JPS62136870A - Photoelectric conversion element and manufacture of the same - Google Patents

Photoelectric conversion element and manufacture of the same

Info

Publication number
JPS62136870A
JPS62136870A JP60276708A JP27670885A JPS62136870A JP S62136870 A JPS62136870 A JP S62136870A JP 60276708 A JP60276708 A JP 60276708A JP 27670885 A JP27670885 A JP 27670885A JP S62136870 A JPS62136870 A JP S62136870A
Authority
JP
Japan
Prior art keywords
blocking layer
layer
conversion element
photoelectric conversion
amorphous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60276708A
Other languages
Japanese (ja)
Inventor
Akihiro Kenmotsu
持 秋広
Eiji Matsuzaki
永二 松崎
Yoshifumi Yoritomi
頼富 美文
Tsuneaki Kamei
亀井 常彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60276708A priority Critical patent/JPS62136870A/en
Publication of JPS62136870A publication Critical patent/JPS62136870A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To provide an amorphous Si photoelectric conversion element which is featured by a small dark current and large contrast by employing the composition in which an amorphous Si layer is held between an electron blocking layer and a hole blocking layer. CONSTITUTION:A high melting point metal film, for instance a Ti film, is formed on a glass substrate 11 and a lower electrode 12 and a wiring pattern are formed by a photoetching process. The surface of the substrate 11 is subjected to a hydrogen plasma treatment by introducing hydrogen in a glow discharge apparatus. Then predetermined quantities of monosilane SiH4 and hydrogen H2 are introduced to form an I-type amorphous Si layer 13 and further predetermined quantities of SiH4 and ammonia NH4 are introduced to form a silicon nitride hole blocking layer 15. Then a heat treatment is carried out to form an electron blocking layer 16, composed of a reaction product layer between the amorphous Si layer 13 and the Ti lower electrode 12, and SiN, amorphous Si and titanium silicide are selectively etched. After that, a transparent conductive film made of ITO (In2O3+SnO2) is formed to complete an photoelectric transducer which facilitates a large contrast in a wide voltage range and is stable against a voltage fluctuation.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光電変換素子に係り、特にシリコン主成分とす
る非晶質半導体で構成されたイメージセンサ、光センチ
等に好適な光電変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a photoelectric conversion element, and more particularly to a photoelectric conversion element suitable for image sensors, optical sensors, etc., which is constructed of an amorphous semiconductor mainly composed of silicon.

〔発明の背景〕[Background of the invention]

シリコンを主成分とした非晶質半導体(以下a −SL
と云う)は、グロー放電法、スパッタ法等で形成される
。そしてホウ素(B)やリン(P)を含むガスを導入し
た雰囲気で成膜することで、−p型半導体として働くp
層、n型半導体として働くn層あるいは真性半導体とし
て働くL層を形成することができる。
Amorphous semiconductor mainly composed of silicon (hereinafter referred to as a-SL)
) is formed by a glow discharge method, a sputtering method, or the like. Then, by forming a film in an atmosphere containing gas containing boron (B) and phosphorus (P), p
An n layer acting as an n-type semiconductor or an L layer acting as an intrinsic semiconductor can be formed.

さらにa −Sigは光電変換特性がすぐれていること
、グロー放電法やスパッタ法で成膜が可能なため、低温
で大面積に容易に成膜が可能であること、縮小光学系を
用いない密着型であるから、読取装置として実用化され
ている。
Furthermore, a-Sig has excellent photoelectric conversion characteristics, can be formed into a film by glow discharge method or sputtering method, so it can be easily formed into a film over a large area at low temperature, and it can be used in close contact without using a reduction optical system. Because it is a type, it has been put into practical use as a reading device.

