, it is necessary to: ■ install an insulating layer on the ground surface inside the dike and the floor surface under the foundation slab to suppress evaporation and diffusion of liquefied gas, and ■ thermal shock and low-temperature embrittlement caused by liquefied gas around the foundation piles. A heat insulating material layer is provided for the purpose of buffering, etc. These insulation layers must meet the following conditions:

・断熱性に優れている ・低温性が良い ・経年変化が少ない ・耐候性、耐久性に富んでいる ・経済的である 従来の防液堤は防液堤内の土壌面に打設した均しコンク
リート上に、金網等の補強材を配し、真珠岩系発泡粒状
物(真珠岩系パーライト)もしくは黒曜石系発泡粒状物
(黒曜石系パーライト)の単体を骨材とした断熱コンク
リートを約3m角の単位で伸縮目地を形成しながら5〜
200の厚さに打設し、断熱材層を形成するものであっ
た。しかし、この断熱コンクリートは次の様な欠点があ
った。
・Excellent insulation properties ・Good low-temperature properties ・ Less deterioration over time ・ Rich in weather resistance and durability ・ Economical Conventional liquid dikes are leveled and poured into the soil surface inside the dike. A reinforcing material such as a wire mesh is placed on the concrete, and an approximately 3 m square piece of insulating concrete is made of a single piece of pearlite-based foamed granules (perlite) or obsidian-based foamed granules (obsidian-based pearlite) as the aggregate. 5~ while forming expansion joints in units
It was poured to a thickness of 200 mm to form a heat insulating layer. However, this insulating concrete had the following drawbacks.

■ 真珠岩系パーライトはそれ自身が脆く、また独立気
泡率が低いこと等から混練りしたときに破壊されて細粒
化や体積減少が起こり、混合水が必然的に多くなり、高
比重となる。
■ Pearlite itself is brittle and has a low closed cell ratio, so when it is kneaded it breaks down, resulting in finer grains and volume reduction, which inevitably increases the amount of water mixed in, resulting in a high specific gravity. .

熱伝導率、初期蒸発速度といった熱特性を高めるために
混練り時の比重を軽くすると圧縮強度、吸水性、耐久性
、耐候性が低下する。
If the specific gravity during kneading is reduced in order to improve thermal properties such as thermal conductivity and initial evaporation rate, compressive strength, water absorption, durability, and weather resistance will decrease.

■ 黒曜石系パーライトは真珠岩系パーライトに比べ、
硬くまた独立気泡率が高く、気泡の破壊が起こりがたく
、混合水量を低減でき、熱特性を高めるため混練時の比
重を軽くしても比強度が大きい断熱コンクリートが得ら
れる。しかし、混合した際に混合水が分離し易く、流動
性が低下して、均質性の低下を起こし易い。また得られ
るコンクリートの単位容積重量が大であり、かつ高価と
なる欠点があった。
■ Obsidian-based pearlite is compared to pearlite-based pearlite.
It is hard and has a high closed cell ratio, making it difficult for bubbles to collapse, allowing for a reduction in the amount of water mixed, and in order to improve thermal properties, it is possible to obtain an insulating concrete with a high specific strength even if the specific gravity at the time of kneading is lightened. However, when mixed, the mixed water tends to separate, resulting in a decrease in fluidity and a decrease in homogeneity. Moreover, the unit volume weight of the obtained concrete is large and it is expensive.

■ 真珠岩系パーライトおよび黒曜石系パーライトのい
ずれを骨材として使用した断熱コンクリートも、−船釣
なコンクリートに比べ水/セメント比が大きいこと、骨
材強度が小さいこと等で乾燥収縮が大きく、また軽量化
するために機械的強度の絶対値が低いこと等から耐衝撃
性、耐摩耗性、耐久性に乏しい。
■ Insulating concrete that uses either pearlite-based pearlite or obsidian-based pearlite as an aggregate suffers from large drying shrinkage due to the higher water/cement ratio and lower aggregate strength compared to concrete. In order to reduce the weight, the absolute value of mechanical strength is low, resulting in poor impact resistance, abrasion resistance, and durability.