従来、a−8Lを用いた光電変換素子は、第4図に示す
ように、ガラス基板1、この基板上に形成した下部電極
2、この電極上に形成した光電変換をするa−8ja層
3、このa−8L層上に形成した上部透明電極4より構
成されている。しかし、この構造ではa−8=層と電極
の界面が不安定である。このため、特開昭58−844
57で述べられているように暗電流が大きくなりやすく
結果として明電流と暗電流の比が小さくなり、コントラ
ストが大きくとれなかった。
Conventionally, a photoelectric conversion element using A-8L has a glass substrate 1, a lower electrode 2 formed on this substrate, and an A-8JA layer 3 formed on this electrode for photoelectric conversion, as shown in FIG. , an upper transparent electrode 4 formed on this a-8L layer. However, in this structure, the interface between the a-8=layer and the electrode is unstable. For this reason, JP-A-58-844
As described in No. 57, the dark current tends to increase, and as a result, the ratio of bright current to dark current becomes small, making it difficult to obtain a large contrast.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記した従来技術の問題点を解決し、暗
゛戒流が小さく、コントラストの大きいα−8↓光電変
換素子を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an α-8↓ photoelectric conversion element with small dark current and high contrast.

〔発明の概要〕[Summary of the invention]

上記目的はa−8L層を電子の阻止層と正孔の阻止層で
はさまれた構造とすることによって達成される。
The above object is achieved by making the a-8L layer sandwiched between an electron blocking layer and a hole blocking layer.

そして電子の阻止層は、高融点金属と水素等を含むα−
8Lとの反応生成物である高融点金属のブイ化物がa−
8=層への電子の阻止層となることを見い出したことに
基づいて形成され、正孔の阻止層は特開昭58−844
57に示されているよ5に酸化膜やn型半導体が正孔の
阻止層となる事実に基づいて形成した。
The electron blocking layer is an α-
The high melting point metal buide which is the reaction product with 8L is a-
It was formed based on the discovery that it acts as a blocking layer for electrons to the 8= layer, and the hole blocking layer is disclosed in Japanese Patent Application Laid-Open No. 58-844.
As shown in No. 57, 5 was formed based on the fact that an oxide film or an n-type semiconductor acts as a hole blocking layer.

なお、高融点金属のケイ化物は、金属とa−8=の界面
に熱処理のみで容易に形成できる。そして一度形成する
と熱安定性良好である。従って製作が容易であり、形成
されたグイ化物は信頼性がある。
Note that the silicide of the high melting point metal can be easily formed at the interface between the metal and a-8= by only heat treatment. Once formed, it has good thermal stability. Therefore, it is easy to manufacture, and the formed guidide is reliable.

以下、本発明で使用する材料等に説明する。The materials used in the present invention will be explained below.

本発明で用いるシリコンを主成分とするα−S=は、電
子の阻止層を形成する面にはH,O,ハロゲン元素、 
N、 B、 P、 All、 Asのうちから選ばれた
少なくとも一種類の元素を含んでいる。
The α-S= mainly composed of silicon used in the present invention has H, O, and halogen elements on the surface forming the electron blocking layer.
Contains at least one element selected from N, B, P, All, and As.

高融点金属は、TL、 Cr、 Zr、 Mo、 Hf
、 Ta、 W。
High melting point metals are TL, Cr, Zr, Mo, Hf
, Ta, W.

Co、 NL、 RJ、 Ir、等であり、これら金属
は単独もしくは二種類以上用いて電極を形成する。また
、上記のα−8L層のHlo、ハロゲン元素を含む面と
は、50℃〜300℃で加熱して反応させて上記金属の
ゲイ化物よりなる電子阻止層を形成する。
These metals include Co, NL, RJ, Ir, etc., and these metals may be used alone or in combination of two or more to form an electrode. Further, the surface of the α-8L layer containing the Hlo and halogen elements is heated at 50° C. to 300° C. to react with each other to form an electron blocking layer made of the above-mentioned metal ganide.

正孔阻止層は上記のようにニーSL層のN、 P。The hole blocking layer is made of N and P of the knee SL layer as described above.

As、 Sb、 BLのうちから選ばれた少なくとも一
種類を含んだ層である。正孔阻止層はa−8i、層のり
゛イ化物からなる電子阻止層を形成した西方の表面に金
属酸化物層、金属窒化物を設げて形成してもよい。具体
的には、S=N、 5LOz、 )dhO5゜8?LO
2,In2O5,Z?LO,To20s、 Cd−00
うちから選ばれた少なくとも−m@の材料で正孔阻止層
を形成する。
This layer contains at least one type selected from As, Sb, and BL. The hole blocking layer may be formed by providing a metal oxide layer or a metal nitride on the western surface of the a-8i layer on which the electron blocking layer made of a dihydride is formed. Specifically, S=N, 5LOz, )dhO5゜8? L.O.
2, In2O5, Z? LO, To20s, Cd-00
A hole blocking layer is formed using a material selected from among the materials with at least -m@.

上部透明電極は、ZnO,57L02. I?L20s
、 S?L02+■?L205等ヲスバッタ法によって
形成する。
The upper transparent electrode is made of ZnO, 57L02. I? L20s
, S? L02+■? It is formed by a scattering method such as L205.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

実施例を 最初にa−3L光電変換素子の製造方法について説明す
る。
In an example, first, a method for manufacturing an a-3L photoelectric conversion element will be described.

第1図に示すようにコーティング7059等のガラス基
板1にスパッタリング法等の技術を用いて高融点金属、
たとえばT↓膜を被膜し、ホトエツチングプロセスによ
り下部電極2、配線パターン(図示せず)を形成する。
As shown in FIG. 1, coating 7059 etc. on the glass substrate 1 is coated with a high melting point metal using a technique such as a sputtering method.
For example, a T↓ film is coated, and a lower electrode 2 and a wiring pattern (not shown) are formed by a photo-etching process.

下部電極2を形成したガラス基板1をグロー放電装置に
設置し、真空排気した後水素を導入して基板表面の水素
プラズマ処理を行なう。次いで、所定量のモノシラン5
LHaと水素H2を導入してb層のa −3L層3を4
00nm程度形成し、更に所定量の8LHaとアンモニ
ヤNH3を導入して約30話の窒化シリコン(8LN)
の正孔阻止層5を形成する。a−8iz層3とSLNの
正孔層5を形成した後に、210℃の温度で約20分間
の熱処理を行なって、a−8=層3とTL製上下部電極
2反応層よりなる電子阻子層6を形成する。ホトリソ法
によって8.、N、α−8L。
The glass substrate 1 with the lower electrode 2 formed thereon is placed in a glow discharge device, and after being evacuated, hydrogen is introduced to perform hydrogen plasma treatment on the substrate surface. Then, a predetermined amount of monosilane 5
By introducing LHa and hydrogen H2, the a-3L layer 3 of the b layer becomes 4
Silicon nitride (8LN) is formed with a thickness of about 00nm, and further introduces a predetermined amount of 8LHa and ammonia NH3 to form silicon nitride (8LN).
A hole blocking layer 5 is formed. After forming the a-8iz layer 3 and the SLN hole layer 5, heat treatment is performed at a temperature of 210° C. for about 20 minutes to form an electron blocking layer consisting of the a-8=layer 3 and the reaction layer of the upper and lower electrodes 2 made of TL. A child layer 6 is formed. 8. By photolithography. , N, α-8L.

チタンとのクイ化物を選択エツチングする。チタンとの
ケイ化物はa−8j、のエツチング量を少し多くするこ
とによってa−8Lと同時に除去可能であるが、S、、
N、 a−8Lを選択エツチングしてから、前述の熱処
理によってチタンとのケイ化物を形成してもよい。その
後、ITO(I?LJs+8−! )よりなる透明導電
膜を形成して光電変換素子を得た。
Selective etching of the titanium compound. Silicides with titanium can be removed at the same time as a-8L by slightly increasing the etching amount of a-8j, but S...
After selectively etching N, a-8L, a silicide with titanium may be formed by the heat treatment described above. Thereafter, a transparent conductive film made of ITO (I?LJs+8-!) was formed to obtain a photoelectric conversion element.