以上の欠点は、断熱コンクリートの表面が日射や、外気
温度の影響を直接受け、内部とに温度差や乾燥収縮量の
差が生じて発生する応力には対応出来ず、クランクが発
生する。熱論、この対策として、金網等の補強材を挿入
するが、クラックの発現を大幅に改善するまでには至っ
ていない、クラックは、その進行程度によって熱短絡や
熱特性の増大から、本来の設計基準値を逸脱したり、終
局的には断熱コンクリートを破壊してしまう危険性を含
んでいる。
The above-mentioned drawback is that the surface of the insulating concrete is directly affected by sunlight and outside temperature, and cannot cope with the stress generated by the difference in temperature and drying shrinkage between the inside and the inside, resulting in cracking. As a countermeasure against this, reinforcing materials such as wire mesh are inserted, but this has not significantly improved the appearance of cracks.Cracks can cause thermal short circuits and increase thermal characteristics depending on the degree of progression, so the original design standards There is a risk of deviating from the value and ultimately destroying the insulating concrete.

〔発明の目的〕[Purpose of the invention]

この発明は前記事情に鑑みなされたものである。 This invention was made in view of the above circumstances.

その目的は従来の防液堤の断熱材として用いられている
真珠岩系断熱コンクリートと同等の低コストであり、黒
曜石系断熱コンクリートに近似した断熱性能および機械
的強度を備え、しかも耐久性が優れ、品質のバラツキが
少ない低温液化ガス貯槽の防液堤用の断熱コンクリート
を提案するにある。
The purpose of this is to be as low-cost as pearlite-based insulating concrete, which is used as a conventional insulation material for dikes, to have insulation performance and mechanical strength similar to obsidian-based insulating concrete, and to be highly durable. The purpose of this paper is to propose an insulating concrete for dikes in low-temperature liquefied gas storage tanks that has less variation in quality.

(発明の構成) この低温液化ガス貯槽の防液堤用の断熱コンクリートは
、防液堤内の地表面、高床式貯槽基礎スラブ下の床面、
露出した基礎杭の表面を覆う断熱材として用いる断熱コ
ンクリートであって、黒曜石系発泡粒状物を主体とし、
真珠岩系発泡粒状物を添加した混合物を骨材となし、ガ
ラス繊維を混入し補強してなり、 初期蒸発速度 50xlO−’ t−’°5cIl/s
ec以下熱伝導率  0.13 Kcal/m、hr、
 ’C以下圧縮強度  25 Kgf/ aJ以上であ
ることを特徴とする。
(Structure of the Invention) This insulating concrete for the liquid barrier of the low-temperature liquefied gas storage tank includes the ground surface inside the liquid barrier, the floor surface under the foundation slab of the raised storage tank,
A heat insulating concrete used as a heat insulating material to cover the surface of exposed foundation piles, mainly composed of obsidian foam granules.
The aggregate is a mixture of pearlite foam granules, reinforced with glass fiber, and has an initial evaporation rate of 50xlO-'t-'°5cIl/s.
Thermal conductivity below ec 0.13 Kcal/m, hr,
It is characterized by having a compressive strength of 25 Kgf/aJ or more.

この発明で用いる黒曜石系パーライトとしては、−1)
1iのいわゆる黒曜石パーライトを用いることができる
が、後述する第1表実施例の硬粒パーライトがより好適
である。この硬粒パーライトは黒曜石を破砕した粒体を
約1000℃で急速に加熱、膨張せしめてなったもので
、独立したガラス賞小気泡の集合体からなり、極めて低
吸水性であり、一般のパーライトに比べ単位容積重量お
よび熱伝導率が低い。
The obsidian pearlite used in this invention is -1)
1i so-called obsidian pearlite can be used, but hard grain pearlite of Examples in Table 1 described later is more suitable. This hard pearlite is made by rapidly heating and expanding granules of crushed obsidian at approximately 1000℃.It is made up of agglomerations of independent glass bubbles, has extremely low water absorption, and is similar to ordinary pearlite. Unit volume weight and thermal conductivity are lower than that of

この発明で用いる真珠岩系パーライトとしては、一般の
いわゆる真珠岩パーライトを用いることができるが、後
述する第1表実施例の真珠岩系軽量パーライトがより好
適である。この軽量パーライトは前記硬粒パーライトと
同様に焼成してつくったもので、一般のものに比べ単位
容積重量および熱伝導率が低い。また、硬粒パーライト
に比べ柔らかく、独立気泡率が低い。
As the nacreous pearlite used in this invention, general so-called nacreous pearlite can be used, but the nacreous lightweight pearlite shown in Examples in Table 1, which will be described later, is more suitable. This lightweight pearlite is produced by firing in the same manner as the hard pearlite described above, and has a lower unit weight and thermal conductivity than ordinary pearlite. It is also softer and has a lower closed cell ratio than hard pearlite.

この断熱コンクリートは黒曜石系パーライトを主体とし
、真珠岩系パーライトを添加した骨材を用いる。真珠岩
系パーライトを添加することにより、混合して得られた
モルタル組成物の保水性が向上し、混合水の分離が防止
でき、流動性が向上し、均質性が向上する。また、黒曜
石系パーライトを骨材とした断熱コンクリートの優れた
熱的性能、強度、耐久性を損なうことなく発現できる。
This heat-insulating concrete uses aggregate mainly composed of obsidian-based pearlite and added with pearlite-based pearlite. By adding perlite, the water retention of the mortar composition obtained by mixing is improved, separation of mixed water can be prevented, fluidity is improved, and homogeneity is improved. In addition, it can be achieved without impairing the excellent thermal performance, strength, and durability of insulating concrete using obsidian pearlite as an aggregate.

骨材混合物に示す黒曜石系パーライトは容積比90%〜
70%である。黒曜石系パーライトが70%未満では高
比重、低強度であり、かつ、優れた熱特性を発現するこ
とはできない。また90%以上、すなわち真珠岩系パー
ライトが10%未満では混合した際、モルタル組成物の
保水性、流動性が低下し、作業性が悪く、良好な均質性
をもった断熱コンクリートが得られない。より好ましい
黒曜石系パーライトの容積比は85%〜75%すなわち
、真珠岩系パーライトの容積比は15%〜25%である
Obsidian pearlite shown in the aggregate mixture has a volume ratio of 90% ~
It is 70%. If the content of obsidian pearlite is less than 70%, the specific gravity is high, the strength is low, and excellent thermal properties cannot be exhibited. In addition, if the percentage of pearlite is 90% or more, that is, if the pearlite content is less than 10%, the water retention and fluidity of the mortar composition will decrease when mixed, resulting in poor workability and insulating concrete with good homogeneity. . A more preferable volume ratio of obsidian pearlite is 85% to 75%, that is, a volume ratio of pearlite pearlite is 15% to 25%.

初期蒸発速度は低温液化ガス貯槽に付帯する断熱コンク
リート等の熱的性能を示す数値として従来から広く用い
られている数値である。この値を求めるには試料、この
場合は断熱コンクリートの試料(20(hmφ×50f
i厚さ)を保冷材(ウレタンフオーム)で作った、上面
が解放された容器(内寸法200fiφX25On深さ
)の底面に接着し、23℃±2℃の雰囲気中で、所定量
の液体窒素を瞬時に注入する。液体窒素は試料面から熱
を吸収し、蒸発し液面が低下する。この液面の低下(H
aa)、すなわち蒸発量と経過時間(を秒)から蒸発速
度V=□を求める。このVを時間と共にプロットし、そ
の曲線から初期蒸発速度Vが求められる。液体窒素の蒸
発の過程において、試料の熱拡散率等の熱的性能が時間
と共に変化し、蒸発量が低減していくため値は低い値は
ど好ましく、少なくとも するガスの拡散抑制する充分な効果は得られない。
The initial evaporation rate is a value that has been widely used in the past as a value indicating the thermal performance of insulating concrete, etc. attached to low-temperature liquefied gas storage tanks. To find this value, use a sample, in this case an insulating concrete sample (20 (hmφ x 50f)
i thickness) to the bottom of a container (inner dimensions 200fiφ x 25On depth) made of cold insulation material (urethane foam) with an open top surface, and a predetermined amount of liquid nitrogen was poured in an atmosphere of 23°C ± 2°C. Inject instantly. Liquid nitrogen absorbs heat from the sample surface, evaporates, and the liquid level drops. This drop in liquid level (H
aa), that is, the evaporation rate V=□ is determined from the evaporation amount and the elapsed time (in seconds). This V is plotted over time, and the initial evaporation rate V is determined from the curve. In the process of evaporation of liquid nitrogen, the thermal performance of the sample, such as the thermal diffusivity, changes over time, and the amount of evaporation decreases. cannot be obtained.