第2図の曲線7.8は、本実施例で形成した光電変換素
子の暗電流の電圧特性、明電流の電圧特性である。また
、第2図の曲線9,1oはS、l、Nよりなる正孔阻止
層もしくはチタンのゲイ化物よりなる電子阻止層のない
場合の暗電流の電圧特性である。これらの特性を比較す
ると8LN、によって正孔が、チタンのゲイ化物によっ
て電子が阻止されていることが判る。しかも、SANと
チタンのグイ化物の両方を形成することにより暗電流が
よくおさえられていることがわかる。
Curves 7.8 in FIG. 2 are the dark current voltage characteristics and bright current voltage characteristics of the photoelectric conversion element formed in this example. Further, curves 9 and 1o in FIG. 2 are the dark current voltage characteristics in the case where there is no hole blocking layer made of S, 1, or N or an electron blocking layer made of a titanium ganide. Comparing these characteristics, it can be seen that holes are blocked by 8LN and electrons are blocked by the titanium ganide. Furthermore, it can be seen that the dark current is well suppressed by forming both the SAN and the titanium oxide.

この結果、広い電圧領域で大きなコントラストが取れる
と共に、電圧変動に強い光電変換素子ができる。
As a result, a photoelectric conversion element with high contrast in a wide voltage range and resistant to voltage fluctuations can be produced.

なお、α−8=とチタンのゲイ化物をつくるために21
0℃の熱処理を施したが、温度を210℃に固定するこ
となく50℃〜500℃の温度で処理をすれば効果があ
る。金属の種類やa−8i−の膜質により50℃〜30
0℃の範囲で最適温で処理することにより本発明の効果
をより大きくすることができる。
In addition, in order to make a gay compound of α-8= and titanium, 21
Although heat treatment was carried out at 0°C, it is effective if the temperature is not fixed at 210°C but is carried out at a temperature of 50°C to 500°C. 50℃~30℃ depending on the type of metal and the film quality of a-8i-
The effects of the present invention can be further enhanced by processing at an optimal temperature within the range of 0°C.

実施例λ 実施例1では正孔阻止層と上部透明電極をそれぞれ別に
設けたが、同一材料で形成することも可能である。IT
O(I?L20i + 8%02 )透明電極はn型の
伝導を示すことが知られており、この特性を利用すると
第3図に示すような構造でも本発明の目的を実現するこ
とができる。
Example λ In Example 1, the hole blocking layer and the upper transparent electrode were provided separately, but they can also be made of the same material. IT
It is known that the O(I?L20i + 8%02) transparent electrode exhibits n-type conduction, and by utilizing this property, the object of the present invention can be achieved even with the structure shown in Figure 3. .

又、本発明は高融点金属よりなる下部電極と4−8=を
熱処理することで界面にグイ化物を形成し、上部電極に
光を透過する透明電極を用いたが、上部電極と下部電極
を反対にしても形成可能である。すなわち、下部電極に
透明電極を用い、その上に正孔阻止層、a −SA層、
高融点金属よりなる上部電極を形成し、その後、熱処理
により、α−8Lと高融点金属との界面にグイ化物を形
成することによっても本発明を実施することができる。
Furthermore, in the present invention, a lower electrode made of a high-melting point metal and 4-8= are heat-treated to form a guiride at the interface, and a transparent electrode that transmits light is used as the upper electrode. It can also be formed in the opposite direction. That is, a transparent electrode is used as the lower electrode, and a hole blocking layer, an a-SA layer,
The present invention can also be carried out by forming an upper electrode made of a high-melting point metal, and then heat-treating to form a guiride at the interface between α-8L and the high-melting point metal.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、暗電流が小さく、コ
ントラストの大きいa−8L光電変換素子が得られる。
As described above, according to the present invention, an a-8L photoelectric conversion element with low dark current and high contrast can be obtained.