熱伝導率は、JIS A 1412に基づいて測定した
値である。初期蒸発速度の低下や熱衝撃および低温脆化
から構造物を保護するには、0.13Xcal/m、h
r、 ’C以下の熱伝導率を有していなければ、その効
力は発揮されない。
The thermal conductivity is a value measured based on JIS A 1412. To protect the structure from reduced initial evaporation rate, thermal shock and low temperature embrittlement, 0.13Xcal/m, h
If it does not have a thermal conductivity of r, 'C or less, it will not be effective.

圧縮強度は、JIS A 1)08に基づいて28日間
養生後に測定した値である。保守管理時の歩行や外力か
らの損傷を防止するには、従来の経験値から、25kg
 f/cd以上の圧縮強度が必要である。
The compressive strength is a value measured after curing for 28 days based on JIS A 1)08. To prevent damage from walking or external forces during maintenance, based on previous experience, a weight of 25 kg is recommended.
A compressive strength of f/cd or higher is required.

〔実 施 例〕 この実施例では、第1表に示す黒曜石系パーライト(以
下硬粒パーライトという)および真珠岩系軽量パーライ
ト容積比4:1の混合物を骨材として用いた、これらパ
ーライトは第1表比較例に示す従来のパーライトに比べ
容積重量が非常に軽量であり、かつ熱特性も優れている
[Example] In this example, a mixture of obsidian pearlite (hereinafter referred to as hard pearlite) and pearlite light pearlite shown in Table 1 with a volume ratio of 4:1 was used as the aggregate. Compared to the conventional pearlite shown in the Comparative Examples in the table, it is much lighter in volume and has excellent thermal properties.

この軽量のパーライトは、セメントペースト中に水溶性
セルロース誘導体からなる増粘剤を添加し増粘を図るこ
とにより均一な分散を可能となした。
This lightweight pearlite was made possible to be uniformly dispersed by adding a thickener made of a water-soluble cellulose derivative to the cement paste to increase its viscosity.

第2表に実施例の断熱コンクリートの配合表を示す。こ
の断熱コンクリート組成物を混練りする方法は、公知の
強制撹拌ミキサーを使用し、各材料を第2表に示す配合
割合で、投入し混合する。まず始めに計量された硬粒パ
ーライトおよび真珠岩系軽量パーライトをミキサー内に
迅速に投入し、続いて軽量されたポルトランドセメント
およびガラス繊維を投入する。これらの各成分は均一に
混合、分散されるように、その後1分間空合わせをする
Table 2 shows the composition table of the heat insulating concrete of the example. The method of kneading this insulating concrete composition is to use a known forced stirring mixer, and add and mix each material in the proportions shown in Table 2. First, weighed hard pearlite and perlite-based lightweight pearlite are quickly introduced into the mixer, followed by lightweighted Portland cement and glass fiber. These components are then mixed for 1 minute so that they are evenly mixed and dispersed.

次に計量された混合水および規定の水量で希釈されたA
E剤、増粘剤を空合わせした成分に注ぎ込み、最後に全
てのモルタル成分を3分間練り合わせ製造する。
Next, measure the mixed water and A diluted with the specified amount of water.
Pour E agent and thickener into the combined ingredients, and finally knead all the mortar ingredients for 3 minutes.

AE剤としては安定した微細な気泡をセメントペースト
中に均一に分散させることができるアニオン系界面活性
剤を用いた。ガラス繊維としては直径10〜20稟クロ
ンの耐アルカリ性ガラス繊維を用い、靭性、ねばりの向
上を図った。第3表に実施例の断熱コンクリートおよび
従来の黒曜石系パーライトおよび真珠岩パーライトを骨
材とした比較例の断熱コンクリートの物性を示す。
As the AE agent, an anionic surfactant capable of uniformly dispersing stable fine air bubbles in the cement paste was used. As the glass fibers, alkali-resistant glass fibers with a diameter of 10 to 20 square meters were used to improve toughness and stickiness. Table 3 shows the physical properties of the heat insulating concrete of the example and the heat insulating concrete of the comparative example using conventional obsidian pearlite and pearlite pearlite as aggregates.

一般に断熱コンクリートの熱特性と機械的特性は比重に
ほぼ相関し、比重が軽いと熱物性は上昇するが機械的特
性は低下する。断熱コンクリートはその名称からも、熱
特性が優先され、その性能が継続的に維持しうる機械的
強度があるなら、出来る限り比重は軽いほうが良い。
In general, the thermal and mechanical properties of insulating concrete are roughly correlated with its specific gravity; when the specific gravity is low, the thermal properties increase but the mechanical properties decrease. As the name suggests, heat-insulating concrete prioritizes thermal properties, and as long as it has the mechanical strength to maintain its performance over time, it is better to have as light a specific gravity as possible.

容積重量の重いパーライトの混入は必然的に比重が重く
なり、比重の軽量化にはAE剤による多量の空気連行が
必要となるが、AE剤は温度依存度が高く、特に現場施
工のような水温、外気が常に変化するような環境下では
空気の連行量が一定せずに品質のバラツキの大きい、か
つ骨材容積比の減少は乾燥収縮の増大を招き、クランク
の発生し易い製品となる。これに対し、0.10程度の
容積重量の軽い硬粒パーライトを使用するこの発明にな
る断熱コンクリートでは多量の骨材を混入できることで
、AE剤は微量で良く、また 硬粒パーライトはバラツ
キが少なく、吸水性が低く、強度を有していることから
、仕上がり表面が美しく、品質の非常に安定した製品が
得られる。
Mixing pearlite, which has a heavy volumetric weight, inevitably increases the specific gravity, and reducing the specific gravity requires entraining a large amount of air with an AE agent. In an environment where the water temperature and outside air constantly change, the amount of air entrained is not constant, resulting in large variations in quality, and a decrease in the aggregate volume ratio leads to increased drying shrinkage, resulting in a product that is more likely to crack. . On the other hand, in the insulating concrete of this invention, which uses hard pearlite with a light volume weight of about 0.10, a large amount of aggregate can be mixed in, so only a small amount of AE agent is required, and hard pearlite has less variation. Because it has low water absorption and strength, it produces products with beautiful finished surfaces and extremely stable quality.

第2表に示した実施例の断熱コンクリートは骨材/セメ
ント(容積比〉6:1の場合を示したが、要求される熱
特性の基準値によっては4:1.sat、7:1等の配
合とすることもできる。
The insulating concrete of the example shown in Table 2 shows the case where the aggregate/cement (volume ratio) is 6:1, but depending on the standard value of the required thermal properties, it may be 4:1.sat, 7:1, etc. It is also possible to use a combination of

第1!! 骨材比較表 第3表 断熱コンクリートの物性 第4表 まだ固まらないコンクリートのバラッキ第4表
はまだ固まらないコンクリートのバラツキを示す。
1st! ! Aggregate Comparison Table 3 Physical Properties of Insulating Concrete Table 4 Variations in concrete that has not yet set Table 4 shows the variations in concrete that has not yet set.

スランプ、容積重量は共に安定しており、現場施工での
品質のバラツキが少ないことが示される。
Both slump and volumetric weight are stable, indicating that there is little variation in quality during on-site construction.