この光電変換素子を用いると忠実な画像読み取りが可能
である。
Using this photoelectric conversion element, faithful image reading is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す光電変換素子の断面図
、第2図は本発明にょる光電変換素子の明電流および暗
電流の電圧特性図、第3図は本発明の他の一実施例を示
す光電変換素子の断面図、第4図は従来の光電変換素子
を示す断ll1lr図である。 1・・・ガラス基板、   5・・・正孔阻止層、2・
・・回部電極、    6・・・電子阻止層、3 ・・
−a −SL層、   7,8,9.10−・・曲線、
4・・・上部透明電極。 躬 1 閉 /χ 第 22 f。
FIG. 1 is a cross-sectional view of a photoelectric conversion element showing one embodiment of the present invention, FIG. 2 is a voltage characteristic diagram of bright current and dark current of the photoelectric conversion element according to the present invention, and FIG. 3 is a diagram of voltage characteristics of another photoelectric conversion element of the present invention. FIG. 4 is a cross-sectional view of a photoelectric conversion element showing one embodiment. FIG. 4 is a cross-sectional view showing a conventional photoelectric conversion element. DESCRIPTION OF SYMBOLS 1...Glass substrate, 5...Hole blocking layer, 2...
...circuit electrode, 6...electron blocking layer, 3...
-a -SL layer, 7, 8, 9.10-... curve,
4... Upper transparent electrode.躬 1 closed/χ 22nd f.

Claims (1)

【特許請求の範囲】 1、シリコンを主成分とする非晶質半導体を、電極とし
て働く二つの導電膜によって挾んだ構造とし、かつ前記
非晶質半導体と金属膜の一方の界面に前記金属膜との反
応層よりなる電子阻止層を設け、他方の界面に正孔阻止
層を設けたことを特徴とする光電子変換素子。 2、前記の二つの導電膜のうちで前記の非晶質半導体と
反応して電子阻止層を形成する導電膜が、Ti、Cr、
Zr、Nb、Mo、Hf、Ta、W、Co、Ni、Rk
、Irのうちから選ばれた少なくとも一種類の高融点金
属であることを特徴とする特許請求の範囲第1項記載の
光電変換素子。 3、前記のシリコンを主成分とする非晶質半導体は、非
晶質半導体の一方の面にH、O、ハロゲン元素、N、B
、P、Al、Asのうちから選ばれた少なくとも一種類
の元素が含まれている層を有することを特徴とする特許
請求の範囲第1項もしくは第2項記載の光電変換素子。 4、前記の正孔阻止層がSiN、SiO_2、Al_2
O_3、SnO_3In_2O_3、ZnO、Ta_2
O_5、CdOのうちから選ばれた少なくとも一種類の
化合物よりなることを特徴とする特許請求の範囲第1項
、第2項もしくは第3項記載の光電変換素子。 5、前記の正孔阻止層が、前記のシリコンを主成分とす
る非晶質半導体の導電膜と反応する面と反対側の面にN
、P、As、Sb、Biのうちから選ばれた少なくとも
一種類の元素を含む層からなることを特徴とする特許請
求の範囲第1項、第2項もしくは第3項記載の光電変換
素子。 6、シリコンを主成分とする非晶質半導体の両面に、電
極として働く二つの導電膜を形成し、50℃〜300℃
で熱処理することにより非晶質半導体と一つの導電膜の
界面とを反応させて電子阻止層を形成することを特徴と
する光電変換素子の製造方法。 7、シリコンを主成分とする非晶質半導体の一方の面に
、SiN、SiO_2、Al_2O_3、SnO_2、
In_2O_3、ZnO、Ta_2O_5、CdOのう
ちから選ばれた少なくとも一種類の化合物により正孔阻
止層を設け、正孔阻子層と上記非晶質半導体の正孔阻子
層を設けた面と反対側の面に導電膜を形成し、50℃〜
300℃で熱処理することにより非晶質半導体と一つの
導電膜の界面とを反応させて電子阻子層を形成すること
を特徴とする光電変換素子の製造方法。
[Scope of Claims] 1. A structure in which an amorphous semiconductor mainly composed of silicon is sandwiched between two conductive films serving as electrodes, and the metal is provided at one interface between the amorphous semiconductor and the metal film. 1. A photoelectron conversion element comprising an electron blocking layer formed of a layer that reacts with a film, and a hole blocking layer provided at the other interface. 2. Of the two conductive films, the conductive film that reacts with the amorphous semiconductor to form an electron blocking layer is made of Ti, Cr,
Zr, Nb, Mo, Hf, Ta, W, Co, Ni, Rk
The photoelectric conversion element according to claim 1, characterized in that the photoelectric conversion element is at least one kind of high melting point metal selected from among , Ir, and Ir. 3. The amorphous semiconductor whose main component is silicon has H, O, halogen elements, N, and B on one surface of the amorphous semiconductor.
, P, Al, and As. 4. The hole blocking layer is SiN, SiO_2, Al_2
O_3, SnO_3In_2O_3, ZnO, Ta_2
The photoelectric conversion element according to claim 1, 2, or 3, characterized in that it is made of at least one compound selected from O_5 and CdO. 5. The hole blocking layer has N on the surface opposite to the surface that reacts with the conductive film of the silicon-based amorphous semiconductor.
, P, As, Sb, and Bi. 6. Two conductive films that act as electrodes are formed on both sides of an amorphous semiconductor whose main component is silicon, and heated to 50°C to 300°C.
1. A method for manufacturing a photoelectric conversion element, which comprises forming an electron blocking layer by reacting an amorphous semiconductor with an interface of one conductive film by heat treatment. 7. SiN, SiO_2, Al_2O_3, SnO_2,
A hole blocking layer is provided with at least one compound selected from In_2O_3, ZnO, Ta_2O_5, and CdO, and a hole blocking layer and the side opposite to the surface on which the hole blocking layer of the amorphous semiconductor is provided. A conductive film is formed on the surface of the
A method for manufacturing a photoelectric conversion element, which comprises forming an electron blocking layer by reacting an amorphous semiconductor with an interface of one conductive film by heat treatment at 300°C.
JP60276708A 1985-12-11 1985-12-11 Photoelectric conversion element and manufacture of the same Pending JPS62136870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60276708A JPS62136870A (en) 1985-12-11 1985-12-11 Photoelectric conversion element and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60276708A JPS62136870A (en) 1985-12-11 1985-12-11 Photoelectric conversion element and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS62136870A true JPS62136870A (en) 1987-06-19