以下に低温液化ガスの高床式貯槽の防液堤内の基礎スラ
ブ下の床部および一般床部の、この発明になる断熱コン
クリートによる断熱施工例を挙げ説明する。
Below, an example of insulation construction using the insulation concrete according to the present invention will be given and explained for the floor part under the foundation slab and the general floor part in the dike of a raised storage tank for low-temperature liquefied gas.

第1図は低温貯槽および防液堤の概要を示すものであり
、1は低温貯槽で、2は貯槽を支持する基礎スラブ、3
はこれらを支持する基礎杭、4は貯槽の廻りに構築した
防液堤、5は漏洩した液化ガスの接する面に敷設した断
熱コンクリートである。
Figure 1 shows an overview of the low temperature storage tank and dike, where 1 is the low temperature storage tank, 2 is the foundation slab that supports the storage tank, and 3 is the foundation slab that supports the storage tank.
4 is the foundation pile that supports these, 4 is the liquid barrier built around the storage tank, and 5 is the insulating concrete laid on the surface that will come into contact with the leaked liquefied gas.

第2図は防液堤内地表面の断熱構造を示すものであり、
防液堤内面の床部の土壌6には均しコンクリート7を打
設し、その上に溶接金網8を配し、金網8は均しコンク
リート7に植え込まれたアンカー9に固定される。約3
mX3mに仕切られるように伸縮目地10を組み立て、
その内側に断熱コンクリート5を打設する。
Figure 2 shows the insulation structure of the ground surface inside the dike.
Leveled concrete 7 is placed on the soil 6 on the floor of the inner surface of the dike, and a welded wire mesh 8 is placed on top of it, and the wire mesh 8 is fixed to anchors 9 embedded in the leveled concrete 7. Approximately 3
Assemble expansion joints 10 so that they are partitioned into m x 3 m,
A heat insulating concrete 5 is placed inside it.

第3図は基礎スラブ下の床面および基礎杭の断熱構造を
示すものであり、床面の土壌6には均しコンクリート7
を打設し、その上に伸縮目地10を組み立て、その内側
に断熱コンクリート5を打設する。一方、基礎杭3には
工場で製造され、かつ運搬等で受ける外力に耐えられる
ように金網で補強された断熱コンクリート成形品5′を
取り付け、鋼帯等で固定する。
Figure 3 shows the insulation structure of the floor surface under the foundation slab and the foundation piles, and the soil 6 on the floor surface is covered with leveled concrete 7.
is poured, an expansion joint 10 is assembled on it, and heat insulating concrete 5 is poured inside it. On the other hand, a heat insulating concrete molded product 5' manufactured in a factory and reinforced with a wire mesh so as to withstand external forces applied during transportation etc. is attached to the foundation pile 3, and fixed with steel strips or the like.

なお、基礎スラブ下床面の断熱コンクリート5には金網
8を敷設しなかった。また断熱コンクリ−)tE形品5
゛は4分割して取付作業性の向上を図った。
Note that the wire mesh 8 was not laid on the insulating concrete 5 on the floor surface under the foundation slab. Insulating concrete) tE type product 5
It was divided into four parts to improve installation workability.

〔発明の効果〕〔Effect of the invention〕

この発明は以上の通りであり、この断熱コンクリートは
防液堤断熱材の基準値より優れた初期蒸発速度および熱
伝導率を備え、しかも実用上支障のない機械的強度を有
し、断熱コンクリートの最大の欠点であるクランクの発
生を著しく改善し、優れた耐久性、耐候性を発揮する。
The present invention is as described above, and this insulating concrete has an initial evaporation rate and thermal conductivity that are superior to the standard values for dike insulation materials, and also has mechanical strength that does not pose a problem in practical use. It significantly improves the occurrence of cranks, which is the biggest drawback, and exhibits excellent durability and weather resistance.

従って低温液化ガス貯槽の防液堤に用い、優れた断熱性
能を長期に発揮できる。また、高床式貯槽基礎スラブの
下の床断熱のように作業空間が制約される箇所の施工は
、従来の金網を使用しなくても必要な強度、耐久性が得
られ、施工性も良く、大変経済的である。
Therefore, it can be used as a liquid barrier in low-temperature liquefied gas storage tanks to provide excellent heat insulation performance over a long period of time. In addition, for construction in areas where work space is restricted, such as floor insulation under the foundation slab of a raised storage tank, the necessary strength and durability can be obtained without using conventional wire mesh, and the workability is also good. It is very economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2.3図は低温液化ガス貯槽の防液堤内の断熱コ
ンクリートによる断熱施工例を示すもので、第1図は全
体縦斯面図、第2図は一般床部の一部断面を示す斜視図
、第3図は基礎スラブ下の床部の一部断面を示す斜視図
である。 1・・・・・・低温貯槽、2・・・・・・基礎スラブ、
3・・・・・・基礎杭、4・・・・・・防液堤、5・・
・・・・断熱コンクリート、5゛・・・・・・断熱コン
クリート成形品、6・・・・・・土壌、7・・・・・・
均しコンクリート、8・・・・・・溶接金網、9・・・
・・・アンカー 10・・・・・・伸縮目地。
Figure 1.2.3 shows an example of insulation construction using insulation concrete inside the dike of a low-temperature liquefied gas storage tank. FIG. 3 is a perspective view showing a partial cross section of the floor under the foundation slab. 1... Low temperature storage tank, 2... Foundation slab,
3...Foundation pile, 4...Dike barrier, 5...
...Insulating concrete, 5゛...Insulating concrete molded product, 6...Soil, 7...
Leveled concrete, 8...Welded wire mesh, 9...
... Anchor 10 ... Expansion joint.

Claims (1)

【特許請求の範囲】[Claims] (1)防液堤内の地表面、高床式貯槽基礎スラブ下の床
面、露出した基礎杭の表面を覆う断熱材として用いる断
熱コンクリートであって、黒曜石系発泡粒状物を主体と
し、真珠岩系発泡粒状物を添加した混合物を骨材となし
、ガラス繊維を混入し補強してなり、 初期蒸発速度50×10^−^3t^−^0^.^5c
m/sec.以下(雰囲気温度23℃、液体窒素を使用
、 t=経過時間。sec.) 熱伝導率0.13Kcal/m.hr.℃以下圧縮強度
25Kgf/cm^2以上 であることを特徴とする低温液化ガス貯槽の防液堤用の
断熱コンクリート。
(1) Insulating concrete used as a heat insulating material to cover the ground surface inside the dike, the floor surface under the foundation slab of a raised storage tank, and the surface of exposed foundation piles, which is mainly composed of obsidian-based foam granules and pearlite-based The aggregate is a mixture of foamed granules and reinforced with glass fiber, and the initial evaporation rate is 50 x 10^-^3t^-^0^. ^5c
m/sec. Below (ambient temperature 23°C, using liquid nitrogen, t = elapsed time. sec.) Thermal conductivity 0.13 Kcal/m. hr. An insulating concrete for a liquid barrier in a low-temperature liquefied gas storage tank, characterized by having a compressive strength of 25 Kgf/cm^2 or more below ℃.
JP1173424A 1989-07-05 1989-07-05 Insulating concrete for liquid bank of low temperature liquefied gas storage tank Expired - Lifetime JP2561959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1173424A JP2561959B2 (en) 1989-07-05 1989-07-05 Insulating concrete for liquid bank of low temperature liquefied gas storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1173424A JP2561959B2 (en) 1989-07-05 1989-07-05 Insulating concrete for liquid bank of low temperature liquefied gas storage tank

Publications (2)

Publication Number Publication Date
JPH0337168A true JPH0337168A (en) 1991-02-18
JP2561959B2 JP2561959B2 (en) 1996-12-11

Family

ID=15960196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1173424A Expired - Lifetime JP2561959B2 (en) 1989-07-05 1989-07-05 Insulating concrete for liquid bank of low temperature liquefied gas storage tank

Country Status (1)