Family

ID=17573217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60276708A Pending JPS62136870A (en) 1985-12-11 1985-12-11 Photoelectric conversion element and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS62136870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444277B1 (en) * 1993-01-28 2002-09-03 Applied Materials, Inc. Method for depositing amorphous silicon thin films onto large area glass substrates by chemical vapor deposition at high deposition rates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444277B1 (en) * 1993-01-28 2002-09-03 Applied Materials, Inc. Method for depositing amorphous silicon thin films onto large area glass substrates by chemical vapor deposition at high deposition rates

Similar Documents

Publication Publication Date Title
GB2148592A (en) Thin film transistor with metal-diffused regions and method for making the same
JPH03133176A (en) Silicon carbide semiconductor device and manufacture thereof
US4320248A (en) Semiconductor photoelectric conversion device
JP2533718B2 (en) Method for manufacturing thin film transistor
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JPS62136870A (en) Photoelectric conversion element and manufacture of the same
JPH0227826B2 (en)
JPS6057227B2 (en) Manufacturing method of semiconductor device
JPS60117781A (en) Thin film element
JPS63292682A (en) Manufacture of thin film semiconductor device
JPS60142575A (en) Photovoltaic element
JPS61236173A (en) Amorphous silicon optical sensor
JP3134359B2 (en) Thin film thermoelectric element
JPS6315484A (en) Thin-film electric conductor of mixed silicon/germanium/ gold crystal
JPS635914B2 (en)
JPS61244073A (en) Amorphous silicon photoelectric conversion element
JPS62133770A (en) Ohmic-junction device
JPH0323679A (en) Photoelectric transducer
JPH02210882A (en) Phototransistor and manufacture thereof
JPS6163064A (en) Thin film strain sensor
JP3134360B2 (en) Manufacturing method of thin film thermoelectric element
JPH042121A (en) Manufacture of titanium silicide
JPS58209169A (en) Amorphous silicon solar battery
JPS6281778A (en) Amorphous silicon thin film device
JP2876405B2 (en) Thin film thermocouple element