Country Link
JP (1) JP2561959B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805533A1 (en) * 2000-02-25 2001-08-31 Materiaux De La Nive Atel Ready-to-use cement composition for concrete and mortars resistant to the very high temperatures encountered in chimney flues incorporates an artificial Portland cement combined with an air-entraining additive
JP2013522148A (en) * 2010-03-05 2013-06-13 キョントン ワン コーポレーション Insulating material using expanded perlite of closed cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002068855A (en) * 2000-09-04 2002-03-08 Ask Sanshin Engineering Co Ltd Lightweight and heat insulating concrete
JP5513696B1 (en) * 2014-01-15 2014-06-04 株式会社フジコーポレーション Test piece test room
JP5513697B1 (en) * 2014-01-15 2014-06-04 株式会社フジコーポレーション Test piece test room wall structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490323A (en) * 1977-12-28 1979-07-18 Kanebo Ltd Glass fiber reinforced pearlite formed body
JPS62137499A (en) * 1985-12-10 1987-06-20 Kajima Corp Breakwater for reserving low temperature liquefied gas
JPS62212275A (en) * 1986-03-13 1987-09-18 ニチアス株式会社 High strength lightweight concrete heat insulator and manufacture
JPS62288179A (en) * 1986-06-04 1987-12-15 清水建設株式会社 Concrete containing clay foamed grains
JPS6417036A (en) * 1987-06-18 1989-01-20 Polaroid Corp Photographic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490323A (en) * 1977-12-28 1979-07-18 Kanebo Ltd Glass fiber reinforced pearlite formed body
JPS62137499A (en) * 1985-12-10 1987-06-20 Kajima Corp Breakwater for reserving low temperature liquefied gas
JPS62212275A (en) * 1986-03-13 1987-09-18 ニチアス株式会社 High strength lightweight concrete heat insulator and manufacture
JPS62288179A (en) * 1986-06-04 1987-12-15 清水建設株式会社 Concrete containing clay foamed grains
JPS6417036A (en) * 1987-06-18 1989-01-20 Polaroid Corp Photographic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805533A1 (en) * 2000-02-25 2001-08-31 Materiaux De La Nive Atel Ready-to-use cement composition for concrete and mortars resistant to the very high temperatures encountered in chimney flues incorporates an artificial Portland cement combined with an air-entraining additive
JP2013522148A (en) * 2010-03-05 2013-06-13 キョントン ワン コーポレーション Insulating material using expanded perlite of closed cell

Also Published As

Publication number Publication date
JP2561959B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
US4751024A (en) Sprayable fireproofing composition
US3930590A (en) Storage installation for liquefied gas
CA2699534A1 (en) Methods of minimizing concrete cracking and shrinkage
US5017232A (en) Pomice containing composition
CN110342888A (en) A kind of high ductility thermal insulation mortar
Ali et al. Use of expanded polystyrene in developing solid brick masonry units
US20040149170A1 (en) Cellular concrete having normal compressive strength
JPH0337168A (en) Heat insulating concrete for dike of low temperature liquefied gas tank
Dhemla et al. Experimental investigation of light weight concrete using sintered fly ash aggregates
US5292366A (en) Pumice containing composition
Zulkarnain et al. Durability performance of lightweight aggregate concrete for housing construction
Fouad Cellular concrete
Ni et al. Characterization of lightweight cellular concrete
JP2002068855A (en) Lightweight and heat insulating concrete
CN106699029A (en) Foamed concrete based on waste building aggregate
JP2754869B2 (en) Cold-resistant insulation spray material
US2915802A (en) Method of making expanded cellular cement products
US20120252918A1 (en) Method and composition for insulative composite building material
CN110453556A (en) A kind of foundation soil heat-preserving anti-freezing processing method
US20130098270A1 (en) Dry cement mix for forming light concretes with low thermal conductivity, and concretes thus obtained
Miryuk Porous magnesia compositions with various fillers
JPS6241784A (en) Concrete containing pumice foamed grain
Fontana et al. Guide for mixing and placing sulfur concrete in construction
CN108455938A (en) A kind of preparation method of diatomite modified foamed concrete plate
CN110066148B (en) Pumpable lightweight aggregate concrete and preparation method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13